JPH0832109A - Silicon illuminant and its manufacture - Google Patents

Silicon illuminant and its manufacture

Info

Publication number
JPH0832109A
JPH0832109A JP15981894A JP15981894A JPH0832109A JP H0832109 A JPH0832109 A JP H0832109A JP 15981894 A JP15981894 A JP 15981894A JP 15981894 A JP15981894 A JP 15981894A JP H0832109 A JPH0832109 A JP H0832109A
Authority
JP
Japan
Prior art keywords
silicon
dihydride
hydrogen
light
illuminant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15981894A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tanida
義明 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15981894A priority Critical patent/JPH0832109A/en
Publication of JPH0832109A publication Critical patent/JPH0832109A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the luminous efficiency of an illuminant by using silicon having a superiority against micro fabrication technique through a simple process. CONSTITUTION:A hydrogen-terminated dihydride structure 2 is formed on a single-crystal silicon substrate 1 on which a plurality of parallel stripe-like projections 3 are formed. The dihydride structure is formed by dipping single- crystal silicon in a hydrofluoric acid solution and terminating the surface of the silicon with hydrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表面を水素終端した界面
を用いたシリコン発光体に関する。近年, シリコンを用
いた電子デバイスの微細化が進んでいるが,シリコンは
間接遷移型半導体材料であるため, 発光デバイスとして
は半導体レーザに代表されるように直接遷移型半導体材
料である化合物半導体を用いなければならない。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon light emitter using an interface whose surface is hydrogen-terminated. In recent years, miniaturization of electronic devices using silicon is progressing.Since silicon is an indirect transition type semiconductor material, a compound semiconductor, which is a direct transition type semiconductor material as represented by a semiconductor laser, is used as a light emitting device. Must be used.

【0002】そのため,微細化技術の進んだシリコンを
用いて, 発光素子の開発が望まれている。
Therefore, it is desired to develop a light emitting device using silicon which has been advanced in miniaturization technology.

【0003】[0003]

【従来の技術】従来は, 半導体レーザや発光ダイオード
等の発光素子を作製する場合は,直接遷移型半導体材料
であり不純物のドーピングが容易なIII-V 族化合物半導
体を用いる必要があった。すなわち,シリコンは間接遷
移型半導体材料であるため, 発光素子への適用は考えら
れなかった。
2. Description of the Related Art Conventionally, when manufacturing a light emitting device such as a semiconductor laser or a light emitting diode, it has been necessary to use a III-V group compound semiconductor which is a direct transition type semiconductor material and in which impurities can be easily doped. In other words, since silicon is an indirect transition type semiconductor material, its application to light emitting devices could not be considered.

【0004】しかし,本発明に類似の従来技術として,
1)単結晶シリコンをフッ酸溶液中で陽極酸化して形成
した多孔質シリコンの表面に生成したハイドライド構造
の内, モノハイドライド構造およびトリハイドライド構
造を光または熱アニールによりジハイドライド構造に変
換して発光効率を上げる技術 (特開平 5-275743 号公報
参照) が開示されており,また, 2)シリコンの微小
クラスタと, 該クラスタを相互に結合して3次元網目
構造を形成する,シリコンと水素からなる1次元鎖(SiH
2)n とで構成される発光体 (特開昭61-105834 号公報参
照) が開示され, いずれの場合もシリコンに特別な構造
を採ることにより発光強度の向上を図っている。
However, as a prior art similar to the present invention,
1) Among the hydride structures formed on the surface of porous silicon formed by anodizing single crystal silicon in a hydrofluoric acid solution, the monohydride structure and the trihydride structure were converted to the dihydride structure by light or thermal annealing. A technique for increasing luminous efficiency is disclosed (see Japanese Patent Application Laid-Open No. 5-275743), and 2) silicon and hydrogen, which form a three-dimensional network structure by connecting minute clusters of silicon and the clusters to each other. One-dimensional chain consisting of (SiH
2 ) An illuminant composed of n and n (see Japanese Patent Laid-Open No. 61-105834) is disclosed, and in each case, a special structure is adopted for silicon to improve the luminescence intensity.

【0005】[0005]

【発明が解決しようとする課題】従来例によるシリコン
のハイドライド構造を用いた発光体は, いずれもシリコ
ンの特別な状態を用いたものであり,従って, シリコン
の微細加工技術の優位性を十分に利用できなかった。
The light emitting bodies using the silicon hydride structure according to the conventional examples are all using the special state of silicon, and therefore, the superiority of the silicon microfabrication technology can be fully realized. It was not available.

【0006】本発明は微細加工技術で優位性のあるシリ
コンを用いて簡易な工程で発光体を作製し,発光効率の
向上を図ることを目的とする。
An object of the present invention is to improve the luminous efficiency by producing a light-emitting body in a simple process using silicon, which is superior in fine processing technology.

【0007】[0007]

【課題を解決するための手段】上記課題の解決は, 1)表面にストライプ状の複数の突起が平行に形成され
た単結晶シリコン基板にその表面を水素終端したジハイ
ドライド構造が形成されてなるシリコン発光体,あるい
は 2)単結晶シリコンをフッ酸水溶液に浸漬し,その表面
を水素終端してジハイドライド構造を形成するシリコン
発光体の製造方法により達成される。
To solve the above problems, 1) a single crystal silicon substrate having a plurality of stripe-shaped projections formed in parallel on the surface thereof is formed with a hydrogen-terminated dihydride structure on the surface thereof. This can be achieved by a method of manufacturing a silicon luminescent material, or 2) a silicon luminescent material in which single crystal silicon is immersed in an aqueous solution of hydrofluoric acid and the surface thereof is terminated with hydrogen to form a dihydride structure.

【0008】[0008]

【作用】本発明は以下の実験結果を利用するものであ
る。本発明の製造方法により得られた(001)Si 面に対す
る水素吸着構造には, 大きく分けて2種類の構造が見ら
れる。その一つはモノハイドライド構造であり,他の一
つはジハイドライド構造である。この内, ジハイドライ
ド構造とシリコンとの界面は計算機実験及び実際の測定
から直接遷移型の半導体であることが分かった。このこ
とから,シリコンのジハイドライド構造を利用して直接
遷移による発光を得ることができる。
The present invention utilizes the following experimental results. The hydrogen adsorption structure on the (001) Si plane obtained by the production method of the present invention is roughly classified into two types. One is a monohydride structure, and the other is a dihydride structure. Among them, the interface between the dihydride structure and silicon was found to be a direct transition type semiconductor by computer experiments and actual measurements. From this, it is possible to obtain light emission by direct transition by utilizing the silicon dihydride structure.

【0009】図2(A),(B) は計算機実験の結果から得ら
れた2つのジハイドライド構造の説明図である。図は,
シリコンの(001) 面に対する水素原子の吸着構造を示
す。図2(A) は対称型ジハイドライド(Symmetric dihyd
ride) 構造, 図2(B) は傾斜型ジハイドライド(Canted
dihydride)構造である。図中, 四角で囲った符号の 1,
2 は水素原子, 3 はシリコン原子であり,各原子間の間
隔がÅで示されている。
2A and 2B are explanatory diagrams of two dihydride structures obtained from the results of computer experiments. The figure is
The adsorption structure of hydrogen atoms on the (001) plane of silicon is shown. Fig. 2 (A) shows the symmetry dihyd
ride) Structure, Fig. 2 (B) shows a tilted dihydride (Canted
(dihydride) structure. In the figure, the numbers 1 and 2
2 is a hydrogen atom and 3 is a silicon atom, and the space between each atom is indicated by Å.

【0010】このような,ジハイドライドは上記のよう
に直接遷移物質となることが分かったので, これを適当
な光で励起することにより, 単一波長の光を放出するこ
とができる。
Since it has been found that such dihydride directly becomes a transition substance as described above, it is possible to emit light of a single wavelength by exciting it with appropriate light.

【0011】 計算機実験 発明者による計算機実験の結果以下のことが明らかにな
った。シリコンのジハイドライド構造に対して,計算機
実験で得られたエネルギー的に安定な状態は図2(A),
(B) の2種類である。これらの状態に対して得られた電
子状態はともに直接遷移型になっており,シリコンと水
素原子の界面を利用して直接遷移に起因する発光を得る
ことができる。
Computer Experiment As a result of a computer experiment by the inventor, the following facts have been clarified. Figure 2 (A) shows the energy-stable state obtained by computer experiment for the silicon dihydride structure.
There are two types (B). The electronic states obtained for these states are both of the direct transition type, and light emission due to the direct transition can be obtained by utilizing the interface between silicon and hydrogen atoms.

【0012】この計算結果より決定した水素終端シリコ
ン表面の安定構造は, 走査型トンネル顕微鏡(STM) によ
る実験事実と矛盾しない結果を得ている。このときの水
素−シリコン界面の電子状態を調べると約2.5 eVのバン
ドギャップをもつ直接遷移型半導体である。
The stable structure of the hydrogen-terminated silicon surface determined from these calculation results has obtained results that are consistent with the experimental fact by the scanning tunneling microscope (STM). When the electronic state of the hydrogen-silicon interface at this time is investigated, it is a direct transition type semiconductor with a band gap of about 2.5 eV.

【0013】この計算結果より求められた遷移強度は,
バルクのGaAsに比較して1/100 と小さいが, 本発明に基
づき微細加工技術によって発光体表面の界面密度を増や
すことにより発光強度を向上することができる。
The transition strength obtained from this calculation result is
Although it is as small as 1/100 as compared with bulk GaAs, the emission intensity can be improved by increasing the interface density on the surface of the light emitter by the microfabrication technique according to the present invention.

【0014】 実際の測定 フォトルミネセンス測定の結果,発光強度が比較的に強
いことからも直接遷移型であると推測される。
Actual measurement As a result of the photoluminescence measurement, the direct emission type is presumed from the fact that the emission intensity is relatively strong.

【0015】[0015]

【実施例】図1は本発明の実施例の説明図である。図は
Si(001) 面にジハイドライド構造の水素原子吸着層を形
成した発光体である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an illustration of an embodiment of the present invention. The figure is
It is a luminescent material in which a hydrogen atom adsorption layer having a dihydride structure is formed on the Si (001) surface.

【0016】図において, 1はシリコン基板, 2はジハ
イドライド構造の吸着水素原子層,3はシリコン基板上に
設けられた突起で, 各突起間の距離を (λ/2) ×N と
することにより,干渉により強度の強い単一波長の光を
放射できる超小型の発光素子を得ることができる。ここ
に,λは発光波長,Nは正の整数である。
In the figure, 1 is a silicon substrate, 2 is an adsorbed hydrogen atom layer having a dihydride structure, 3 is a protrusion provided on the silicon substrate, and the distance between the protrusions is (λ / 2) × N. As a result, it is possible to obtain an ultra-compact light emitting element capable of emitting light having a single wavelength with high intensity due to interference. Here, λ is the emission wavelength and N is a positive integer.

【0017】計算の結果は,実施例の発光体は前記のよ
うに約2.5 eVのバンドギャップをもつことから,アルゴ
ンレーザによる励起でフォトルミネセンス発光が得られ
る。また,計算の結果は, GaAs等の化合物半導体と比較
して単一界面からの発光強度は約1/100 程度と小さいた
め,実施例では発光に寄与する界面密度を上げて発光強
度を上げている。
As a result of the calculation, since the luminescent material of the embodiment has a band gap of about 2.5 eV as described above, photoluminescence emission can be obtained by excitation with an argon laser. In addition, the calculation result shows that the emission intensity from a single interface is as small as about 1/100 as compared with a compound semiconductor such as GaAs. Therefore, in the example, the interface density that contributes to emission is increased to increase the emission intensity. There is.

【0018】実施例により発光強度を上げることができ
るため,単一波長の光を必要とする分野への応用が期待
される。次に, 実施例の発光体の作製手順を説明する。
Since the emission intensity can be increased by the embodiment, it is expected to be applied to a field requiring light of a single wavelength. Next, a procedure for manufacturing the light emitting body of the example will be described.

【0019】通常の光リソグラフィ技術と反応性イオン
エッチング(RIE) 法により,Si(001)基板上に, 平行に配
列した複数のストライプ状の突起 2を形成する。ストラ
イプ状の突起 2のアスペクト比(高さ/幅)を10, 幅及
び間隔を現状のリソグラフィ技術の限度であるサブμm
程度とする。
A plurality of stripe-shaped protrusions 2 arranged in parallel are formed on a Si (001) substrate by a normal photolithography technique and a reactive ion etching (RIE) method. The aspect ratio (height / width) of the stripe-shaped protrusions 2 is 10, and the width and spacing are sub-μm which is the limit of the current lithography technology.
The degree.

【0020】次いで, 基板を紫外線照射と緩衝フッ酸で
前処理して清浄化し,約 1%フッ酸溶液に浸漬すると,
凹凸のある基板の表面全面にジハイドライド構造 3が得
られる。
Then, the substrate was pretreated with ultraviolet irradiation and buffered hydrofluoric acid to be cleaned and immersed in a solution of about 1% hydrofluoric acid,
A dihydride structure 3 is obtained on the entire surface of the uneven substrate.

【0021】この場合,計算により求められた発光波長
は, 精度はあまりよくないがバンドギャップが 2〜3 eV
相当の発光波長と推定される。上記のように,この発光
体は水素終端シリコンと単結晶シリコンの界面を用いて
構成され,且つシリコン基板に凹凸を設けることにより
この界面を大きくして発光強度を上げている。
In this case, the emission wavelength obtained by the calculation is not so accurate, but the band gap is 2 to 3 eV.
It is estimated to be a considerable emission wavelength. As described above, this light emitter is formed by using the interface between hydrogen-terminated silicon and single crystal silicon, and by providing the silicon substrate with irregularities, this interface is enlarged to increase the emission intensity.

【0022】実施例では,(001)Si 面を水素終端した構
造について説明したが,(110)Si 面あるいは(111)Si 面
を水素終端した構造についても同様な効果があることを
実験的に確かめた。
In the embodiment, the structure in which the (001) Si plane is hydrogen-terminated has been described, but it has been experimentally shown that the same effect can be obtained in the structure in which the (110) Si plane or the (111) Si plane is hydrogen-terminated. I confirmed.

【0023】[0023]

【発明の効果】本発明によれば, 微細加工技術で優位性
のあるシリコンを用いて簡易な工程で発光体を形成で
き,その発光強度を向上できる。
According to the present invention, it is possible to form a light-emitting body in a simple process using silicon, which is superior in fine processing technology, and improve the light emission intensity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】 計算機実験の結果から得られた2つのジハイ
ドライド構造の説明図
FIG. 2 is an explanatory diagram of two dihydride structures obtained from the results of computer experiments.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 吸着水素原子層でジハイドライド構造 3 シリコン基板表面に形成された突起 1 Silicon substrate 2 Dihydride structure with adsorbed hydrogen atomic layer 3 Protrusions formed on the surface of silicon substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面にストライプ状の複数の突起が平行
に形成された単結晶シリコン基板にその表面を水素終端
したジハイドライド構造が形成されてなることを特徴と
するシリコン発光体。
1. A silicon light-emitting body comprising a single crystal silicon substrate having a plurality of stripe-shaped projections formed in parallel on the surface thereof, and a dihydride structure having hydrogen-terminated surfaces formed on the surface thereof.
【請求項2】 単結晶シリコンをフッ酸水溶液に浸漬
し,その表面を水素終端してジハイドライド構造を形成
することを特徴とするシリコン発光体の製造方法。
2. A method for producing a silicon light-emitting body, which comprises immersing single crystal silicon in an aqueous solution of hydrofluoric acid and terminating the surface with hydrogen to form a dihydride structure.
JP15981894A 1994-07-12 1994-07-12 Silicon illuminant and its manufacture Withdrawn JPH0832109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15981894A JPH0832109A (en) 1994-07-12 1994-07-12 Silicon illuminant and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15981894A JPH0832109A (en) 1994-07-12 1994-07-12 Silicon illuminant and its manufacture

Publications (1)

Publication Number Publication Date
JPH0832109A true JPH0832109A (en) 1996-02-02

Family

ID=15701924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15981894A Withdrawn JPH0832109A (en) 1994-07-12 1994-07-12 Silicon illuminant and its manufacture

Country Status (1)

Country Link
JP (1) JPH0832109A (en)

Similar Documents

Publication Publication Date Title
US7220984B2 (en) Influence of surface geometry on metal properties
US6103540A (en) Laterally disposed nanostructures of silicon on an insulating substrate
US6667492B1 (en) Quantum ridges and tips
JP3974654B2 (en) Phonon resonance device and manufacturing method thereof
JP3149030B2 (en) Semiconductor quantum box device and method of manufacturing the same
KR100746784B1 (en) Light emitting device having nano wire and method of fabricating the same
KR20090008182A (en) Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
CN1266816C (en) Group III nitride semiconductor laser device and manufacturing method thereof
WO2003083177A2 (en) Influence of surface geometry on metal properties
EP0997996B1 (en) Semiconductor laser device and method for fabricating the same
US9287456B2 (en) Silicon-germanium light-emitting element
JPH0832109A (en) Silicon illuminant and its manufacture
JP2005311285A (en) Hyperbolic drum type element, and manufacturing method of the element using ion beam etching
KR100238452B1 (en) Hyperfine structure batch growing method
JPH06140669A (en) Light emitting element and manufacture thereof
JP2831953B2 (en) Semiconductor surface patterning method and semiconductor device manufacturing method
JP2000162459A (en) Photonic crystal and manufacture thereof
JPH10261785A (en) Quantum box semiconductor device and its manufacture
KR100281287B1 (en) Manufacturing Method of Compound Semiconductor Device
KR20000037777A (en) Heavily doped quantum wire and method for manufacturing the same
KR101297434B1 (en) Semiconcuutor device and semiconductor device array using graphene
JPS60126880A (en) Semiconductor laser device
US6452205B2 (en) Sparse-carrier devices and method of fabrication
JPH057053A (en) Fabrication of strain quantum well laser
JPH0685235A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002