JPH06140669A - Light emitting element and manufacture thereof - Google Patents

Light emitting element and manufacture thereof

Info

Publication number
JPH06140669A
JPH06140669A JP29116292A JP29116292A JPH06140669A JP H06140669 A JPH06140669 A JP H06140669A JP 29116292 A JP29116292 A JP 29116292A JP 29116292 A JP29116292 A JP 29116292A JP H06140669 A JPH06140669 A JP H06140669A
Authority
JP
Japan
Prior art keywords
light emitting
junction
silicon
region
quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29116292A
Other languages
Japanese (ja)
Inventor
Yasuo Wada
恭雄 和田
Tokuo Kure
得男 久▲禮▼
Yasushi Goto
康 後藤
Itsuki Sudo
敬己 須藤
Toshiyuki Yoshimura
俊之 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29116292A priority Critical patent/JPH06140669A/en
Publication of JPH06140669A publication Critical patent/JPH06140669A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide compatibility with silicon integrated circuit process and highly efficient light emitting property by forming a light emitting element, starting with the quantum fine line of silicon having p-n junction, and implanting electrons and positive holes into the junction area. CONSTITUTION:A quantum fine line 3, 0.01mum or under in diameter dimensions is used as a light emitting element. And, in the basic constitution consisting of the quantum fine line 3 made on a substrate 1 through an insulating film 2, an n region 6 and a p region 7 are made in the quantum fine line 3. When both ends of each region 6 and 7 are connected to electrodes 4 and 5, respectively, the electrons implanted from the electrode 4 and the positive holes 5 implanted from the electrode 5 are recoupled at the p-n junction being the junction face between the region 6 and the region 7. That is, a silicon light emitting element can be materialized, making use of the high quantum efficiency of the p-n junction being made in the quantum fine line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超高密度、超高速シリコ
ン発光素子及びその製造方法に関し、更に詳述すれば、
複数の原子を一列、あるいは平面的又は立体的に複数
列、もしくは環状又は球状に秩序立てて或いはランダム
に並べることにより形成したシリコン量子細線からなる
発光素子及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra high density, ultra high speed silicon light emitting device and a method of manufacturing the same.
The present invention relates to a light emitting device formed of a silicon quantum wire formed by arranging a plurality of atoms in one row, in a plurality of rows in a plane or in a three-dimensional manner, or in a circular or spherical order or randomly arranged, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来の半導体発光素子は砒化ガリウム
(ガリウム砒素)等の直接遷移特性を持ついわゆる化合
物半導体によって構成されていた。この理由は、例えば
シリコンのような間接遷移半導体においては発光効率が
著じるしく低いため、通常の電流注入方法によって実用
可能な程度の発光特性を得ることが不可能であったため
である。従って発光素子が必要な場合には、直接遷移特
性を持つ化合物半導体を用いることを余儀なくされてい
たが、このためにシリコン集積回路からなる情報処理素
子と化合物半導体からなる発光素子を同一チップ上に集
積することは困難を極めた。これを解決する一つの手段
として、化合物半導体をシリコン上に形成するいわゆる
ガリウム砒素オンシリコンや、ゲルマニウムとシリコン
の超格子からなる発光素子が提案されているが、結晶の
品質等、未だ実用化のレベルには達していないのが現状
である。又、プロセス温度等シリコン集積回路技術との
互換性にも問題があるため、実用までには解決すべき技
術課題が山積している。
2. Description of the Related Art Conventional semiconductor light emitting devices have been composed of so-called compound semiconductors having a direct transition characteristic such as gallium arsenide. The reason for this is that, for example, in an indirect transition semiconductor such as silicon, the light emission efficiency is extremely low, and it is impossible to obtain a light emission characteristic of a practical level by a normal current injection method. Therefore, when a light emitting element is required, it has been unavoidable to use a compound semiconductor having a direct transition characteristic. For this reason, an information processing element made of a silicon integrated circuit and a light emitting element made of a compound semiconductor are formed on the same chip. It was extremely difficult to accumulate. As one means for solving this, a so-called gallium arsenide on silicon for forming a compound semiconductor on silicon, and a light emitting element composed of a superlattice of germanium and silicon have been proposed, but the quality of crystals and the like have not yet been put to practical use. The current situation is that the level has not been reached. Further, since there is a problem in compatibility with silicon integrated circuit technology such as process temperature, there are many technical problems to be solved before practical use.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記従来技術
の限界を超えるためになされたもので、シリコン集積回
路技術と完全に互換性のある極微細なシリコン量子細線
構造によるシリコン発光素子及びその製造方法を開示す
るものである。例えば陽極酸化法で作製したシリコン量
子球は、その寸法が縮小するにつれ、量子閉じ込め効果
によって発光効率が向上し、光波長500nm程度の光励起
による発光現象が報告されているが、この構造では、電
流注入による発光は全く期待できない。電流注入による
発光デバイスは、今後の高性能情報処理あるいは大容量
通信にとって不可欠な技術である。
SUMMARY OF THE INVENTION The present invention has been made to overcome the above-mentioned limitations of the prior art, and is a silicon light-emitting device having an ultrafine silicon quantum wire structure that is completely compatible with silicon integrated circuit technology and a method thereof. A manufacturing method is disclosed. For example, silicon quantum spheres produced by the anodizing method have been reported to have a luminous efficiency due to the quantum confinement effect as the size shrinks, and a light emission phenomenon due to photoexcitation at a light wavelength of about 500 nm has been reported. No light emission due to injection can be expected. The light emitting device by current injection is an essential technology for high performance information processing or large capacity communication in the future.

【0004】[0004]

【課題を解決するための手段】本発明においては、上記
課題を解決する手段として、0.01μm以下の直径寸
法を持つ量子細線を発光素子として使用する。この量子
細線中にp-n接合を形成し電流を注入すれば、電子及び
正孔はp-n接合部で再結合するため、効率の高い発光現
象が起る。
In the present invention, as a means for solving the above problems, a quantum wire having a diameter of 0.01 μm or less is used as a light emitting element. If a pn junction is formed in this quantum wire and a current is injected, electrons and holes are recombined at the pn junction, and a highly efficient light emission phenomenon occurs.

【0005】[0005]

【作用】本発明で開示する量子細線p-n接合の基本構造
とその作用を説明する。図1は本発明の基本的な構造を
断面図で示したものである。基板1上に絶縁膜2を介し
て形成された量子細線3からなる基本構成において、量
子細線3中にn領域6とp領域7を形成し、各々の領域
の両端を各々電極4及び5に接続すると、電極4から注
入された電子と電極5から注入された正孔は、領域6と
領域7の接合面であるp-n接合で再結合する。
The basic structure of the quantum wire pn junction disclosed in the present invention and its operation will be described. FIG. 1 is a sectional view showing the basic structure of the present invention. In a basic structure composed of quantum wires 3 formed on a substrate 1 with an insulating film 2 interposed therebetween, an n region 6 and a p region 7 are formed in the quantum wires 3 and electrodes 4 and 5 are formed on both ends of each region. When connected, the electrons injected from the electrode 4 and the holes injected from the electrode 5 are recombined at the pn junction which is the junction surface between the regions 6 and 7.

【0006】通常のシリコン半導体中に形成されたp-n
接合では、バンド構造が間接遷移であるため再結合の効
率が著しく低く、発光現象はほとんど観測できない。し
かしながら量子細線3中に形成されたp-n接合では、微
小な構造に特有の量子効果が現われバンド構造が変化
し、このキャリア閉じ込め効果のためにシリコンにおい
ても高い効率の発光現象が観測可能になる。
Pn formed in an ordinary silicon semiconductor
At the junction, the recombination efficiency is extremely low because the band structure is an indirect transition, and almost no luminescence phenomenon can be observed. However, in the pn junction formed in the quantum wire 3, a quantum effect peculiar to a minute structure appears and the band structure changes, and due to this carrier confinement effect, a highly efficient light emission phenomenon can be observed even in silicon.

【0007】即ち本発明の骨子は、量子細線中に形成し
たp-n接合の高い量子効率を利用し、シリコン発光素子
を実現することにある。更に本発明は前述のような高効
率シリコン発光素子を可能にする量子構造の製造方法を
開示する。
That is, the essence of the present invention is to realize a silicon light emitting device by utilizing the high quantum efficiency of a pn junction formed in a quantum wire. Further, the present invention discloses a method of manufacturing a quantum structure that enables the high efficiency silicon light emitting device as described above.

【0008】[0008]

【実施例】以下本発明を実施例に基づき詳細に説明す
る。
EXAMPLES The present invention will be described in detail below based on examples.

【0009】(実施例1)図2は発光ダイオードの構造
を模式的に示したものである。量子細線中にn型半導体
領域11及びp型半導体領域12を形成し、各々取り出
し電極14及び15に接続する。電極14から電子を、
電極15から正孔を、各々量子細線中に注入すると、領
域11、12の界面に存在するp−n接合面13で電子
と正孔が再結合する。通常のシリコン半導体中であれ
ば、間接遷移であるため再結合に伴うエネルギは熱とし
て観測されるが、直径が10nm以下の量子細線中では
バンド構造が変化するため、発光現象が観測される。
(Embodiment 1) FIG. 2 schematically shows the structure of a light emitting diode. An n-type semiconductor region 11 and a p-type semiconductor region 12 are formed in the quantum wire and connected to the extraction electrodes 14 and 15, respectively. Electrons from the electrode 14,
When holes are injected into the quantum wires from the electrode 15, the electrons and holes are recombined at the pn junction surface 13 existing at the interface between the regions 11 and 12. In a normal silicon semiconductor, energy associated with recombination is observed as heat because it is an indirect transition, but a light emission phenomenon is observed in a quantum wire with a diameter of 10 nm or less because the band structure changes.

【0010】量子細線の直径を5nm以下とすると、特
に発光効率が向上し、又発光の中心波長も短くなる。例
えば直径が5nmの場合は中心波長が550nmである
が、3nmとすると500nmになる。発光スペクトル
の半値幅は何れも約20nmである。効率は約10%で
あった。
When the diameter of the quantum wire is 5 nm or less, the luminous efficiency is particularly improved and the central wavelength of light emission is shortened. For example, when the diameter is 5 nm, the center wavelength is 550 nm, but when it is 3 nm, the center wavelength is 500 nm. The full width at half maximum of the emission spectrum is about 20 nm. The efficiency was about 10%.

【0011】n型領域11の不純物濃度は1019/cm3
上、p型領域12の不純物濃度も1019/cm3以上必要であ
った。この理由はp領域n領域共にキャリアが縮退して
いることが発光現象に必要なためである。不純物濃度1
20/cm3以上の場合に発光効率が実用的な値となった。
又温度を下げることにより、更に効率を向上可能であっ
た。
The impurity concentration of the n-type region 11 must be 10 19 / cm 3 or more, and the impurity concentration of the p-type region 12 must be 10 19 / cm 3 or more. This is because it is necessary for the light emission phenomenon that the carriers are degenerated in both the p region and the n region. Impurity concentration 1
When it was 0 20 / cm 3 or more, the luminous efficiency became a practical value.
Further, the efficiency could be further improved by lowering the temperature.

【0012】発明者らの検討では、特にp−n接合面で
のキャリア分布の急峻さが発光効率を決めることが分か
っている。n領域からp領域への遷移領域の幅が100
nm以上では発光現象は観測されず、10nm程度以下
の寸法で高い発光効率が得られた。この現象も量子効果
が原因と考えられる。即ち量子細線中のキャリア閉じ込
め効果は、10nm〜20nm程度の寸法から発現する
ことが発明者らの検討で分かった。
The inventors' studies have shown that the steepness of the carrier distribution at the pn junction surface determines the light emission efficiency. The width of the transition region from the n region to the p region is 100
No emission phenomenon was observed above nm, and high emission efficiency was obtained with a dimension of about 10 nm or less. This phenomenon is also considered to be caused by the quantum effect. That is, it was found from the study by the inventors that the effect of confining carriers in the quantum wire appears from a dimension of about 10 nm to 20 nm.

【0013】(実施例2)本実施例では量子細線構造か
らなるレーザについて開示する。図3は量子細線中にn
型半導体領域11及びp型半導体領域12を形成し、各
々取り出し電極14及び15に接続した状態を示す。電
極14から電子を、電極15から正孔を、各々量子細線
中に注入すると、領域11、12の界面に存在するp−
n接合面13で電子と正孔が再結合する。この再結合に
伴い、p−n接合面から発光現象が観測された。この構
造を反射鏡16中に置くと、反射鏡間の距離に対応した
レーザ発光が起こる。本実施例では反射鏡の間隔を20
00nmとすることにより、500nmの鋭いピークを
持つ発光が観測できた。
(Embodiment 2) This embodiment discloses a laser having a quantum wire structure. Fig. 3 shows n in the quantum wire.
A type semiconductor region 11 and a p-type semiconductor region 12 are formed and connected to the extraction electrodes 14 and 15, respectively. When an electron is injected from the electrode 14 and a hole is injected from the electrode 15 into the quantum wire, p− existing at the interface between the regions 11 and 12 is injected.
The electrons and holes are recombined at the n-junction surface 13. Along with this recombination, a light emission phenomenon was observed from the pn junction surface. When this structure is placed in the reflecting mirrors 16, laser emission corresponding to the distance between the reflecting mirrors occurs. In this embodiment, the distance between the reflecting mirrors is 20.
By setting the thickness to 00 nm, luminescence having a sharp peak at 500 nm could be observed.

【0014】(実施例3)本実施例では発光強度を強く
するために、複数の原子細線からの発光を集める、多重
発光レーザについて開示する。図4は原子細線中にn型
半導体領域11及びp型半導体領域12を形成し、各々
取り出し電極14及び15に接続した状態を示す。電極
14から電子を、電極15から正孔を、各々量子細線中
に注入すると、領域11、12の界面に存在するp−n
接合面13で電子と正孔が再結合する。 ここで原子細
線とその中に形成したp−n接合13を複数設けること
により、レーザとしての発光強度は原子細線の本数分だ
け強くなる。両端に反射鏡16を設けることにより、レ
ーザ発振が起こる。この場合には、図5に示すように約
530nmにピーク強度を持つレーザ発振を実現でき
た。
(Embodiment 3) This embodiment discloses a multiple emission laser which collects light emission from a plurality of atomic thin wires in order to increase the emission intensity. FIG. 4 shows a state in which an n-type semiconductor region 11 and a p-type semiconductor region 12 are formed in an atomic thin wire and connected to the extraction electrodes 14 and 15, respectively. When an electron is injected from the electrode 14 and a hole is injected from the electrode 15 into the quantum wire, pn existing at the interface between the regions 11 and 12 is injected.
The electrons and holes are recombined at the bonding surface 13. Here, by providing a plurality of atomic thin wires and a plurality of pn junctions 13 formed therein, the emission intensity of the laser becomes as strong as the number of atomic thin wires. Laser oscillation occurs by providing the reflecting mirrors 16 at both ends. In this case, laser oscillation having a peak intensity at about 530 nm could be realized as shown in FIG.

【0015】(実施例4)本実施例ではCVD法で堆積
した酸化シリコン膜の表面特性を利用した量子細線の形
成方法について開示する。図6(a)は基板21に凹部
22を形成した状態を示す。図6(b)はこのような構
造の基板似CVD法で酸化シリコン膜23を堆積し、更
に希釈したフッ化水素酸水溶液でエッチングし、トレン
チ24を形成した状態を示す。このようなトレンチ24
が形成される理由はCVD法で堆積された酸化シリコン
膜の表面は安定化されているため、トレンチ内が徐々に
酸化シリコン膜で埋められ最終的に左右から2つの表面
が出会って完全に埋められたように見えても、実際には
これらの表面は化学的に完全に結合しておらず、フッ化
水素酸水溶液でエッチングすると、この界面が急速にエ
ッチングされるためである。従って十分に希薄なエッチ
ング液を用いることによりトレンチ24の幅を制御可能
である。
(Embodiment 4) This embodiment discloses a method for forming a quantum wire using the surface characteristics of a silicon oxide film deposited by a CVD method. FIG. 6A shows a state where the concave portion 22 is formed in the substrate 21. FIG. 6B shows a state in which a trench 24 is formed by depositing a silicon oxide film 23 by the substrate-like CVD method having such a structure and further etching it with a diluted hydrofluoric acid aqueous solution. Such a trench 24
The reason why is formed is that the surface of the silicon oxide film deposited by the CVD method is stabilized, so the inside of the trench is gradually filled with the silicon oxide film, and finally the two surfaces from the left and right meet and are completely filled. This is because the surfaces are not chemically completely bonded to each other even if they appear to be formed, and the interface is rapidly etched when the surface is etched with an aqueous solution of hydrofluoric acid. Therefore, the width of the trench 24 can be controlled by using a sufficiently dilute etching solution.

【0016】このような現象は一般的に絶縁膜の堆積層
に起こり、多結晶シリコン等の半導体では観測されな
い。これは原子間の結合状態の差異に起因すると考えら
れる。図6(c)はこのように用意した基板にCVD法
により多結晶シリコンを堆積し、反応性イオンエッチン
グでエッチングして、量子細線25を実現した状態を示
す。量子細線25の材質はタングステン、モリブデン、
アルミニウム等の金属も用いることができる。図6
(d)はこのようにして構成した量子細線構造に保護膜
26を被覆した状態を示す。保護膜26の組成はシリコ
ン酸化膜、シリコン窒化膜等の緻密な絶縁膜が適してい
る。
Such a phenomenon generally occurs in the deposited layer of the insulating film and is not observed in the semiconductor such as polycrystalline silicon. This is considered to be due to the difference in the bond state between atoms. FIG. 6C shows a state where the quantum wires 25 are realized by depositing polycrystalline silicon on the thus prepared substrate by the CVD method and etching by reactive ion etching. The quantum wires 25 are made of tungsten, molybdenum,
A metal such as aluminum can also be used. Figure 6
(D) shows a state in which the protective film 26 is coated on the quantum wire structure thus configured. As the composition of the protective film 26, a dense insulating film such as a silicon oxide film or a silicon nitride film is suitable.

【0017】n型(111)面、10Ωcmのシリコン
ウエハに電子線リソグラフィ技術とマイクロ波プラズマ
エッチング技術により深さ100nm、幅100nmの
凹部を形成し、アンモニア水溶液と過酸化水素水からな
る、いわゆるRCA洗浄液で表面を十分に洗浄して清浄
化した。減圧CVD法で酸化シリコン膜を厚さ70nm
堆積し、凹部を酸化シリコンで完全に埋めた。このよう
な構造を用意した後、50%フッ化水素酸水溶液を純水
で100倍に希釈したエッチング液で10秒間エッチン
グし、超純水で約10分間洗浄した。このエッチングに
より、酸化シリコン膜の表面が出会った部分のみが急速
にエッチングされ、幅5nm、深さ30nmのトレンチ
が形成できた。減圧CVD法で堆積した酸化シリコン膜
厚が十分に厚い場合には、反応性イオンエッチングある
いはマイクロ波プラズマエッチングによって、酸化シリ
コン膜表面を多少除去することも有効である。しかる
後、多結晶シリコンをモノシラン(SiH4)を原料ガ
スとした減圧CVD法で厚さ50nm堆積後、マイクロ
波プラズマエッチング法で約50nm分異方性エッチン
グすると、トレンチ中に太さ4nmの多結晶シリコンの
細線が形成された。
A so-called RCA consisting of an aqueous ammonia solution and a hydrogen peroxide solution is formed by forming a recess of 100 nm in depth and 100 nm in width on an n-type (111) surface, 10 Ωcm silicon wafer by electron beam lithography and microwave plasma etching. The surface was thoroughly cleaned with a cleaning solution to clean it. A silicon oxide film with a thickness of 70 nm is formed by the low pressure CVD method.
It was deposited and the recess was completely filled with silicon oxide. After preparing such a structure, etching was performed for 10 seconds with an etching solution prepared by diluting a 50% hydrofluoric acid aqueous solution with pure water 100 times, and washed with ultrapure water for about 10 minutes. By this etching, only the part where the surface of the silicon oxide film meets was rapidly etched, and a trench having a width of 5 nm and a depth of 30 nm could be formed. When the silicon oxide film deposited by the low pressure CVD method is sufficiently thick, it is also effective to remove the surface of the silicon oxide film to some extent by reactive ion etching or microwave plasma etching. Then, polycrystalline silicon is deposited to a thickness of 50 nm by a low pressure CVD method using monosilane (SiH 4 ) as a source gas, and anisotropically etched by a microwave plasma etching method for about 50 nm. A fine line of crystalline silicon was formed.

【0018】本実施例において基板21の材質、絶縁膜
23の材質、厚さ、量子細線25の材質等はここに例示
したものに限らないことは言うまでもない。基板21は
グラファイト、二硫化モリブデン等の層間化合物、ヒ化
ガリウム等の半導体、石英等の絶縁体等電気的に絶縁作
用の有る材料或いはその上に電気的に絶縁作用の有る材
料を形成できる材料であれば原理的に使用可能である。
絶縁膜23は一般的には酸化シリコンが適当であるが、
窒化シリコン、酸化アルミニウム等の絶縁材料を用いる
ことができる。量子細線25の材質は導電体であれば特
にここに挙げたものに留まらない。
It goes without saying that the material of the substrate 21, the material of the insulating film 23, the thickness, the material of the quantum wires 25, etc. are not limited to those exemplified here in this embodiment. The substrate 21 is an intercalation compound such as graphite or molybdenum disulfide, a semiconductor such as gallium arsenide, an insulating material such as quartz, or a material capable of forming an electrically insulating material thereon. If so, it can be used in principle.
Although silicon oxide is generally suitable for the insulating film 23,
An insulating material such as silicon nitride or aluminum oxide can be used. The material of the quantum wire 25 is not limited to those listed here as long as it is a conductor.

【0019】更に多結晶シリコンを堆積後、n型不純物
及びp型不純物を各々ドープし、熱処理等によって活性
化すると、所望の量子細線構造中にp−n接合を形成可
能である。ここに述べた実施例において、各プロセスパ
ラメータはいずれも熟練した研究者であれば適切な組合
せを選択可能である。
After depositing polycrystalline silicon, doping n-type impurities and p-type impurities respectively and activating them by heat treatment or the like makes it possible to form a pn junction in a desired quantum wire structure. In the embodiment described here, an appropriate combination of process parameters can be selected by a skilled researcher.

【0020】[0020]

【発明の効果】以上の実施例から明らかなように、本発
明による量子細線レーザによれば、従来の化合物半導体
によるレーザと比較して、シリコン集積回路プロセスと
互換性のあるシリコン量子細線レーザを実現可能であ
り、この構造を用いることにより、シリコン集積回路上
に容易に光集積回路をを実現可能となるため、実用上の
インパクトは計り知れないものがある。
As is apparent from the above embodiments, according to the quantum wire laser of the present invention, as compared with the conventional compound semiconductor laser, a silicon quantum wire laser compatible with the silicon integrated circuit process can be obtained. This is feasible, and by using this structure, an optical integrated circuit can be easily realized on a silicon integrated circuit, so that there are immeasurable practical impacts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による量子細線発光素子の原理を示す
図。
FIG. 1 is a diagram showing the principle of a quantum wire light emitting device according to the present invention.

【図2】本発明による発光ダイオードの実施例を示す
図。
FIG. 2 is a diagram showing an embodiment of a light emitting diode according to the present invention.

【図3】本発明による発光レーザの実施例を示す図。FIG. 3 is a diagram showing an embodiment of a light emitting laser according to the present invention.

【図4】本発明による多重発光レーザの実施例を示す
図。
FIG. 4 is a diagram showing an embodiment of a multiple emission laser according to the present invention.

【図5】量子細線発光素子からの発光スペクトルを示す
図。
FIG. 5 is a diagram showing an emission spectrum from a quantum wire light emitting element.

【図6】量子細線発光素子の実現方法の一例を示す図。FIG. 6 is a diagram showing an example of a method of realizing a quantum wire light emitting device.

【符号の説明】[Explanation of symbols]

1,21…基板、2,23…絶縁膜、3,13…p−n
接合、6,11…n型領域、7,12…p型領域、4,
5,14、15…電極、16…反射板、25…量子細
線。
1, 21 ... Substrate, 2, 23 ... Insulating film, 3, 13 ... pn
Junction, 6, 11 ... N-type region, 7, 12 ... P-type region, 4,
5, 14, 15 ... Electrodes, 16 ... Reflector, 25 ... Quantum wires.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須藤 敬己 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 吉村 俊之 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takami Sudo 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Toshiyuki Yoshimura 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Center

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】p−n接合を持つシリコンの量子細線から
なり、接合域に電子と正孔とを注入することを特徴とす
る発光素子。
1. A light emitting device comprising a silicon quantum wire having a pn junction and injecting electrons and holes into the junction region.
【請求項2】シリコン量子細線が直径10nm以下とさ
れ、長さ方向にp−n接合が形成されていることを特徴
とする請求項1記載の発光素子。
2. The light emitting device according to claim 1, wherein the silicon quantum wire has a diameter of 10 nm or less and a pn junction is formed in the length direction.
【請求項3】シリコン量子細線が複数個並列に設けられ
るを特徴とする請求項1記載の発光素子。
3. The light emitting device according to claim 1, wherein a plurality of silicon quantum wires are provided in parallel.
【請求項4】p−n接合を持つシリコンの量子細線と接
合部をはさむ形で配列された反射鏡からなり、接合域に
電子と正孔とを注入することを特徴とする発光素子。
4. A light emitting device comprising a silicon quantum wire having a pn junction and a reflecting mirror arranged so as to sandwich the junction, and injecting electrons and holes into the junction.
【請求項5】シリコン量子細線が複数個並列に設けられ
るを特徴とする請求項4記載の発光素子。
5. The light emitting device according to claim 4, wherein a plurality of silicon quantum wires are provided in parallel.
【請求項6】基板と、基板中に形成した十分に小さい寸
法の溝からなる構造において、溝内に絶縁膜を堆積する
工程と、該絶縁膜をエッチングして微小な開口部を設け
る工程と、該開口部中に導電体を形成する工程を少なく
とも含むことを特徴とするシリコン発光素子の製造方
法。
6. A structure comprising a substrate and a groove having a sufficiently small size formed in the substrate, a step of depositing an insulating film in the groove, and a step of etching the insulating film to provide a minute opening. A method for manufacturing a silicon light emitting device, comprising at least a step of forming a conductor in the opening.
JP29116292A 1992-10-29 1992-10-29 Light emitting element and manufacture thereof Pending JPH06140669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29116292A JPH06140669A (en) 1992-10-29 1992-10-29 Light emitting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29116292A JPH06140669A (en) 1992-10-29 1992-10-29 Light emitting element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06140669A true JPH06140669A (en) 1994-05-20

Family

ID=17765252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29116292A Pending JPH06140669A (en) 1992-10-29 1992-10-29 Light emitting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06140669A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644156A (en) * 1994-04-14 1997-07-01 Kabushiki Kaisha Toshiba Porous silicon photo-device capable of photoelectric conversion
JP2007294628A (en) * 2006-04-25 2007-11-08 Hitachi Ltd Silicon light emitting diode, silicon optical transistor, silicon laser, and manufacturing method of them
JP2008205006A (en) * 2007-02-16 2008-09-04 Hitachi Ltd Semiconductor light-emitting element, optoelectronic integrated circuit using the same, and method for manufacturing optoelectronic integrated circuit
JP2009124184A (en) * 2009-03-10 2009-06-04 Hitachi Ltd Silicon light emitting diode, silicon optical transistor, silicon laser, and manufacturing method of them
JP2010238722A (en) * 2009-03-30 2010-10-21 Hitachi Ltd Silicon light-emitting element
WO2013002023A1 (en) * 2011-06-28 2013-01-03 株式会社日立製作所 Silicon-germanium light-emitting element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644156A (en) * 1994-04-14 1997-07-01 Kabushiki Kaisha Toshiba Porous silicon photo-device capable of photoelectric conversion
JP2007294628A (en) * 2006-04-25 2007-11-08 Hitachi Ltd Silicon light emitting diode, silicon optical transistor, silicon laser, and manufacturing method of them
US8436333B2 (en) * 2006-04-25 2013-05-07 Hitachi, Ltd. Silicon light emitting diode, silicon optical transistor, silicon laser and its manufacturing method
JP2008205006A (en) * 2007-02-16 2008-09-04 Hitachi Ltd Semiconductor light-emitting element, optoelectronic integrated circuit using the same, and method for manufacturing optoelectronic integrated circuit
JP2009124184A (en) * 2009-03-10 2009-06-04 Hitachi Ltd Silicon light emitting diode, silicon optical transistor, silicon laser, and manufacturing method of them
JP2010238722A (en) * 2009-03-30 2010-10-21 Hitachi Ltd Silicon light-emitting element
WO2013002023A1 (en) * 2011-06-28 2013-01-03 株式会社日立製作所 Silicon-germanium light-emitting element
JP2013012547A (en) * 2011-06-28 2013-01-17 Hitachi Ltd Silicon and germanium light-emitting element
US9287456B2 (en) 2011-06-28 2016-03-15 Hitachi, Ltd. Silicon-germanium light-emitting element

Similar Documents

Publication Publication Date Title
EP0544408B1 (en) Quantum confinement semiconductor light emitting devices
JP2666237B2 (en) Group III nitride semiconductor light emitting device
US7294862B2 (en) Photonic crystal light emitting device
TWI390759B (en) Method for fabricating group iii nitride devices and devices fabricated using method
JP5705207B2 (en) Device formed from non-polar surface of crystalline material and method of manufacturing the same
US20090184334A1 (en) Photonic crystal light emitting device and manufacturing method of the same
US9041080B2 (en) Semiconductor optical element
JP2003347586A (en) Semiconductor light-emitting device
US7320897B2 (en) Electroluminescence device with nanotip diodes
JPH1051030A (en) Group iii nitride semiconductor light-emitting element
US5163064A (en) Laser diode array and manufacturing method thereof
TWI401810B (en) Solar cell
US4017881A (en) Light emitting semiconductor device and a method for making the same
KR100992743B1 (en) Light emitting device and method for fabricating the same
TW533456B (en) Radiation-emissive optoelectronic device and method for making the same
CN107452861B (en) Ultraviolet LED chip and preparation method thereof
JPH06140669A (en) Light emitting element and manufacture thereof
US3998672A (en) Method of producing infrared luminescent diodes
JP4644947B2 (en) Nitride semiconductor device and manufacturing method thereof
JP3016241B2 (en) Group III nitride semiconductor light emitting device
JP2014183055A (en) Light emitter, and method of manufacturing the same
JP3307094B2 (en) Group III nitride semiconductor light emitting device
JP6228873B2 (en) Semiconductor optical device manufacturing method
JPS6126213B2 (en)
CN117767109A (en) Manufacturing method of flip-chip ridge waveguide semiconductor laser and semiconductor laser