JPH08320137A - Heat accumulating system - Google Patents

Heat accumulating system

Info

Publication number
JPH08320137A
JPH08320137A JP14945895A JP14945895A JPH08320137A JP H08320137 A JPH08320137 A JP H08320137A JP 14945895 A JP14945895 A JP 14945895A JP 14945895 A JP14945895 A JP 14945895A JP H08320137 A JPH08320137 A JP H08320137A
Authority
JP
Japan
Prior art keywords
water
heat storage
storage tank
ice
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14945895A
Other languages
Japanese (ja)
Other versions
JP3272909B2 (en
Inventor
Tokio Okonogi
時雄 小此木
Seiji Nakagawa
清二 中川
Akihiko Okamura
明彦 岡村
Fuminori Hasegawa
文教 長谷川
Masaharu Kamishiro
雅治 神白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP14945895A priority Critical patent/JP3272909B2/en
Publication of JPH08320137A publication Critical patent/JPH08320137A/en
Application granted granted Critical
Publication of JP3272909B2 publication Critical patent/JP3272909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE: To reduce an installing space and a facility expenditure and to increase a heat accumulating amount in a cold water heat accumulating tank by a method wherein water at a high temperature side in a cold water heat accumulating tank is mixed with water in an ice heat accumulation tank during heat accumulating operation, water in the ice heat accumulating tank after its thermal radiation is supplied into a cold water heat accumulating tank and a water surface in the ice heat accumulating tank and a water surface of the ice heat accumulating tank are set to be equal in level. CONSTITUTION: During a heat accumulating operation, a valve 23 in a circuit 21 is opened, water taken from a high temperature side of a cold water heat accumulating tank 2, i.e., an upper end of the cold water heat accumulating tank 2 is supplied to a suction side of a pump 7 in a circuit 4 and mixed with water taken out of an ice heat accumulating tank 1. In the case that a heat radiating operation is carried out under a state in which ice is generated within the ice heat accumulating tank 1 and cold water of 0 deg.C is accumulated in the cold water heat accumulating tank 2, either a part of or whole of water of which temperature is increased is taken out to a circuit 22 when the water is returned back to the upper part of the ice heat accumulating tank 1 and further the water is returned back to the high temperature side (the upper part of the tank) of the cold water heat accumulating tank 2. Then, the water in the ice heat accumulating tank 1 is supplied to a low temperature side (a lower part of the tank) in the cold water heat accumulating tank 1 through a circuit 3 in such a manner that a water surface level of the ice heat accumulating tank 1 and a water surface level of the cold heat accumulating tank 2 may become equal to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、氷蓄熱槽と冷水蓄熱槽
の両方を備えた蓄熱システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage system having both an ice heat storage tank and a cold water heat storage tank.

【0002】[0002]

【従来の技術】氷蓄熱槽内の水を取水して過冷却器に送
り、該過冷却器で冷却した水を氷と水のスラリー状態で
氷蓄熱槽内に吐き出して蓄熱を行う氷蓄熱槽は公知であ
る。かような氷蓄熱槽においては、過冷却器内での水の
凍結や閉塞といった問題を回避するために、過冷却器に
送る前の水を予熱することが行われる。そして、この予
熱によって熱を奪われた冷水を冷水蓄熱槽に溜め、その
冷熱を二次側の冷媒の冷却などに活用している。
2. Description of the Related Art An ice heat storage tank for taking in water from an ice heat storage tank and sending it to a subcooler and discharging the water cooled by the subcooler in the ice and water slurry state into the ice heat storage tank to store heat. Is known. In such an ice heat storage tank, in order to avoid problems such as freezing and blockage of water in the subcooler, water before being sent to the subcooler is preheated. The cold water deprived of heat by this preheating is stored in a cold water heat storage tank, and the cold heat is utilized for cooling the refrigerant on the secondary side.

【0003】図2に、氷蓄熱槽50と冷水蓄熱槽51の
両方を備えた従来の蓄熱システムの概要を示す。図中、
実線で記入した矢印は蓄熱時の水の流れ方向を示し、点
線で記入した矢印は放熱時の水の流れ方向を示す。
FIG. 2 shows an outline of a conventional heat storage system having both an ice heat storage tank 50 and a cold water heat storage tank 51. In the figure,
The solid line arrow indicates the water flow direction during heat storage, and the dotted line arrow indicates the water flow direction during heat dissipation.

【0004】蓄熱時においては、氷蓄熱槽50内の水を
槽底部のフィルタ53を介してポンプ54で汲み上げて
過冷却器55に送り、この過冷却器55で−2〜−3℃
程度まで冷却した過冷却状態の水を、氷蓄熱槽50の上
部に設置された解除パイプ56に吐き出す。この解除パ
イプ56内において過冷却状態の水が氷と水のスラリー
状態となって氷蓄熱槽50内に吐き出される。氷蓄熱槽
50内に吐き出されたスラリー状の氷と水は密度差によ
って氷と水に分離し、水は再びポンプ54で汲み上げら
れて過冷却器55に送られる。こうして氷蓄熱槽50内
の水の温度が2℃付近まで低下すると氷生成が始まり、
以後、氷蓄熱槽50内の水の温度が0℃に維持される。
過冷却器55には、図示しない冷凍機ユニットで氷点下
に冷却されたブラインが循環供給されている。
At the time of heat storage, the water in the ice heat storage tank 50 is pumped up by the pump 54 through the filter 53 at the bottom of the tank and sent to the subcooler 55, which is -2 to -3 ° C.
The supercooled water that has been cooled to a certain degree is discharged to the release pipe 56 installed in the upper portion of the ice heat storage tank 50. In the release pipe 56, the supercooled water becomes a slurry state of ice and water and is discharged into the ice heat storage tank 50. The slurry-like ice and water discharged into the ice heat storage tank 50 are separated into ice and water due to the density difference, and the water is pumped up again by the pump 54 and sent to the subcooler 55. In this way, when the temperature of the water in the ice heat storage tank 50 drops to around 2 ° C, ice formation starts,
After that, the temperature of the water in the ice heat storage tank 50 is maintained at 0 ° C.
The subcooler 55 is circulated and supplied with brine cooled to below freezing point by a refrigerator unit (not shown).

【0005】そして、過冷却器55に送る前の水を予熱
するにあたっては、氷蓄熱槽50の底部から汲み上げた
水をポンプ54の上流側に設けた回路60からポンプ6
1の稼働によって取水して熱交換器62の一次側に循環
供給し、一方で、冷水蓄熱槽51内の高温側、即ち槽上
部の水を回路63からポンプ64で取水して熱交換器6
2の二次側に循環供給し、両者の間で熱交換を行わせ
る。熱交換器61の一次側に供給される水の温度はほぼ
0℃である。一方、熱交換器61の二次側に供給される
冷水蓄熱槽51内の高温側の水は、一般には冷房などの
熱源として利用されたことによって約12℃程度になっ
ている。
In order to preheat the water before sending it to the subcooler 55, the water pumped from the bottom of the ice heat storage tank 50 is pumped from the circuit 60 provided on the upstream side of the pump 54.
The water is taken by the operation of No. 1 and circulated and supplied to the primary side of the heat exchanger 62, while the water on the high temperature side in the cold water heat storage tank 51, that is, the upper part of the tank is taken from the circuit 63 by the pump 64 and the heat exchanger 6
It is circulated and supplied to the secondary side of 2, and heat exchange is performed between the two. The temperature of the water supplied to the primary side of the heat exchanger 61 is approximately 0 ° C. On the other hand, the water on the high temperature side in the cold water heat storage tank 51 supplied to the secondary side of the heat exchanger 61 is generally about 12 ° C. because it is used as a heat source for cooling or the like.

【0006】熱交換の結果、回路60から熱交換器62
に供給された氷蓄熱槽50内の水は約10℃程度にまで
昇温し、その後、回路65から戻されて再び過冷却器5
5に送る前の水に合流する。こうして過冷却器55に送
る前の水を約0.5℃に昇温させることによって、過冷
却器55内での水の凍結や閉塞といった問題を回避して
いる。
As a result of the heat exchange, the circuit 60 to the heat exchanger 62
The water in the ice heat storage tank 50 supplied to the temperature rises to about 10 ° C., then is returned from the circuit 65 and is again cooled by the supercooler 5.
Combine with water before sending to 5. By raising the temperature of the water before being sent to the subcooler 55 to about 0.5 ° C. in this way, problems such as freezing and blockage of water in the subcooler 55 are avoided.

【0007】一方、回路63から熱交換器62に供給さ
れた冷水蓄熱槽51内の水は熱交換によって約4℃の冷
水となり、回路66から冷水蓄熱槽51内の低温側、即
ち槽下部に戻される。その結果、冷水蓄熱槽51には約
4℃の冷水が蓄えられる。
On the other hand, the water in the cold water heat storage tank 51 supplied from the circuit 63 to the heat exchanger 62 becomes cold water of about 4 ° C. by heat exchange, and from the circuit 66 to the low temperature side in the cold water heat storage tank 51, that is, the lower part of the tank. Will be returned. As a result, cold water of about 4 ° C. is stored in the cold water heat storage tank 51.

【0008】そして、放熱時においては、氷蓄熱槽50
底部からポンプ54で汲み上げた水を熱交換器70の一
次側に送り、熱交換器70の二次側に循環供給されてい
る負荷側の冷媒と熱交換を行わせる。熱交換の結果、氷
蓄熱槽50から送られた水は約12℃程度にまで昇温
し、その後、戻り回路71から再び氷蓄熱槽50の上部
に戻される。また同様に、冷水蓄熱槽51底部の水をポ
ンプ72で汲み上げて熱交換器73の一次側に送り、熱
交換器73の二次側に循環供給されている負荷側の冷媒
と熱交換を行わせる。冷水蓄熱槽51の底部から汲み上
げられて熱交換器73の一次側に供給される水の温度は
ほぼ4℃であるが、熱交換の結果、その水は約12℃程
度にまで昇温し、戻り回路74から再び冷水蓄熱槽51
の上部に戻される。かくして、負荷側の冷媒は、熱交換
器70および熱交換器73の二次側に供給される前は約
14℃程度であったのに対し、熱交換後は約7℃となっ
て負荷装置に戻される。
During heat dissipation, the ice heat storage tank 50
Water pumped from the bottom by the pump 54 is sent to the primary side of the heat exchanger 70, and heat exchange is performed with the load-side refrigerant that is circulated and supplied to the secondary side of the heat exchanger 70. As a result of the heat exchange, the water sent from the ice heat storage tank 50 is heated up to about 12 ° C., and then returned from the return circuit 71 to the upper portion of the ice heat storage tank 50 again. Similarly, the water at the bottom of the cold water heat storage tank 51 is pumped up by the pump 72 and sent to the primary side of the heat exchanger 73 to exchange heat with the refrigerant on the load side circulated and supplied to the secondary side of the heat exchanger 73. Let The temperature of the water pumped from the bottom of the cold water heat storage tank 51 and supplied to the primary side of the heat exchanger 73 is approximately 4 ° C. However, as a result of heat exchange, the temperature of the water rises to approximately 12 ° C. The cold water heat storage tank 51 is returned from the return circuit 74.
Returned to the top of. Thus, the refrigerant on the load side was about 14 ° C. before being supplied to the secondary side of the heat exchanger 70 and the heat exchanger 73, while it was about 7 ° C. after the heat exchange, and became a load device. Returned to.

【0009】[0009]

【発明が解決しようとする課題】このように、従来は氷
蓄熱槽50の底部から汲み上げた水と冷水蓄熱槽51内
の高温側の水を、配管腐蝕等を考慮して、熱交換器61
を用いて熱交換させることによって、過冷却器55に送
る前の水を予熱している。このため、氷蓄熱槽50の水
を熱交換器61の一次側に供給するためのポンプ54と
冷水蓄熱槽51の水を熱交換器62の二次側に供給する
ためのポンプ64を必ず設ける必要がある。また、熱交
換器も、予熱用の熱交換器62と放熱用の冷媒熱交換器
70および熱交換器73の三台が必要である。このよう
に、従来の蓄熱システムでは複数のポンプと熱交換器を
設置できるだけのスペースが必要であり、設備費が高く
なっている。
As described above, in the prior art, the water exchanged between the water pumped from the bottom of the ice heat storage tank 50 and the water on the high temperature side in the cold water heat storage tank 51 is taken into consideration in consideration of pipe corrosion and the like.
Water is preheated before being sent to the subcooler 55 by performing heat exchange using. Therefore, a pump 54 for supplying the water of the ice heat storage tank 50 to the primary side of the heat exchanger 61 and a pump 64 for supplying the water of the cold water heat storage tank 51 to the secondary side of the heat exchanger 62 are always provided. There is a need. In addition, three heat exchangers, that is, a heat exchanger 62 for preheating, a refrigerant heat exchanger 70 for heat dissipation, and a heat exchanger 73 are required. As described above, in the conventional heat storage system, a space for installing a plurality of pumps and heat exchangers is required, and the equipment cost is high.

【0010】また従来のシステムでは、熱交換器のアプ
ローチを考えると冷水蓄熱槽51にはせいぜい4℃程度
の冷水しか蓄熱できず、熱交換後の水の温度が約12℃
程度であるから、従来は冷水蓄熱槽51内の水を約8℃
の温度差で利用しているにとどまる。そのため冷水蓄熱
槽51の容積が小さい場合などは、十分な予熱量を確保
できない。もしも、冷水蓄熱槽51の冷水の温度を4℃
よりも更に低くできれば、利用温度差が広くなり、冷水
蓄熱槽の容積当たりの蓄熱量は増加する。そうすれば、
日中負荷の蓄熱移行率を高めることができ、また、日中
に他の冷凍機などの熱源機に依存する比率を低減でき
る。
Further, in the conventional system, considering the approach of the heat exchanger, only cold water of about 4 ° C. can be stored in the cold water heat storage tank 51, and the temperature of the water after heat exchange is about 12 ° C.
The temperature in the cold water heat storage tank 51 is about 8 ° C.
It only stays in use due to the temperature difference. Therefore, when the volume of the cold water heat storage tank 51 is small, a sufficient amount of preheat cannot be secured. If the temperature of the cold water in the cold water heat storage tank 51 is 4 ° C
If it can be made even lower than this, the difference in utilization temperature becomes wider, and the amount of heat storage per volume of the cold water heat storage tank increases. that way,
The heat storage transfer rate of the daytime load can be increased, and the ratio depending on the heat source machine such as another refrigerator during the daytime can be reduced.

【0011】本発明の目的は、以上のような氷蓄熱槽と
冷水蓄熱槽の両方を備えた蓄熱システムにおいて、ポン
プや熱交換器の設置台数を減らすことにより設置スペー
スの縮小化および設備費の低減をはかり、併せて、冷水
蓄熱槽の蓄熱量を増加させることにある。
An object of the present invention is to reduce the number of pumps and heat exchangers installed in the heat storage system having both the ice heat storage tank and the cold water heat storage tank as described above, thereby reducing the installation space and reducing the equipment cost. The aim is to reduce the amount of heat and to increase the amount of heat stored in the cold water heat storage tank.

【0012】[0012]

【課題を解決するための手段】本発明によれば、氷蓄熱
槽内の水を取水して過冷却器に送り、該過冷却器で冷却
した水を氷と水のスラリー状態で氷蓄熱槽内に吐き出し
て蓄熱を行う氷蓄熱槽と、冷水蓄熱槽とを備えた蓄熱シ
ステムであって、蓄熱時において氷蓄熱槽内から取水し
た水に冷水蓄熱槽内の高温側の水を混合する回路と、放
熱時において氷蓄熱槽内から取水して放熱した後の水の
一部または全部を冷水蓄熱槽に供給する回路と、氷蓄熱
槽の水面の高さと冷水蓄熱槽の水面の高さを等しくさせ
るべく、蓄熱時には氷蓄熱槽内の水を冷水蓄熱槽内の低
温側に供給し、放熱時には冷水蓄熱槽内の低温側の水を
氷蓄熱槽内に供給する回路を設けた蓄熱システムが提供
される。
According to the present invention, the water in the ice heat storage tank is taken and sent to the subcooler, and the water cooled by the subcooler is put in a slurry state of ice and water in the ice heat storage tank. A heat storage system comprising an ice heat storage tank for discharging heat to store heat and a cold water heat storage tank, wherein the water taken from the ice heat storage tank at the time of heat storage is mixed with water on the high temperature side in the cold water heat storage tank. And a circuit that supplies part or all of the water after taking in heat from the ice heat storage tank and radiating heat to the cold water heat storage tank, and the height of the water surface of the ice heat storage tank and the height of the water surface of the cold water heat storage tank. In order to make them equal, a heat storage system that has a circuit that supplies water in the ice heat storage tank to the low temperature side in the cold water heat storage tank at the time of heat storage and supplies water at the low temperature side in the cold water heat storage tank to the ice heat storage tank at the time of heat radiation Provided.

【0013】[0013]

【作用】本発明の蓄熱システムでは、蓄熱時において過
冷却器で冷却される前の水を予熱するに際し、従来のよ
うな熱交換器を用いた間接方式とせず、冷水蓄熱槽の高
温側、即ち冷水蓄熱槽の槽上部から取水した水を氷蓄熱
槽内から取水された水に直接混合し、昇温させる。この
場合、例えば混合後の水の温度が0.5℃程度になるよ
うに、氷蓄熱槽内から取水された水に対して冷水蓄熱槽
の槽上部から取水した水を供給する量を調整する。こう
して混合後において約0.5℃程度に予熱した水を過冷
却器に供給することにより、過冷却器内での水の凍結や
閉塞といった問題を解消する。
In the heat storage system of the present invention, when preheating the water before being cooled by the subcooler during heat storage, the indirect method using the heat exchanger as in the prior art is not used, but the high temperature side of the cold water heat storage tank, That is, the water taken from the upper part of the cold water heat storage tank is directly mixed with the water taken from the ice heat storage tank to raise the temperature. In this case, for example, the amount of water taken from the upper part of the cold water heat storage tank is adjusted with respect to the water taken from the ice heat storage tank so that the temperature of the mixed water becomes about 0.5 ° C. . By supplying water preheated to about 0.5 ° C. after mixing in this way to the subcooler, problems such as freezing and blockage of water in the subcooler are eliminated.

【0014】このように冷水蓄熱槽から取水して予熱を
行うと、その取水量に相当する冷水蓄熱槽の水量が減少
する。そこで、その取水量に相当する氷蓄熱槽内の水
を、氷蓄熱槽と冷水蓄熱槽を連絡している回路を介して
冷水蓄熱槽内の低温側に供給し、冷水蓄熱槽の水量の不
足分を補うことにより氷蓄熱槽の水面の高さと冷水蓄熱
槽の水面の高さを等しくする。氷蓄熱槽内の水は、氷蓄
熱槽内に氷が生成された後においては0℃に保たれるの
で、その結果、冷水蓄熱槽には0℃の冷水が下部から順
次供給され、やがて、冷水蓄熱槽内全体に0℃の冷水が
蓄えられる。このように、本発明の蓄熱システムは、従
来の蓄熱システムに比べて冷水蓄熱槽の蓄熱量を増加さ
せることができる。
When water is taken from the cold water heat storage tank and preheated in this way, the amount of water in the cold water heat storage tank corresponding to the amount of water taken decreases. Therefore, the water in the ice heat storage tank corresponding to the amount of water intake is supplied to the low temperature side in the cold water heat storage tank via the circuit connecting the ice heat storage tank and the cold water heat storage tank, and the water quantity in the cold water heat storage tank is insufficient. By compensating for this, the height of the water surface of the ice heat storage tank and the height of the water surface of the cold water heat storage tank are made equal. The water in the ice heat storage tank is kept at 0 ° C. after ice is generated in the ice heat storage tank, and as a result, cold water at 0 ° C. is sequentially supplied to the cold water heat storage tank from the bottom, and eventually, Cold water of 0 ° C is stored in the entire cold water heat storage tank. As described above, the heat storage system of the present invention can increase the heat storage amount of the cold water heat storage tank as compared with the conventional heat storage system.

【0015】一方、本発明の蓄熱システムにおいて放熱
を行う場合は、氷蓄熱槽内から水を取水し、負荷側の冷
媒を冷却する熱交換器の一次側にその水を供給する。そ
して、熱交換器で放熱したことによって約12℃程度と
なった水を氷蓄熱槽に戻すに際し、その一部または全部
を冷水蓄熱槽に戻すようにする。
On the other hand, when heat is dissipated in the heat storage system of the present invention, water is taken from the ice heat storage tank and the water is supplied to the primary side of the heat exchanger for cooling the refrigerant on the load side. And when returning the water which became about 12 degreeC by radiating heat with a heat exchanger to an ice heat storage tank, it is made to return a part or all of it to a cold water heat storage tank.

【0016】このように放熱後の水の一部または全部を
冷水蓄熱槽に戻すと、それに対応して氷蓄熱槽の水量が
減少することになる。そこで、冷水蓄熱槽に戻した水と
等しい量の水を、冷水蓄熱槽内の低温側から冷水蓄熱槽
と氷蓄熱槽を連絡している回路を介して氷蓄熱槽内に供
給し、冷水蓄熱槽の水面の高さと氷蓄熱槽の水面の高さ
を等しくする。これにより、氷蓄熱槽内には蓄熱時にお
いて冷水蓄熱槽内に蓄えられた0℃の冷水が供給され、
その冷熱は更に負荷側の冷媒の冷却に供される。
When a part or all of the water after heat dissipation is returned to the cold water heat storage tank in this way, the amount of water in the ice heat storage tank is correspondingly reduced. Therefore, the same amount of water as the water returned to the cold water heat storage tank is supplied from the low temperature side in the cold water heat storage tank to the ice heat storage tank via the circuit that connects the cold water heat storage tank and the ice heat storage tank, Make the water level of the tank equal to the water level of the ice storage tank. As a result, the cold water of 0 ° C stored in the cold water heat storage tank is stored in the ice heat storage tank during heat storage,
The cold heat is further used for cooling the refrigerant on the load side.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。図1は、
本発明の実施例にかかる蓄熱システムの概要を示すフロ
ー図である。図中、実線で記入した矢印は蓄熱時の水の
流れ方向を示し、点線で記入した矢印は放熱時の水の流
れ方向を示す。
Embodiments of the present invention will be described below. Figure 1
It is a flow figure showing the outline of the heat storage system concerning the example of the present invention. In the figure, the arrow drawn with a solid line indicates the flow direction of water during heat storage, and the arrow drawn with a dotted line indicates the flow direction of water during heat dissipation.

【0018】氷蓄熱槽1と冷水蓄熱槽2が隣接して設け
てある。これら氷蓄熱槽1と冷水蓄熱槽2の内部には水
が充填されており、両槽内の水は回路3によって連絡さ
れている。この回路3を介して氷蓄熱槽1と冷水蓄熱槽
2の水は自由に流通し、氷蓄熱槽1の水面と冷水蓄熱槽
2の水面は常に等しく保たれる。冷水蓄熱槽2内におい
ては、回路3は低温側(槽下部)に開口している。
An ice heat storage tank 1 and a cold water heat storage tank 2 are provided adjacent to each other. The ice heat storage tank 1 and the cold water heat storage tank 2 are filled with water, and the water in both tanks is connected by a circuit 3. Water in the ice heat storage tank 1 and the cold water heat storage tank 2 freely flows through this circuit 3, and the water surface of the ice heat storage tank 1 and the water surface of the cold water heat storage tank 2 are always kept equal. In the cold water heat storage tank 2, the circuit 3 is open to the low temperature side (bottom of the tank).

【0019】氷蓄熱槽1の底部に回路4の一端が開口
し、その開口部にはフィルタ5が設けてある。回路4の
途中には弁6とポンプ7が設けてあり、弁6はポンプ7
の吸い込み側(フィルタ5とポンプ7の間)にある。回
路4の他端は回路8と回路9に分岐し、回路8は弁10
を経て過冷却器11に接続されている。過冷却器11に
は、図示しない冷凍機で氷点下(例えば約−6℃)に冷
却されたブラインが循環供給されている。この過冷却器
11の吐き出し口下方に解除パイプ12が設けてある。
一方、回路9は熱交換器13の一次側入口に接続され、
この熱交換器13の一次側出口は回路14を介して氷蓄
熱槽1の槽上部に連通している。回路14には、弁18
が設けてある。また、熱交換器13の二次側には、回路
15および回路16を介してポンプ17の稼働で負荷側
の冷媒が循環供給される。
One end of the circuit 4 is opened at the bottom of the ice heat storage tank 1, and a filter 5 is provided at the opening. A valve 6 and a pump 7 are provided in the middle of the circuit 4, and the valve 6 is a pump 7
On the suction side (between filter 5 and pump 7). The other end of the circuit 4 branches into a circuit 8 and a circuit 9, and the circuit 8 is connected to the valve 10
Is connected to the subcooler 11. The subcooler 11 is circulated and supplied with brine cooled below freezing (for example, about −6 ° C.) by a refrigerator (not shown). A release pipe 12 is provided below the discharge port of the supercooler 11.
On the other hand, the circuit 9 is connected to the primary inlet of the heat exchanger 13,
The primary outlet of the heat exchanger 13 communicates with the upper portion of the ice heat storage tank 1 via a circuit 14. The circuit 14 includes a valve 18
Is provided. The load side refrigerant is circulated and supplied to the secondary side of the heat exchanger 13 via the circuits 15 and 16 by the operation of the pump 17.

【0020】一方、冷水蓄熱槽2の高温側(槽上部)に
回路20の一端が開口し、回路20の他端は回路21と
回路22に分岐している。回路21は弁23を経て回路
4の弁6とポンプ7の間に接続されている。回路22は
弁24を経て回路14の熱交換器13と弁18の間に接
続されている。
On the other hand, one end of the circuit 20 opens on the high temperature side (upper part of the tank) of the cold water heat storage tank 2, and the other end of the circuit 20 branches into a circuit 21 and a circuit 22. The circuit 21 is connected via a valve 23 between the valve 6 of the circuit 4 and the pump 7. The circuit 22 is connected via a valve 24 between the heat exchanger 13 of the circuit 14 and the valve 18.

【0021】次に、以上のように構成された実施例の蓄
熱システムの作用を、蓄熱運転と放熱運転に分けて説明
する。
Next, the operation of the heat storage system of the embodiment configured as described above will be described separately for the heat storage operation and the heat radiation operation.

【0022】[蓄熱運転]蓄熱運転時は、回路8の弁1
0を開け、回路14の弁42を閉じて、氷蓄熱槽1底部
より回路4を介してポンプ7で汲み上げた水を、回路8
から過冷却器11に送る。過冷却器11には、図示しな
い冷凍機で氷点下(例えば約−6℃)に冷却されたブラ
インが循環供給されおり、この過冷却器11内において
ブラインと熱交換して過冷却状態となった水が、解除パ
イプ12に吐き出され、氷と水のスラリー状態となって
氷蓄熱槽1内の上部に吐き出される。氷蓄熱槽1内に吐
き出されたスラリー状の水は密度差によって氷と水に分
離し、水は再び回路4からポンプ7で汲み上げられ、回
路8を経由して過冷却器11に送られる。こうして氷蓄
熱槽1内の水の温度が0℃付近まで低下すると氷生成が
始まり、以後、氷蓄熱槽1内の水の温度が0℃に維持さ
れる。氷蓄熱槽1内に生成される氷は雪を水に浸したよ
うな性状を有する。こうして、氷蓄熱槽1内に氷を生成
させて蓄熱する。
[Heat storage operation] During heat storage operation, valve 1 of circuit 8
0 is opened, the valve 42 of the circuit 14 is closed, and the water pumped up from the bottom of the ice heat storage tank 1 via the circuit 4 by the pump 7 is supplied to the circuit 8
Sent to the subcooler 11. The brine cooled below freezing point (for example, about -6 ° C.) by a refrigerator (not shown) is circulated and supplied to the subcooler 11, and heat is exchanged with the brine in the subcooler 11 to be in a supercooled state. The water is discharged to the release pipe 12, and becomes a slurry state of ice and water, and is discharged to the upper portion in the ice heat storage tank 1. The slurry-like water discharged into the ice heat storage tank 1 is separated into ice and water due to the density difference, and the water is again pumped up from the circuit 4 by the pump 7 and sent to the subcooler 11 via the circuit 8. In this way, when the temperature of the water in the ice heat storage tank 1 drops to around 0 ° C., ice generation starts, and thereafter, the temperature of the water in the ice heat storage tank 1 is maintained at 0 ° C. The ice generated in the ice heat storage tank 1 has a property that snow is immersed in water. In this way, ice is generated and stored in the ice heat storage tank 1.

【0023】一方、過冷却器11内での水の凍結や閉塞
を防ぐべく予熱するに際しては、回路21の弁23を開
け、冷水蓄熱槽2の高温側、即ち冷水蓄熱槽2の槽上部
から取水した水を回路4のポンプ7の吸い込み側に供給
し、氷蓄熱槽1内から取水した水と混合させる。冷水蓄
熱槽2の高温側から取水される水は、負荷側の冷媒と熱
交換をしたことによって約12℃の温度を有しており、
この約12℃の水を氷蓄熱槽1内から取水した水に混合
させることにより、混合後の水の温度が約0.5℃程度
になるように、混合量を制御する。混合量の制御は、回
路4のポンプ7の上流側に設けられている弁6の開度と
回路21の弁23の開度を調節することによって行う。
例えば、弁6の開度を小さくし弁23の開度を大きくす
れば、冷水蓄熱槽2の高温側から取水した水の混合量が
増え、混合後の水の温度が上昇する。逆に弁6の開度を
大きくし弁23の開度を小さくすれば、冷水蓄熱槽2の
高温側から取水した水の混合量が減り、混合後の水の温
度は低くなる。こうして混合後の水の温度を調整し、約
0.5℃程度に予熱した水を過冷却器11に供給すれ
ば、過冷却器11内での水の凍結や閉塞といった問題を
解消できる。
On the other hand, when preheating the water in the subcooler 11 in order to prevent it from freezing or blocking, the valve 23 of the circuit 21 is opened and the high temperature side of the cold water heat storage tank 2, that is, the upper portion of the cold water heat storage tank 2 The taken water is supplied to the suction side of the pump 7 of the circuit 4 and mixed with the water taken from the ice heat storage tank 1. The water taken from the high temperature side of the cold water heat storage tank 2 has a temperature of about 12 ° C. due to heat exchange with the refrigerant on the load side,
By mixing the water at about 12 ° C. with the water taken from the ice heat storage tank 1, the mixing amount is controlled so that the temperature of the mixed water becomes about 0.5 ° C. The control of the mixing amount is performed by adjusting the opening degree of the valve 6 provided on the upstream side of the pump 7 of the circuit 4 and the opening degree of the valve 23 of the circuit 21.
For example, if the opening degree of the valve 6 is decreased and the opening degree of the valve 23 is increased, the mixing amount of water taken from the high temperature side of the cold water heat storage tank 2 increases and the temperature of the water after mixing rises. On the contrary, if the opening degree of the valve 6 is increased and the opening degree of the valve 23 is decreased, the mixing amount of water taken from the high temperature side of the cold water heat storage tank 2 is reduced and the temperature of the water after mixing is lowered. By adjusting the temperature of the water after mixing and supplying the water preheated to about 0.5 ° C. to the subcooler 11, problems such as freezing and blockage of water in the subcooler 11 can be solved.

【0024】また、このように予熱を行う際に冷水蓄熱
槽2から取水すると、その取水量に相当する冷水蓄熱槽
2の水量が減少する。すると、氷蓄熱槽1と冷水蓄熱槽
2を連絡している回路3を介して、氷蓄熱槽1内の水が
冷水蓄熱槽2内の低温側(槽下部)に供給され、冷水蓄
熱槽2内の水量の不足分が補われる。これにより氷蓄熱
槽1の水面の高さと冷水蓄熱槽2の水面の高さが等しく
保たれる。
When water is taken from the cold water heat storage tank 2 during preheating as described above, the amount of water in the cold water heat storage tank 2 corresponding to the amount of water taken in decreases. Then, the water in the ice heat storage tank 1 is supplied to the low temperature side (bottom of the tank) in the cold water heat storage tank 2 via the circuit 3 connecting the ice water heat storage tank 1 and the cold water heat storage tank 2 to each other. The shortage of water in the interior is compensated. As a result, the height of the water surface of the ice heat storage tank 1 and the height of the water surface of the cold water heat storage tank 2 are kept equal.

【0025】このようにして氷蓄熱槽1から冷水蓄熱槽
2に供給される水は、氷蓄熱槽1内に氷が生成された後
においてはほぼ0℃に保たれるので、その結果、冷水蓄
熱槽2には0℃の冷水が下部から順次供給され、冷水蓄
熱槽2内の下部から順に0℃の冷水が蓄えられるように
なる。このように、実施例の蓄熱システムによれば、冷
水蓄熱槽2内に蓄熱する際の冷水の温度を従来に比べて
約4℃近くも下げることができ、蓄熱量を増加させるこ
とが可能となる。
The water thus supplied from the ice heat storage tank 1 to the cold water heat storage tank 2 is kept at approximately 0 ° C. after the ice is generated in the ice heat storage tank 1, and as a result, the cold water is stored. The cold water of 0 ° C. is sequentially supplied to the heat storage tank 2 from the lower part, and the cold water of 0 ° C. is sequentially stored from the lower part in the cold water heat storage tank 2. As described above, according to the heat storage system of the embodiment, the temperature of the cold water when the heat is stored in the cold water heat storage tank 2 can be lowered by about 4 ° C. as compared with the conventional case, and the heat storage amount can be increased. Become.

【0026】こうして蓄熱運転を行うことにより、氷蓄
熱槽1内には氷を生成させて蓄熱し、冷水蓄熱槽2内に
はほぼ0℃の冷水を溜めて蓄熱する。
By performing the heat storage operation in this way, ice is generated and stored in the ice heat storage tank 1, and cold water of approximately 0 ° C. is stored and stored in the cold water heat storage tank 2.

【0027】[放熱運転]次に、以上のように氷蓄熱槽
1内に氷が生成され、冷水蓄熱槽2内に0℃の冷水が溜
められた状態で放熱運転を行う際には、回路8の弁10
を閉じ、回路9の弁18を開ける。そして、氷蓄熱槽1
の底部から回路4を介してポンプ7で汲み上げた水を、
回路9から熱交換器13の一次側に供給し、熱交換器1
3の二次側に循環供給されている負荷側の冷媒と熱交換
を行わせる。熱交換の結果、負荷側の冷媒は約14℃か
ら約7℃にまで冷却される。一方、氷蓄熱槽1から送ら
れてきた水は約12℃程度にまで昇温し、回路14から
再び氷蓄熱槽1の上部に戻される。こうして氷蓄熱槽1
の上部に約12℃の水が戻されると、その温熱により氷
蓄熱槽1内に生成された氷が溶融を開始するが、氷蓄熱
槽1内に氷が残っている間は、氷蓄熱槽1内の水の温度
は0℃に維持される。
[Heat dissipation operation] Next, when heat dissipation operation is performed in a state where ice is generated in the ice heat storage tank 1 and cold water of 0 ° C. is stored in the cold water heat storage tank 2 as described above, Valve 10 of 8
Is closed and the valve 18 of the circuit 9 is opened. And the ice heat storage tank 1
The water pumped from the bottom of the
Supply from the circuit 9 to the primary side of the heat exchanger 13,
The heat exchange with the refrigerant on the load side, which is circulated and supplied to the secondary side of 3, is performed. As a result of heat exchange, the refrigerant on the load side is cooled from about 14 ° C to about 7 ° C. On the other hand, the water sent from the ice heat storage tank 1 is heated up to about 12 ° C. and returned to the upper part of the ice heat storage tank 1 from the circuit 14. Thus ice storage tank 1
When water of about 12 ° C. is returned to the upper part of the ice, the ice generated in the ice storage tank 1 starts to melt due to the heat of the water, but as long as ice remains in the ice storage tank 1, the ice storage tank The temperature of the water in 1 is maintained at 0 ° C.

【0028】また、このように昇温後の水を氷蓄熱槽1
の上部に戻すに際し、その一部または全部を回路22に
取り出して冷水蓄熱槽2の高温側(槽上部)に戻す。回
路22に取り出す水の量は、回路14の弁18の開度と
回路22の弁24の開度を調節することによって変える
ことができる。例えば、弁18の開度を小さくし弁24
の開度を大きくすれば、氷蓄熱槽1に戻る水の量が減
り、冷水蓄熱槽2に戻る水の量が増える。逆に弁18の
開度を大きくし弁24の開度を小さくすれば、氷蓄熱槽
1に戻る水の量が増え、冷水蓄熱槽2に戻る水の量が減
る。
Further, the water after the temperature is raised in this way is stored in the ice heat storage tank 1
When returning to the upper part of, the part or all of it is taken out to the circuit 22 and returned to the high temperature side of the cold water heat storage tank 2 (upper tank). The amount of water drawn into the circuit 22 can be changed by adjusting the opening of the valve 18 of the circuit 14 and the opening of the valve 24 of the circuit 22. For example, the opening degree of the valve 18 is reduced and the valve 24 is
When the opening degree of is increased, the amount of water returning to the ice heat storage tank 1 is reduced and the amount of water returning to the cold water heat storage tank 2 is increased. Conversely, if the opening degree of the valve 18 is increased and the opening degree of the valve 24 is decreased, the amount of water returning to the ice heat storage tank 1 increases and the amount of water returning to the cold water heat storage tank 2 decreases.

【0029】このように氷蓄熱槽1に戻る水を取水して
冷水蓄熱槽2に供給すると、その取水量に相当する氷蓄
熱槽1の水量が減少する。すると、冷水蓄熱槽2と氷蓄
熱槽1を連絡している回路3を介して、冷水蓄熱槽2内
の低温側(槽下部)の水が氷蓄熱槽1内に供給されて不
足分が補われ、氷蓄熱槽1の水面の高さと冷水蓄熱槽2
の水面の高さが等しく保たれる。先に説明したように、
蓄熱運転によって冷水蓄熱槽2内には0℃の冷水が蓄え
られた状態になっており、冷水蓄熱槽2の下部からその
0℃の水が順次取水されて、回路3を介して氷蓄熱槽1
内に供給されるので、氷蓄熱槽1内の水の温度は、依然
として0℃に維持されることになる。
When the water returned to the ice heat storage tank 1 is taken and supplied to the cold water heat storage tank 2 as described above, the amount of water in the ice heat storage tank 1 corresponding to the amount of water taken decreases. Then, the water on the low temperature side (bottom of the tank) in the cold water heat storage tank 2 is supplied to the ice heat storage tank 1 through the circuit 3 that connects the cold water heat storage tank 2 and the ice heat storage tank 1, and the shortage is compensated. I, the height of the water surface of the ice heat storage tank 1 and the cold water heat storage tank 2
The height of the water surface is kept the same. As I explained earlier,
Due to the heat storage operation, 0 ° C. cold water is stored in the cold water heat storage tank 2, and the 0 ° C. water is sequentially taken in from the lower part of the cold water heat storage tank 2, and the ice heat storage tank is passed through the circuit 3. 1
Since it is supplied inside, the temperature of the water in the ice heat storage tank 1 is still maintained at 0 ° C.

【0030】このように蓄熱運転によって氷蓄熱槽1内
と冷水蓄熱槽2内に蓄えた冷熱を放出することによっ
て、氷蓄熱槽1内と冷水蓄熱槽2内の水の温度が最高で
12℃になるまで熱交換器13の二次側に循環供給され
ている負荷側の冷媒を冷却することができる。従って、
この実施例の蓄熱システムによれば、冷水蓄熱槽2内の
水を約12℃の温度差で利用することが可能となる。
By thus releasing the cold heat stored in the ice heat storage tank 1 and the cold water heat storage tank 2 by the heat storage operation, the temperature of the water in the ice heat storage tank 1 and the cold water heat storage tank 2 is 12 ° C. at the maximum. The refrigerant on the load side, which is circulated and supplied to the secondary side of the heat exchanger 13, can be cooled until. Therefore,
According to the heat storage system of this embodiment, the water in the cold water heat storage tank 2 can be used with a temperature difference of about 12 ° C.

【0031】[0031]

【発明の効果】従来の蓄熱システムでは、冷水蓄熱槽の
水の温度をせいぜい4℃程度までしか下げることができ
ず、利用温度差は最大とれても8℃程度であるのに対
し、本発明の蓄熱システムは、冷水蓄熱槽の水の温度を
ほぼ0℃まで下げることができ、最大で12℃程度の温
度差がとれるようになる。従って、本発明の蓄熱システ
ムによれば、冷水蓄熱槽の蓄熱量を従来の約1.5倍に
増大できる。これにより日中負荷のピークカット率を上
げることができ、熱源機容量の低減およびランニングコ
ストを大幅に低減させることができる。また、本発明の
蓄熱システムは熱交換器やポンプの設置台数が少ないの
で、設置スペースが縮小し、設備費も低減できる。
In the conventional heat storage system, the temperature of the water in the cold water heat storage tank can be lowered to about 4 ° C. at the most, and the difference in use temperature is about 8 ° C. even if the maximum is taken. The heat storage system can reduce the temperature of the water in the cold water heat storage tank to almost 0 ° C., and a maximum temperature difference of about 12 ° C. can be taken. Therefore, according to the heat storage system of the present invention, the amount of heat stored in the cold water heat storage tank can be increased to about 1.5 times that of the conventional case. As a result, the peak cut rate of daytime load can be increased, the heat source unit capacity can be reduced, and the running cost can be significantly reduced. Further, since the heat storage system of the present invention has a small number of heat exchangers and pumps installed, the installation space can be reduced and the facility cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる蓄熱システムの概要を
示すフロー図である。
FIG. 1 is a flow chart showing an outline of a heat storage system according to an embodiment of the present invention.

【図2】従来の蓄熱システムの概要を示すフロー図であ
る。
FIG. 2 is a flowchart showing an outline of a conventional heat storage system.

【符号の説明】[Explanation of symbols]

1 氷蓄熱槽 2 冷水蓄熱槽 11 過冷却器 1 Ice heat storage tank 2 Cold water heat storage tank 11 Supercooler

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 文教 千葉県松戸市常盤平柳町6−4 ミナミハ イツ303 (72)発明者 神白 雅治 埼玉県浦和市文蔵5−9−9 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Bunkyo Hasegawa 6-4 Tokiwahirayanagicho, Matsudo City, Chiba Prefecture Minami Heights 303 (72) Inventor Masaharu Kamishiro 5-9-9 Burazo, Urawa City, Saitama Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 氷蓄熱槽内の水を取水して過冷却器に送
り、該過冷却器で冷却した水を氷と水のスラリー状態で
氷蓄熱槽内に吐き出して蓄熱を行う氷蓄熱槽と、冷水蓄
熱槽とを備えた蓄熱システムであって、 蓄熱時において氷蓄熱槽内から取水した水に冷水蓄熱槽
内の高温側の水を混合する回路と、 放熱時において氷蓄熱槽内から取水して放熱した後の水
の一部または全部を冷水蓄熱槽に戻す回路と、 氷蓄熱槽の水面の高さと冷水蓄熱槽の水面の高さを等し
くさせるべく、蓄熱時には氷蓄熱槽内の水を冷水蓄熱槽
内の低温側に供給し、放熱時には冷水蓄熱槽内の低温側
の水を氷蓄熱槽内に供給する回路を設けた蓄熱システ
ム。
1. An ice heat storage tank for taking in water from an ice heat storage tank and sending it to a subcooler, discharging the water cooled by the subcooler in the ice and water slurry state into the ice heat storage tank to store heat. And a cold water heat storage tank, which is a circuit for mixing the water taken from the ice heat storage tank with the water on the high temperature side in the cold water heat storage tank during heat storage, and from the ice heat storage tank during heat dissipation. In order to make the height of the water surface of the ice heat storage tank equal to the height of the water surface of the cold water heat storage tank, a circuit that returns part or all of the water after taking in and radiating heat to the cold water heat storage tank A heat storage system that has a circuit that supplies water to the low temperature side in the cold water heat storage tank and supplies the low temperature side water in the cold water heat storage tank to the ice heat storage tank during heat dissipation.
JP14945895A 1995-05-24 1995-05-24 Thermal storage system Expired - Fee Related JP3272909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14945895A JP3272909B2 (en) 1995-05-24 1995-05-24 Thermal storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14945895A JP3272909B2 (en) 1995-05-24 1995-05-24 Thermal storage system

Publications (2)

Publication Number Publication Date
JPH08320137A true JPH08320137A (en) 1996-12-03
JP3272909B2 JP3272909B2 (en) 2002-04-08

Family

ID=15475568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14945895A Expired - Fee Related JP3272909B2 (en) 1995-05-24 1995-05-24 Thermal storage system

Country Status (1)

Country Link
JP (1) JP3272909B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226659A (en) * 2010-04-15 2011-11-10 Espec Corp Cooling device and environmental test device equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226659A (en) * 2010-04-15 2011-11-10 Espec Corp Cooling device and environmental test device equipped with the same

Also Published As

Publication number Publication date
JP3272909B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US5647225A (en) Multi-mode high efficiency air conditioning system
US7827807B2 (en) Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability
AU2005236379B2 (en) The non-intrusive and extended use of water reservoirs in buildings as thermal storage for heating, ventilation and air conditioning systems
US20120144853A1 (en) Symmetrical intermediate storage means for heat pumps with cyclical drainage into a main system
US4656836A (en) Pressurized, ice-storing chilled water system
EP1625128A2 (en) Thermal energy storage
JPH08320137A (en) Heat accumulating system
SE530407C2 (en) Control device
JP3415327B2 (en) Thermal storage system
US4524909A (en) Apparatus for production of hot tap water
JP4964439B2 (en) Operation method of heat storage enhancement system by cooling coil
JP3445410B2 (en) Ice storage system
JPH0820089B2 (en) District cooling equipment
JP5198828B2 (en) Ice transfer system
JPH06137618A (en) Cooling/heating system for connecting heat storage tanks and central heat source device
JP3169564B2 (en) Automatic ice machine
JP2596674B2 (en) Thermal storage method and apparatus using both water tank and ice tank
JPH05231679A (en) Carrying and returning method for water to load side of ice heat storage system
JPH06137614A (en) Air-conditioning system provided with vertical type heat storage tank and underfloor heat storage tank
JP3455327B2 (en) Water heat storage device and its improvement method
JP3206363B2 (en) Ice heat storage device and control method thereof
JPH06323701A (en) Operating method for ice-making machine using supercooled water
JPH02115638A (en) Room cooler
CN116868009A (en) System for generating heat for domestic hot water or central heating
JPH07293948A (en) Cooler

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees