JPH0832296B2 - Method for manufacturing hydrogen separation membrane - Google Patents

Method for manufacturing hydrogen separation membrane

Info

Publication number
JPH0832296B2
JPH0832296B2 JP1284913A JP28491389A JPH0832296B2 JP H0832296 B2 JPH0832296 B2 JP H0832296B2 JP 1284913 A JP1284913 A JP 1284913A JP 28491389 A JP28491389 A JP 28491389A JP H0832296 B2 JPH0832296 B2 JP H0832296B2
Authority
JP
Japan
Prior art keywords
palladium
thin film
separation membrane
hydrogen separation
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1284913A
Other languages
Japanese (ja)
Other versions
JPH03146122A (en
Inventor
英一 菊地
洋 内田
洋州 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP1284913A priority Critical patent/JPH0832296B2/en
Publication of JPH03146122A publication Critical patent/JPH03146122A/en
Publication of JPH0832296B2 publication Critical patent/JPH0832296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水素分離膜の製造方法に関し、詳しくはパ
ラジウム合金よりなる水素分離膜の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hydrogen separation membrane, and more particularly to a method for producing a hydrogen separation membrane made of a palladium alloy.

[従来の技術] 特開昭63−294925号公報には、多数の小孔を有する耐
熱性多孔体の表面にパラジウム薄膜を、パラジウム薄膜
上に銅薄膜を夫々化学メッキ法によって形成させ、次い
で熱処理温度300〜540℃、好ましくは400〜500℃、処理
時間5〜40時間、望ましくは12〜16時間の条件下に熱処
理を行なうことよりなる水素分離用膜の製造法が開示さ
れている。
[Prior Art] JP-A-63-294925 discloses that a palladium thin film is formed on the surface of a heat-resistant porous body having a large number of small pores, and a copper thin film is formed on the palladium thin film by a chemical plating method, followed by heat treatment. Disclosed is a method for producing a hydrogen separation membrane, which comprises performing a heat treatment under the conditions of a temperature of 300 to 540 ° C, preferably 400 to 500 ° C, and a treatment time of 5 to 40 hours, preferably 12 to 16 hours.

特開平1−164419号公報には、多数の小孔を有する耐
熱性多孔体の表面にパラジウム薄膜を、パラジウム薄膜
上に銀薄膜を夫々化学メッキ法によって形成させ、次い
で熱処理温度450〜600℃、処理時間8〜16時間の条件下
に熱処理を行なうことよりなる水素分離用膜の製造法が
開示されている。
In JP-A-1-164419, a palladium thin film is formed on the surface of a heat resistant porous body having a large number of small holes, and a silver thin film is formed on the palladium thin film by a chemical plating method, respectively, and then a heat treatment temperature is 450 to 600 ° C. A method for producing a hydrogen separation membrane is disclosed, which comprises performing a heat treatment under a treatment time of 8 to 16 hours.

[従来技術の問題点] 特開昭63−294925号公報および特開平1−164419号公
報に記載された発明により、300℃以下の低温で長時間
使用してもひび割れを生じ易いという問題点は解決され
たとしても、水素透過量の改善についてはまだ満足すべ
きものではない。
[Problems of Prior Art] According to the inventions disclosed in JP-A-63-294925 and JP-A-1-164419, there is a problem that cracks easily occur even when used at a low temperature of 300 ° C. or lower for a long time. Even if it is solved, the improvement of hydrogen permeation amount is not yet satisfactory.

[発明の目的] 本発明者は、従来の水素分離用膜において、水素透過
量をさらに増大させるべく研究を重ねた結果本発明を完
成するに至ったものである。
[Object of the Invention] The inventors of the present invention have completed the present invention as a result of repeated research to further increase the amount of hydrogen permeation in a conventional hydrogen separation membrane.

すなわち、本発明は、水素透過量を大幅に増大させる
ことができる水素分離膜の製造方法を提供することを目
的とするものである。
That is, it is an object of the present invention to provide a method for producing a hydrogen separation membrane, which can significantly increase the amount of hydrogen permeation.

[問題点を解決するための手段] 本発明は、耐熱性多孔質体の表面に、化学メッキ法に
よりパラジウムの薄膜を形成し、該パラジウム薄膜上に
化学メッキ法により銀薄膜を形成し、次いで熱処理を行
なう水素分離膜の製造方法において、該熱処理が800〜1
300℃の温度で3〜16時間行なわれ、得られる水素分離
膜が、該膜の厚さ方向全域にわたり、パラジウム60〜95
重量%、銀5〜40重量%の範囲で実質上均一な組成を有
するパラジウム合金よりなることを特徴とする前記水素
分離膜の製造方法を提供するものである。
[Means for Solving Problems] According to the present invention, a thin film of palladium is formed on a surface of a heat resistant porous body by a chemical plating method, and a silver thin film is formed on the palladium thin film by a chemical plating method. In the method for manufacturing a hydrogen separation membrane which performs heat treatment, the heat treatment is 800 to 1
It is carried out at a temperature of 300 ° C. for 3 to 16 hours, and the obtained hydrogen separation membrane has a palladium content of 60 to 95 over the entire thickness direction of the membrane.
There is provided a method for producing the hydrogen separation membrane, which comprises a palladium alloy having a substantially uniform composition in the range of 5 wt% and 5-40 wt% of silver.

本発明における耐熱性多孔質体としては、本発明のパ
ラジウム合金を形成するに足る耐熱性を有し、処理すべ
きガスに対して不活性であって、20〜30,000Å、好まし
くは40〜5,000Åの細孔を有するものを適宜選定して使
用することが可能であり、具体的には、例えば0.1〜0.5
μmの細孔を有するアルミナセラミックス多孔体などを
例示できる。該多孔質体は、化学メッキを施す前に付着
した汚れを除去するために、例えばトリクロロエチレン
を用いた超音波洗浄後エタノールなどの低級アルコール
で洗浄するのが望ましい。
The heat-resistant porous body in the present invention has heat resistance sufficient to form the palladium alloy of the present invention, is inert to the gas to be treated, and is 20 to 30,000 Å, preferably 40 to 5,000. It is possible to appropriately select and use those having pores of Å, and specifically, for example, 0.1 to 0.5.
An example is an alumina ceramic porous body having micrometer pores. It is desirable that the porous body is washed with a lower alcohol such as ethanol after ultrasonic cleaning using trichlorethylene, for example, in order to remove stains attached before chemical plating.

本発明方法において、耐熱性多孔質体の表面に、化学
メッキ法によりパラジウムの薄膜を形成する方法として
は、例えば、SnCl2・2H2Oの1g/および37%HClの1ml/
よりなるSnCl2溶液と、PdCl2の0.1g/および37%HCl
の0.1ml/よりなるPdCl2溶液とに交互に多孔質体を浸
漬させて活性化されたパラジウムを被着させる。この際
一方の溶液の処理終了後、純水による充分な洗浄を行な
うのが好ましい。
In the method of the present invention, on the surface of the heat-resistant porous body, as a method of forming a palladium thin film by a chemical plating method, for example, SnCl 2 .2H 2 O 1g / and 37% HCl 1ml /
SnCl 2 solution consisting of 0.1 g / PdCl 2 and 37% HCl
The activated palladium is deposited by alternately immersing the porous body in 0.1 ml / of PdCl 2 solution. At this time, it is preferable to perform sufficient washing with pure water after the treatment of one solution is completed.

次いで例えば[Pd(NH3]Cl2・H2Oの5.4g/、ED
TA・2Naの67.2g/、NH3(28%水溶液)の651.ml/、H
2NNH2・H2Oの0.46ml/よりなるメッキ液に、pH11.3お
よび温度50℃の条件下に活性化パラジウムを被着した多
孔質体を浸漬させて活性化パラジウム上にパラジウムを
析出させてパラジウムの薄膜を形成させる方法があげら
れる。
Then, for example, [Pd (NH 3 ) 4 ] Cl 2 · H 2 O 5.4 g /, ED
TA ・ 2Na 67.2g /, NH 3 (28% aqueous solution) 651.ml/, H
2 NNH 2 · H 2 O 0.46 ml / plating solution was immersed in a porous material coated with activated palladium at pH 11.3 and a temperature of 50 ° C to deposit palladium on the activated palladium. There is a method of forming a palladium thin film.

上記パラジウム薄膜を形成するためのメッキ所要時間
はパラジウム膜の厚みが大きくなるほど長くする必要が
あるが、例えば厚み0.013mmの場合17時間程度である。
The time required for plating to form the above palladium thin film needs to be longer as the thickness of the palladium film increases, but for example, when the thickness is 0.013 mm, it is about 17 hours.

形成されるパラジウム膜の厚みが小さい程水素の透過
速度が大となるが、厚みが小さすぎるとパラジウム膜に
ピンホールが生じ水素以外の気体がリークし易くなる。
この傾向は細孔開口部の径が大きくなる程増大する。
The smaller the thickness of the formed palladium film is, the higher the hydrogen permeation rate becomes. However, if the thickness is too small, pinholes are generated in the palladium film, and gases other than hydrogen easily leak.
This tendency increases as the diameter of the pore openings increases.

本発明方法において、前記パラジウム薄膜上に化学メ
ッキ法により銀の薄膜を形成する方法としては、例えば
[Pd(NH3]Cl2の0.54g/、AgNO3の4.86g/、EDT
A・2Naの33.6g/、NH3(28%水溶液)の651.3ml/お
よびH2NNH2・H2Oの0.46ml/よりなるメッキ液にpH12.1
および温度50℃の条件下、前記パラジウム薄膜を形成し
た多孔質体を浸漬させて該パラジウム薄膜上に銀の薄膜
を形成させる方法があげられる。この場合のメッキ所要
時間は、例えば銀薄膜の厚みが0.0017mmの場合7時間程
度が適当である。
In the method of the present invention, a method of forming a silver thin film on the palladium thin film by a chemical plating method includes, for example, [Pd (NH 3 ) 4 ] Cl 2 0.54 g /, AgNO 3 4.86 g /, and EDT.
PH 12.1 in a plating solution consisting of 33.6 g of A ・ 2Na, 651.3 ml of NH 3 (28% aqueous solution) and 0.46 ml of H 2 NNH 2・ H 2 O.
And a method of forming a silver thin film on the palladium thin film by immersing the porous body on which the palladium thin film is formed under the conditions of a temperature of 50 ° C. In this case, the required plating time is about 7 hours when the thickness of the silver thin film is 0.0017 mm.

本発明の水素分離膜の組成は化学メッキによって形成
されるパラジウム薄膜および銀の膜厚によって定まる
が、Pd60〜95重量%であってAg5〜40重量%となるよう
これらの膜厚を定めるのが適当である。銀の量が上記範
囲より少ない場合、本発明の効果が充分に発揮されず、
銀の量が上記範囲を超えると水素の透過選択性および水
素の透過速度が低下し易くなる。
The composition of the hydrogen separation membrane of the present invention is determined by the palladium thin film formed by chemical plating and the film thickness of silver, and it is necessary to determine the film thickness so that Pd is 60 to 95% by weight and Ag is 5 to 40% by weight. Appropriate. When the amount of silver is less than the above range, the effect of the present invention is not sufficiently exerted,
When the amount of silver exceeds the above range, hydrogen permeation selectivity and hydrogen permeation rate tend to be lowered.

本発明方法における熱処理は、得られる水素分離膜の
実質上全域にわたって、実質上所定比率のパラジウムと
銀とよりなる均一なパラジウム合金が形成される条件下
に行うことが必要である。このようなパラジウム合金の
形成は、X線マイクロアナライザー分析法のような膜の
厚さ方向の組成分析が行なえる分析方法により測定され
るものである。
The heat treatment in the method of the present invention needs to be performed under the condition that a uniform palladium alloy composed of palladium and silver in a substantially predetermined ratio is formed over substantially the entire area of the obtained hydrogen separation membrane. The formation of such a palladium alloy is measured by an analysis method such as an X-ray microanalyzer analysis method capable of performing composition analysis in the film thickness direction.

本発明方法における熱処理を添付図面を参照してさら
に具体的に説明する。
The heat treatment in the method of the present invention will be described more specifically with reference to the accompanying drawings.

第1〜4図は、本発明における熱処理条件を説明する
ためにX線マイクロアナライザーにより測定された、パ
ラジウム薄膜22.5μm(79重量%)および銀薄膜6.8μ
m(21重量%)より形成される水素分離膜のS−S断面
図における膜厚とパラジウムおよび銀の濃度との関係を
示すグラフであって、第1図は800℃で12時間熱処理を
行なったもの、第2図は1000℃で12時間熱処理を行なっ
たもの、第3図は500℃で12時間熱処理を行なったも
の、第4図は熱処理を行なっていないものである。耐熱
性多孔質体として製膜部分の細孔径が0.2μmの99.9%
アルミナセラミックス多孔体を用いた。図中Aは熱処理
前または熱処理後の膜の表面を表わし、Bは該膜と多孔
質体との境界面を表わし、1はパラジウムの濃度を表わ
し、2は銀の濃度を表わす。
1 to 4 are palladium thin film 22.5 μm (79% by weight) and silver thin film 6.8 μ measured by an X-ray microanalyzer to explain the heat treatment conditions in the present invention.
FIG. 1 is a graph showing the relationship between the film thickness and the concentrations of palladium and silver in the SS cross-sectional view of the hydrogen separation membrane formed by m (21% by weight). FIG. 2, FIG. 2 shows heat treated at 1000 ° C. for 12 hours, FIG. 3 shows heat treated at 500 ° C. for 12 hours, and FIG. 4 shows no heat treated. As a heat-resistant porous body, the pore size of the membrane is 0.2 μm, 99.9%
An alumina ceramic porous body was used. In the figure, A represents the surface of the film before or after heat treatment, B represents the interface between the film and the porous body, 1 represents the concentration of palladium, and 2 represents the concentration of silver.

本発明方法における熱処理の必要条件とは、第3図お
よび第4図に示されるように、X線マイクロアラナイザ
ー分析法のような膜の厚さ方向の組成分析が行なえる分
析方法による測定において、得られる水素分離膜の実質
上全域にわたって実質上所定比率のパラジウムと銀とよ
りなる均一なパラジウム合金が形成される条件を意味す
るものである。
The necessary conditions for the heat treatment in the method of the present invention are, as shown in FIG. 3 and FIG. 4, in the measurement by the analysis method such as the X-ray micro-analyzer analysis method capable of performing the composition analysis in the film thickness direction. It means the conditions under which a uniform palladium alloy of palladium and silver in a substantially predetermined ratio is formed over substantially the entire area of the obtained hydrogen separation membrane.

さらに具体的には、例えば第1〜4図に示されるパラ
ジウム薄膜と銀薄膜とを形成後の熱処理条件としては80
0℃で12時間、あるいは1000℃で12時間の熱処理で充分
であるが、例えば500℃12時間の熱処理は本発明の熱処
理の要件を満たしていないことがわかる。
More specifically, for example, the heat treatment condition after forming the palladium thin film and the silver thin film shown in FIGS.
It can be seen that heat treatment at 0 ° C. for 12 hours or 1000 ° C. for 12 hours is sufficient, but for example, heat treatment at 500 ° C. for 12 hours does not satisfy the requirements of the heat treatment of the present invention.

したがって、本発明方法における熱処理の条件は、上
記X線マイクロアナライザー分析法のような膜の厚さ方
向の組成分析が行なえる分析方法により上記したように
均一なパラジウム合金が形成される条件を満足する限り
特別の制限はないが、好ましくは800℃以上の温度で3
〜16時間熱処理を行なうことができる。処理温度の上限
としては、特別の制限はないが、あまり高温にしても技
術的にも意味がなく経済的でもなく、例えば上記アルミ
ナセラミックス多孔質体を用いた場合、1300℃を超えて
使用することができず、処理温度としては、好ましくは
800〜1300℃であり、処理時間は好ましくは3〜16時間
である。
Therefore, the heat treatment condition in the method of the present invention satisfies the condition that a uniform palladium alloy is formed as described above by an analysis method such as the X-ray microanalyzer analysis method that can perform composition analysis in the film thickness direction. There is no particular limitation as long as it is, but preferably 3 at a temperature of 800 ° C or higher.
Heat treatment can be performed for up to 16 hours. The upper limit of the treatment temperature is not particularly limited, but it is technically meaningless and economical even if the temperature is too high. For example, when the above alumina ceramic porous body is used, it is used above 1300 ° C. Therefore, the treatment temperature is preferably
The temperature is 800 to 1300 ° C., and the treatment time is preferably 3 to 16 hours.

本発明におけるパラジウム合金は、銀の他に、悪影響
を及ぼさない程度に銅、ニッケルなどの他の成分を含有
することも可能である。
In addition to silver, the palladium alloy in the present invention may contain other components such as copper and nickel to the extent that they do not have an adverse effect.

本発明の水素分離膜は、例えば高純度水素製造用とし
て、または水素化反応、脱水素反応、水蒸気改質反応の
反応器などに利用することができる。
INDUSTRIAL APPLICABILITY The hydrogen separation membrane of the present invention can be used, for example, for producing high-purity hydrogen, or in a reactor for hydrogenation reaction, dehydrogenation reaction, steam reforming reaction, or the like.

[発明の効果] 本発明によれば、熱処理が特定された条件下に行なわ
れ、水素分離膜の実質上全域にわたって均一なパラジウ
ム合金が形成されるため、従来500℃前後で熱処理を行
なった場合であって、水素分離膜全域にわたる合金化が
不充分な場合に比べて、第1に膜自体の水素透過性能が
増大すると共に、第2に水素分離膜の膜厚をより小さく
することが可能となることにより、相乗的に水素透過量
を著しく増大させることができる効果が得られる。
EFFECTS OF THE INVENTION According to the present invention, heat treatment is performed under specified conditions, and a uniform palladium alloy is formed over substantially the entire area of the hydrogen separation membrane. As compared with the case where alloying over the entire area of the hydrogen separation membrane is insufficient, firstly, the hydrogen permeation performance of the membrane itself is increased, and secondly, the thickness of the hydrogen separation membrane can be made smaller. As a result, the effect of significantly increasing the hydrogen permeation amount can be obtained.

[実施例] 以下実施例および比較例により、本発明をさらに具体
的に説明する。
[Examples] The present invention will be described more specifically with reference to Examples and Comparative Examples below.

実施例1 製膜部分の細孔径が0.2μmの純度99.999%のアルミ
ナセラミックス多孔体よりなるパイプの外面のみにメッ
キを施す目的のために、上下をメッキ用テープで目かく
しをして管内部に液がはいりこまないようにしたもの
を、トリクロロエチレンを用いて超音波洗浄し、次いで
エタノールによる洗浄を行なった後乾燥させ、SnCl2・2
H2Oの1g/および37%HClの1ml/よりなるSnCl溶液
と、PdCl2の0.1g/および37%HClの0.1ml/よりなるP
dCl2溶液に交互に10回宛浸漬させて活性化されたパラジ
ウムを被着させた。この際一方の溶液による処理終了
後、純水による充分な洗浄を行なった。
Example 1 For the purpose of plating only the outer surface of a pipe made of an alumina ceramic porous body having a pore size of 0.2 μm and a purity of 99.999% in the film-forming portion, the upper and lower parts of the pipe were blinded with a plating tape and placed inside the pipe. what liquid was prevented from entering, trichlorethylene ultrasonic cleaning with, then dried after performing washing with ethanol, SnCl 2 · 2
SnCl solution consisting of 1 g of H 2 O / and 1 ml / of 37% HCl and P consisting of 0.1 g / of PdCl 2 and 0.1 ml / of 37% HCl.
The activated palladium was deposited by alternately immersing the dCl 2 solution for 10 times. At this time, after the treatment with one solution was completed, sufficient washing with pure water was performed.

次いで、[Pd(NH3]Cl2・H2Oの5.4g/、EDTA・
2Naの67.2g/、NH3(28%水溶液)の651.3ml/、H2NN
H2・H2Oの0.46ml/よりなるメッキ液に、pH11.3および
温度50℃の条件下に活性化パラジウムを被着させた上記
多孔質体を5時間浸漬させて活性化パラジウム上にパラ
ジウムを析出させてパラジウムの薄膜(4.5μm)を形
成させた。
Then, [Pd (NH 3 ) 4 ] Cl 2 · H 2 O 5.4 g /, EDTA ·
67.2 g / of 2Na, 651.3 ml / of NH 3 (28% aqueous solution), H 2 NN
The above-mentioned porous body coated with activated palladium under the conditions of pH 11.3 and temperature of 50 ° C. was immersed in a plating solution consisting of 0.46 ml of H 2 · H 2 O for 5 hours to deposit the activated palladium on the activated palladium. Palladium was deposited to form a palladium thin film (4.5 μm).

次いで[Pd(NH3]Cl2の0.54g/、AgNO3の4.86g
/、EDTA・2Naの33.6g/、NH3(28%水溶液)の651.3
ml/およびH2NNH2・H2Oの0.46ml/よりなるメッキ液
にpH12.1および温度50℃の条件下、前記パラジウム薄膜
を形成した多孔質体を1時間浸漬させて該パラジウム薄
膜上に銀の薄膜(0.5μm)を形成させた。
Then [Pd (NH 3 ) 4 ] Cl 2 0.54g /, AgNO 3 4.86g
/, 33.6g / of EDTA ・ 2Na, 651.3 of NH 3 (28% aqueous solution)
On the palladium thin film, the porous body on which the palladium thin film was formed was immersed for 1 hour in a plating solution consisting of 0.46 ml / of H 2 NNH 2 · H 2 O at pH 12.1 and a temperature of 50 ° C. A thin film of silver (0.5 μm) was formed on.

次いで900℃で12時間熱処理して、パラジウム89重量
%、および銀11重量%よりなる膜厚5μmの水素分離膜
を得た。得られた水素分離膜について、温度500℃、膜
にかかる圧力差2kg/cm2・Gの条件で、水素ガスの透過
試験を行なったところ、水素透過量は72.2cm3/cm2/min
であった。
Then, it was heat-treated at 900 ° C. for 12 hours to obtain a hydrogen separation membrane having a film thickness of 5 μm, which was composed of 89% by weight of palladium and 11% by weight of silver. A hydrogen gas permeation test was conducted on the obtained hydrogen separation membrane under the conditions of a temperature of 500 ° C. and a pressure difference across the membrane of 2 kg / cm 2 · G, and the hydrogen permeation rate was 72.2 cm 3 / cm 2 / min.
Met.

実施例2 実施例1と同様にして得られた活性化パラジウム被着
多孔質体を、10時間実施例1と同様のメッキ液に浸漬さ
せて活性化パラジウム上にパラジウムの薄膜(9.5μ
m)を形成させ、次いで実施例1と同様に、パラジウム
薄膜を形成された多孔質体を2時間実施例1と同様のメ
ッキ液に浸漬させて、該パラジウム薄膜上に銀の薄膜
(1.0μm)を形成させた。
Example 2 The activated palladium-deposited porous material obtained in the same manner as in Example 1 was immersed in the same plating solution as in Example 1 for 10 hours to form a palladium thin film (9.5 μ) on the activated palladium.
m), and then, similarly to Example 1, the porous body on which the palladium thin film was formed was immersed in the same plating solution as in Example 1 for 2 hours to form a silver thin film (1.0 μm) on the palladium thin film. ) Was formed.

次いで900℃で12時間熱処理して、パラジウム89重量
%および銀11重量%よりなる膜厚10.5μmの水素分離膜
を得た。得られた水素分離膜について、実施例1と同様
に水素透過試験を行なったところ、水素透過量は56.9cm
3/cm2/minであった。
Then, heat treatment was carried out at 900 ° C. for 12 hours to obtain a hydrogen separation membrane having a film thickness of 10.5 μm and containing 89% by weight of palladium and 11% by weight of silver. A hydrogen permeation test was conducted on the obtained hydrogen separation membrane in the same manner as in Example 1. As a result, the hydrogen permeation amount was 56.9 cm.
It was 3 / cm 2 / min.

実施例3 熱処理を800℃で12時間行なった以外実施例1と同様
にして得られた水素分離膜について実施例1と同様の水
素透過試験を行なったところ、水素透過量は71.5cm3/cm
2/minであった。
Example 3 A hydrogen permeation test was conducted in the same manner as in Example 1 on the hydrogen separation membrane obtained in the same manner as in Example 1 except that the heat treatment was carried out at 800 ° C. for 12 hours, and the hydrogen permeation rate was 71.5 cm 3 / cm.
It was 2 / min.

実施例4 熱処理を1000℃で12時間行なった以外実施例1と同様
にして得られた水素分離膜について実施例1と同様の水
素透過試験を行なったところ、水素透過量は72.8cm3/cm
2/minであった。
Example 4 A hydrogen permeation test was conducted in the same manner as in Example 1 on the hydrogen separation membrane obtained in the same manner as in Example 1 except that the heat treatment was conducted at 1000 ° C. for 12 hours, and the hydrogen permeation amount was 72.8 cm 3 / cm.
It was 2 / min.

比較例1 熱処理を500℃で12時間行なった以外実施例2と同様
にして得られた水素分離膜について実施例1と同様に水
素透過試験を行なったところ、水素透過量は30.9cm3/cm
2/minであった。
Comparative Example 1 A hydrogen permeation test was conducted in the same manner as in Example 1 with respect to the hydrogen separation membrane obtained in the same manner as in Example 2 except that the heat treatment was performed at 500 ° C. for 12 hours, and the hydrogen permeation amount was 30.9 cm 3 / cm 3.
It was 2 / min.

比較例2 熱処理を行なわない以外実施例2と同様にして得られ
た水素分子膜について実施例1と同様に水素透過試験を
行なったところ、水素はほとんど透過しなかった。
Comparative Example 2 When a hydrogen permeation test was conducted in the same manner as in Example 1 with respect to the hydrogen molecular film obtained in the same manner as in Example 2 except that the heat treatment was not performed, almost no hydrogen permeated.

比較例3 SiO249重量%、B2O318重量%、CaO13重量%、Al2O39
重量%、Na2O5重量%、K2O2重量%およびMgO4重量%よ
りなる硝子製の厚み0.5mm、内径10mm、長さ500mmの円筒
体を710℃に20時間加熱してCaOおよびB2O3を主体とする
相を分相せしめ、2%HF溶液で30分間エッチングし、次
いで80℃の1NHCl溶液中に16時間浸漬してCaOおよびB2O3
を主体とする相を溶解除去して小孔径2,600Åの多孔質
体を得た。
Comparative Example 3 49 wt% SiO 2, 18 wt% B 2 O 3 , 13 wt% CaO, Al 2 O 3 9
A glass-made cylindrical body having a thickness of 0.5 mm, an inner diameter of 10 mm and a length of 500 mm, which is composed of 5% by weight, Na 2 O 5% by weight, K 2 O 2% by weight and MgO 4% by weight, is heated to 710 ° C. for 20 hours to CaO and B 2 O The phase mainly composed of 3 was separated, etched with a 2% HF solution for 30 minutes, and then immersed in a 1N HCl solution at 80 ° C for 16 hours to CaO and B 2 O 3
The phase mainly composed of was dissolved and removed to obtain a porous body with a small pore size of 2,600Å.

得られた多孔質硝子を、実施例1におけるアルミナセ
ラミックス多孔体に代え、実施例1と同様にして得られ
た活性化パラジウム被着多孔質硝子を21時間実施例1と
同様のメッキ液に浸漬させて活性化パラジウム上にパラ
ジウムの薄膜(20μm)を形成させ、次いで実施例1と
同様に、パラジウム薄膜を形成させた多孔質硝子を7時
間実施例1と同様のメッキ液に浸漬させて、該パラジウ
ム薄膜上に銀の薄膜(2μm)を形成させた。
The obtained porous glass was replaced with the alumina ceramic porous body in Example 1, and the activated palladium-coated porous glass obtained in the same manner as in Example 1 was immersed in the same plating solution as in Example 1 for 21 hours. Then, a palladium thin film (20 μm) was formed on the activated palladium, and then the porous glass on which the palladium thin film was formed was immersed in the same plating solution as in Example 1 for 7 hours, as in Example 1. A silver thin film (2 μm) was formed on the palladium thin film.

次いで500℃で12時間熱処理してパラジウム93重量%
および銀7重量%よりなる膜厚22μmの水素分離膜を得
た。得られた水素分離膜について、実施例1と同様に水
素透過試験を行なったところ、水素透過量は12cm3/cm2/
minであった。アルミナセラミックス多孔質体の場合に
比べて製膜時間が長くなる傾向が認められた。
Then heat treated at 500 ℃ for 12 hours 93% by weight of palladium
A hydrogen separation membrane having a thickness of 22 μm and containing 7% by weight of silver was obtained. A hydrogen permeation test was conducted on the obtained hydrogen permeable membrane in the same manner as in Example 1. As a result, the hydrogen permeation amount was 12 cm 3 / cm 2 /
It was min. It was confirmed that the film forming time tended to be longer than that of the alumina ceramic porous body.

【図面の簡単な説明】[Brief description of drawings]

第1〜4図は、本発明における熱処理条件を説明するた
めにX線マイクロアナライザー分析法により測定され
た、パラジウム薄膜および銀薄膜より形成される水素分
離膜のS−S断面図における膜厚とパラジウムおよび銀
の濃度との関係を示すグラフである。 A……熱処理前または熱処理後の膜の表面、B……膜と
多孔質体との境界面、1……パラジウム濃度、2……銀
濃度。
FIGS. 1 to 4 show the film thickness in the S-S cross-sectional view of the hydrogen separation membrane formed of the palladium thin film and the silver thin film, which were measured by the X-ray microanalyzer analysis method for explaining the heat treatment conditions in the present invention. It is a graph which shows the relationship with the concentration of palladium and silver. A: Surface of film before or after heat treatment, B: Interface between film and porous body, 1 ... Palladium concentration, 2 ... Silver concentration.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】耐熱性多孔質体の表面に、化学メッキ法に
よりパラジウムの薄膜を形成し、該パラジウム薄膜上に
化学メッキ法により銀薄膜を形成し、次いで熱処理を行
なう水素分離膜の製造方法において、 該熱処理が800〜1300℃の温度で3〜16時間行なわれ、
得られる水素分離膜が、該膜の厚さ方向全域にわたり、
パラジウム60〜95重量%、銀5〜40重量%の範囲で実質
上均一な組成を有するパラジウム合金よりなることを特
徴とする前記水素分離膜の製造方法。
1. A method for producing a hydrogen separation membrane, wherein a palladium thin film is formed on the surface of a heat-resistant porous body by a chemical plating method, a silver thin film is formed on the palladium thin film by a chemical plating method, and then heat treatment is performed. In, the heat treatment is performed at a temperature of 800 to 1300 ° C. for 3 to 16 hours,
The obtained hydrogen separation membrane has the entire thickness direction of the membrane,
The method for producing a hydrogen separation membrane, comprising a palladium alloy having a substantially uniform composition in the range of 60 to 95% by weight of palladium and 5 to 40% by weight of silver.
JP1284913A 1989-11-02 1989-11-02 Method for manufacturing hydrogen separation membrane Expired - Lifetime JPH0832296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1284913A JPH0832296B2 (en) 1989-11-02 1989-11-02 Method for manufacturing hydrogen separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284913A JPH0832296B2 (en) 1989-11-02 1989-11-02 Method for manufacturing hydrogen separation membrane

Publications (2)

Publication Number Publication Date
JPH03146122A JPH03146122A (en) 1991-06-21
JPH0832296B2 true JPH0832296B2 (en) 1996-03-29

Family

ID=17684676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284913A Expired - Lifetime JPH0832296B2 (en) 1989-11-02 1989-11-02 Method for manufacturing hydrogen separation membrane

Country Status (1)

Country Link
JP (1) JPH0832296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115913A (en) * 2002-09-20 2004-04-15 Robert Bosch Gmbh Method for producing electrically conductive covering on insulating substrate, and the such covered substrate

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137979A (en) * 1991-11-25 1993-06-01 Mitsubishi Kakoki Kaisha Ltd Production of hydrogen separating membrane
JP3213430B2 (en) * 1993-03-31 2001-10-02 日本碍子株式会社 Gas separator and method for producing the same
JP2991609B2 (en) * 1993-10-18 1999-12-20 日本碍子株式会社 Joint of gas separator and metal and hydrogen gas separator
JPH10113545A (en) * 1996-07-08 1998-05-06 Ngk Insulators Ltd Gas separating body
JPH10113544A (en) * 1996-07-08 1998-05-06 Ngk Insulators Ltd Gas separating body
DE10057161C2 (en) * 2000-11-16 2003-08-21 Heraeus Gmbh W C Niobium alloy and a hydrogen permeation membrane made from it
WO2002064241A1 (en) * 2001-02-16 2002-08-22 Sumitomo Electric Industries, Ltd. Hydrogen-permeable structure and method for manufacture thereof or repair thereof
US7923105B2 (en) 2004-12-01 2011-04-12 Ngk Insulators, Ltd. Hydrogen separator and process for production thereof
JP2010036080A (en) * 2008-08-03 2010-02-18 National Institute Of Advanced Industrial & Technology Hydrogen gas separation material with elevated temperature resistance which does not deteriorate under elevated temperature hyperbaric pressure-humid environment for a long term
CN102861517A (en) * 2012-09-19 2013-01-09 常州大学 Method for preparing cold-rolled ultra-thin palladium-silver alloy membrane
EP2933013A4 (en) * 2012-12-17 2016-09-14 Nitto Denko Corp Hydrogen-releasing film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164419A (en) * 1987-12-22 1989-06-28 Ise Kagaku Kogyo Kk Production of hydrogen separating membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115913A (en) * 2002-09-20 2004-04-15 Robert Bosch Gmbh Method for producing electrically conductive covering on insulating substrate, and the such covered substrate

Also Published As

Publication number Publication date
JPH03146122A (en) 1991-06-21

Similar Documents

Publication Publication Date Title
JP4528785B2 (en) Metal palladium composite membrane or alloy palladium composite membrane and method for producing the same
US7727596B2 (en) Method for fabricating a composite gas separation module
Ma et al. Thin composite palladium and palladium/alloy membranes for hydrogen separation
JPH0832296B2 (en) Method for manufacturing hydrogen separation membrane
JP2006525119A (en) Composite gas separation module with high Tamman temperature interlayer
Li et al. Preparation of Pd/ceramic composite membrane 1. Improvement of the conventional preparation technique
US8445055B2 (en) Method for the fabrication of composite palladium and palladium-alloy membranes
JP2006520687A (en) Method for manufacturing a composite gas separation module
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
AU2004224365B2 (en) Method for curing defects in the fabrication of a composite gas separation module
US8211539B2 (en) Hydrogen separator and process for production thereof
JPS62273030A (en) Preparation of hydrogen separating medium
JPS63294925A (en) Film for separating hydrogen and production thereof
CA2858597A1 (en) A method of preparing a palladium- silver alloy gas separation membrane using mechanical surface activation
JP4112856B2 (en) Method for producing gas separator
JP3396470B2 (en) Method for producing Pd-based hydrogen separation membrane
JPH01164419A (en) Production of hydrogen separating membrane
JP4777748B2 (en) Hydrogen separator and method for producing the same
KR100531130B1 (en) Preparation of composite palladium membranes using etching process of metal chlorides
JPH0568553B2 (en)