JPH08319165A - Silicon nitride sintered material and its production - Google Patents

Silicon nitride sintered material and its production

Info

Publication number
JPH08319165A
JPH08319165A JP7121363A JP12136395A JPH08319165A JP H08319165 A JPH08319165 A JP H08319165A JP 7121363 A JP7121363 A JP 7121363A JP 12136395 A JP12136395 A JP 12136395A JP H08319165 A JPH08319165 A JP H08319165A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
grain boundary
phase
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7121363A
Other languages
Japanese (ja)
Inventor
Jihei Ukekawa
治平 請川
Matsuo Higuchi
松夫 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7121363A priority Critical patent/JPH08319165A/en
Publication of JPH08319165A publication Critical patent/JPH08319165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To produce a silicon nitride sintered material having superior high- temperature strength and fracture toughness when compared with a conventional product by depositing crystals in a grain boundary phase. CONSTITUTION: This is a silicon nitride sintered material composed of <=20wt.% of a grain boundary phase of and a particulate phase of Si3 N4 and/or sialon in the remaining main phase. The ratio of quantity of β-Si3 N4 and/or β'-sialon based on the main phase is 0.5-1.0. The grain boundary phase contains Re2 A7 O17 (Re is an element of the group 3A and A is an element of the group 4A) as a crystal component. The objective sintered material is produced by adding thereto AO2 , Re2 O3 , etc., sintering the mixture and subsequently treating this mixture at 1050-1600 deg.C for nucleation and crystal growth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温下で高強度と高靭
性を要求される切削工具、耐摩耗工具、機械構造部品等
として好適な窒化ケイ素系焼結体、及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride-based sintered body suitable as a cutting tool, a wear resistant tool, a machine structural component, etc., which is required to have high strength and high toughness at high temperatures, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化ケイ素系焼結体は、耐熱性並びに高
強度を要求される切削工具、耐摩耗工具、機械構造部
品、耐摩耗部品等の材料として期待されている。
2. Description of the Related Art Silicon nitride sintered bodies are expected as materials for cutting tools, wear resistant tools, machine structural parts, wear resistant parts and the like which are required to have high heat resistance and high strength.

【0003】窒化ケイ素は単一物では難焼結性のため、
従来からY23、Al23等の焼結助剤成分を添加し、
その液相生成による物質移動によって緻密なものが得ら
れている。しかしながら、通常の液相焼結のみではSi
34以外の液相形成成分が主にガラス相となって粒界相
を形成するため、1200℃以上の高温下ではガラス相
が軟化して強度が著しく低下する。
Since silicon nitride is difficult to sinter by itself,
Conventionally, sintering aid components such as Y 2 O 3 and Al 2 O 3 are added,
A dense substance is obtained by mass transfer due to the formation of the liquid phase. However, if only ordinary liquid phase sintering is used,
Since the liquid phase forming components other than 3 N 4 mainly become a glass phase to form a grain boundary phase, the glass phase is softened at a high temperature of 1200 ° C. or higher and the strength is remarkably lowered.

【0004】例えば、特公昭56−28865号公報に
よれば、焼結時に粒界にSi34・Y23結晶相を析出
させているが、1300℃での曲げ強度は75〜93k
g/mm2程度と小さいものである。又、特開昭60−
186469号公報ではReAlO3やRe3Al512
(ここでReは希土類元素である)を添加して焼結して
いるが、その曲げ強度は室温でも70kg/mm2程度
であり、特開平4−130062号公報ではYAG等の
23−Al23系焼結剤の添加により、室温で100
kg/mm2を越える焼結体を得ているが、1200℃
では80kg/mm2程度の強度に留まっている。
For example, according to Japanese Patent Publication No. 56-28865, Si 3 N 4 .Y 2 O 3 crystal phase is precipitated at the grain boundary during sintering, but the bending strength at 1300 ° C. is 75 to 93 k.
It is as small as g / mm 2 . Also, JP-A-60-
No. 186,469 discloses ReAlO 3 and Re 3 Al 5 O 12.
(Here, Re is a rare earth element) is added and sintered, but its bending strength is about 70 kg / mm 2 even at room temperature. In JP-A-4-130062, Y 2 O 3 such as YAG is used. -By adding Al 2 O 3 based sintering agent, 100 at room temperature
Sintered bodies exceeding kg / mm 2 have been obtained, but 1200 ° C
However, the strength is about 80 kg / mm 2 .

【0005】このように、粒界相がガラス相であること
によってSi34焼結体の強度、特に高温強度が著しく
低下するので、ガラス相の結晶化により高温強度を向上
させる試みが種々なされている。例えば、特公昭52−
45724号公報では、結晶化促進剤として少量のTi
2を加え、焼結助剤としてSiO2とAl23を用いて
焼結した後、700〜1400℃で加熱処理を行ってコ
ージライトやクリストバライト等の結晶を析出させるこ
とで、1200℃で60kg/mm2の曲げ強度のもの
を得ている。
As described above, since the grain boundary phase is the glass phase, the strength of the Si 3 N 4 sintered body, especially the high temperature strength is remarkably lowered. Therefore, various attempts have been made to improve the high temperature strength by crystallization of the glass phase. Has been done. For example, Japanese Patent Publication No.
In Japanese Patent No. 45724, a small amount of Ti is used as a crystallization accelerator.
After adding O 2 and sintering using SiO 2 and Al 2 O 3 as sintering aids, heat treatment is performed at 700 to 1400 ° C. to precipitate crystals such as cordierite and cristobalite at 1200 ° C. With a bending strength of 60 kg / mm 2 .

【0006】又、特開平3−122055号公報には、
Al23とY23を添加した後、冷却時に900〜97
0℃で保持し、更に1200〜1300℃に昇温する熱
処理プログラムによって、Si34・Y23又はSi2
2Oの微結晶を析出させる方法が開示されているが、得
られる焼結体の曲げ強度は1200℃で67kg/mm
2程度に留まっている。
Further, Japanese Patent Application Laid-Open No. 3-122055 discloses that
After adding Al 2 O 3 and Y 2 O 3 , 900 to 97 during cooling.
According to a heat treatment program of holding at 0 ° C. and further raising the temperature to 1200 to 1300 ° C., Si 3 N 4 · Y 2 O 3 or Si 2 N
A method of precipitating fine crystals of 2 O is disclosed, but the bending strength of the obtained sintered body is 67 kg / mm at 1200 ° C.
It remains around 2 .

【0007】特開平3−199165号公報には、焼結
後の冷却速度をコントロールして、Si22O結晶を析
出させたRe23(ここでReは希土類元素である)−
SiO2系粒界相を形成することが記載されているが、
その曲げ強度は常温で83〜99kg/mm2、140
0℃で51〜63kg/mm2である。特開平4−23
1379号公報には、焼結後の1200℃での熱処理に
よりSi22O結晶を粒界相に形成し、室温で100k
g/mm2程度及び1400℃で63kg/mm2程度の
強度のSi34焼結体を得ることが記載されている。
In Japanese Laid-Open Patent Publication No. 3-199165, Re 2 O 3 (where Re is a rare earth element) in which Si 2 N 2 O crystals are precipitated by controlling the cooling rate after sintering is disclosed.
Although it is described that a SiO 2 type grain boundary phase is formed,
Its bending strength is 83 to 99 kg / mm 2 , 140 at room temperature.
It is 51 to 63 kg / mm 2 at 0 ° C. JP-A-4-23
In Japanese Patent No. 1379, a Si 2 N 2 O crystal is formed in a grain boundary phase by a heat treatment at 1200 ° C. after sintering, and 100 k at room temperature.
g / mm 2 approximately and 1400 ° C. to obtain a 63kg / mm 2 about the Si 3 N 4 sintered body strength are described.

【0008】特開平5−294731号公報には、15
00〜1700℃の熱処理によりRe23(ここでRe
は希土類元素である)とZrSiO4の複合結晶相が形
成され、1400℃で50kg/mm2以上の強度と、
ICで5以上の靭性値の焼結体が得られることが記載さ
れている。特開平5−330919号公報には、850
〜1050℃での核形成と1100〜1500℃での結
晶成長を経て粒界相にAl−Yb−Si−O−N系又は
Al−Er−Si−O−N系の微結晶を形成し、130
0℃で60kg/mm2程度の曲げ強度の焼結体を得る
ことが記載されている。
In Japanese Patent Laid-Open No. 5-294731, there is 15
Re 2 O 3 (where Re
Is a rare earth element) and a ZrSiO 4 composite crystal phase is formed, and a strength of 50 kg / mm 2 or more at 1400 ° C.,
Sintered body of 5 or more toughness value K IC is described to be obtained. Japanese Patent Application Laid-Open No. 5-330919 discloses 850.
After nucleation at 1050 ° C and crystal growth at 1100 to 1500 ° C, Al-Yb-Si-O-N-based or Al-Er-Si-O-N-based microcrystals are formed in the grain boundary phase. 130
It is described that a sintered body having a bending strength of about 60 kg / mm 2 at 0 ° C. is obtained.

【0009】更に、特開平5−58740号公報には、
MgOやTiO2を核形成剤として加え、Y23とAl2
3を焼結助剤として焼結した後、焼結体を850〜1
050℃で核形成させ、1200〜1300℃で結晶成
長させる方法により、Y2Si27、Al5312、A
6Si213等のY23−Al23−SiO2系酸化物
結晶相を析出させ、室温で50kg/mm2程度の曲げ
強度のSi34焼結体を得ることが記載されている。
Further, in Japanese Patent Laid-Open No. 5-58740,
MgO or TiO 2 is added as a nucleating agent, and Y 2 O 3 and Al 2 are added.
After sintering with O 3 as a sintering aid, the sintered body is 850 to 1
Y 2 Si 2 O 7 , Al 5 Y 3 O 12 , A by nucleation at 050 ° C. and crystal growth at 1200 to 1300 ° C.
l 6 Y 2 O such as Si 2 O 13 3 -Al 2 O 3 to precipitate -SiO 2 based oxide crystal phase, to obtain Si 3 N 4 sintered body at room temperature at 50 kg / mm 2 approximately flexural strength Is listed.

【0010】又、窒化ケイ素系焼結体に4A族元素化合
物を添加して、強度の改善を試みた事例がある。例え
ば、特開昭63−60162号公報には、HfO2を固
溶させたZrO2を1〜20重量%添加し、焼結するこ
とによって、室温での曲げ強度が90kg/mm2、破
壊靭性値が18.5MN/m3/2の窒化ケイ素系焼結体が
得られることが紹介されている。
There is also a case where a group 4A element compound is added to a silicon nitride-based sintered body to improve the strength. For example, in Japanese Patent Laid-Open No. 63-60162, 1 to 20% by weight of ZrO 2 in which HfO 2 is dissolved is added and sintered to obtain a bending strength at room temperature of 90 kg / mm 2 and a fracture toughness. It is introduced that a silicon nitride based sintered body having a value of 18.5 MN / m 3/2 can be obtained.

【0011】特公平5−59074号公報には、Si3
4粉末、サイアロン粉末及びHfO2粉末を混合し、成
形、焼結することによって、焼結体の粒界にYを含むガ
ラス相とY2Hf27微結晶を析出させたサイアロン焼
結体が開示されており、その1400℃での曲げ強度は
99kg/mm2、破壊靭性値は8.3MN/m3/2であ
るとしている。特開平4−240162号公報によれ
ば、希土類酸化物8重量%以下、Al23粉末10重量
%、Hf化合物粉末8重量%以下を添加したSi34
末を焼結し、室温での曲げ強度が110kg/mm2
焼結体が得られている。
Japanese Patent Publication No. 5-59074 discloses that Si 3
Sialon sintering in which a glass phase containing Y and Y 2 Hf 2 O 7 microcrystals are precipitated at the grain boundaries of the sintered body by mixing N 4 powder, Sialon powder and HfO 2 powder, shaping and sintering. The body is disclosed, and the bending strength at 1400 ° C. is 99 kg / mm 2 , and the fracture toughness value is 8.3 MN / m 3/2 . According to Japanese Patent Laid-Open No. 4-240162, Si 3 N 4 powder added with 8% by weight or less of rare earth oxide, 10% by weight of Al 2 O 3 powder and 8% by weight or less of Hf compound powder is sintered at room temperature. A sintered body having a bending strength of 110 kg / mm 2 is obtained.

【0012】特開平5−294732号公報には、粒界
にY2Hf27とY5N(SiO4)3相を含んだ窒化ケイ素
系焼結体が開示され、1400℃での曲げ強度が870
MPa、室温での破壊靭性値が8.1MN/m3/2の強度
特性(第2表No.25)を得ている。この焼結体はY2
3粉末、HfO2粉末及びSiO2粉末をSi34粉末
に加え、ホットプレス焼結した後、窒素中1600℃の
熱処理を行うことによって製造される。
Japanese Unexamined Patent Publication (Kokai) No. 5-294732 discloses a silicon nitride-based sintered body containing Y 2 Hf 2 O 7 and Y 5 N (SiO 4 ) 3 phases in grain boundaries, and bending at 1400 ° C. Strength is 870
The strength characteristics (No. 25 in Table 2) having a fracture toughness value of 8.1 MN / m 3/2 at MPa and room temperature are obtained. This sintered body is Y 2
It is manufactured by adding O 3 powder, HfO 2 powder and SiO 2 powder to Si 3 N 4 powder, performing hot press sintering, and then performing heat treatment at 1600 ° C. in nitrogen.

【0013】特開平5−306172号公報には、Y2
3粉末とHfO2粉末を添加したホットプレス焼結によ
り、粒界にY2Hf27結晶を析出させた窒化ケイ素系
焼結体が得られ、その1400℃での曲げ強度が664
MPa、破壊靭性値が7.96MN/m3/2(第1表(2)
の試料D)であることが記載されている。
Japanese Unexamined Patent Publication No. 5-306172 discloses Y 2
By hot press sintering with addition of O 3 powder and HfO 2 powder, a silicon nitride-based sintered body having Y 2 Hf 2 O 7 crystals precipitated at grain boundaries was obtained, and its bending strength at 1400 ° C. was 664.
MPa, fracture toughness value 7.96MN / m 3/2 (Table 1 (2)
Sample D) of the above.

【0014】特開平6−157143号公報には、Hf
2、Y23、希土類酸化物、SiO2、ZrO2を添加
したSi34を主体とする粉末を焼結した窒化ケイ素系
焼結体からなる切削工具が記載され、また特開平6−2
98567号公報には、常圧焼結後にHIPを行って焼
結され、粒界相にDy2Hf27、Y2Hf27結晶を析
出させた窒化ケイ素系焼結体が開示されている。
Japanese Unexamined Patent Publication No. 6-157143 discloses Hf.
A cutting tool composed of a silicon nitride-based sintered body obtained by sintering a powder containing Si 3, N 4 added with O 2 , Y 2 O 3 , rare earth oxide, SiO 2 , and ZrO 2 is described. 6-2
Japanese Patent Publication No. 98567 discloses a silicon nitride-based sintered body which is sintered by performing HIP after pressureless sintering and precipitating Dy 2 Hf 2 O 7 and Y 2 Hf 2 O 7 crystals in a grain boundary phase. ing.

【0015】Y2Hf27を粒界に析出させた窒化ケイ
素系焼結体としては、他にSiCを含むものが特開平6
−305836号公報に、また粒界にSi、Hf、Zr
の1種以上と希土類元素との複合化合物からなる結晶を
析出させたものが特開平6−329470号公報に記載
されている。
As a silicon nitride-based sintered body in which Y 2 Hf 2 O 7 is precipitated at the grain boundary, one containing SiC in addition is disclosed in Japanese Patent Laid-Open No. 6-58242.
No. 305836, Si, Hf, Zr at grain boundaries.
Japanese Unexamined Patent Publication No. 6-329470 discloses a crystal deposited from a composite compound of one or more of the above and a rare earth element.

【0016】以上のように、焼結助剤の種類とその量及
び結晶化処理条件を組み合わせることによって、高温強
度と靭性を向上させる試みがなされ、特にHfO2等の
4A族元素を含む化合物結晶を粒界に析出させることに
よって一段と高温強度の向上がなされてきたが、近年特
に要求されている高能率切削工具等の分野ではより高速
加工が行われるため、強度と靭性に対する要求は更に厳
しくなっている。このため、1300℃以上の温度で1
00kg/mm2程度以上の曲げ強度が安定して得られ
るSi34系焼結体のニーズは高いものの、未だこの条
件を満たすものは報告されていない。
As described above, it has been attempted to improve the high temperature strength and toughness by combining the type and amount of the sintering aid and the crystallization treatment conditions. Particularly, compound crystals containing a Group 4A element such as HfO 2 Although the high temperature strength has been further improved by precipitating slag at the grain boundaries, the demand for strength and toughness becomes more stringent in the field of high-efficiency cutting tools, which has been especially required in recent years, because higher speed machining is performed. ing. Therefore, at a temperature of 1300 ° C or higher, 1
Although there is a great need for a Si 3 N 4 system sintered body which can stably obtain a bending strength of about 00 kg / mm 2 or more, no one satisfying this condition has been reported yet.

【0017】[0017]

【発明が解決しようとする課題】本発明は、かかる従来
の事情に鑑み、粒界相に結晶を析出させ、従来よりも高
温での強度及び破壊靭性に優れた窒化ケイ素系焼結体、
及びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of such conventional circumstances, the present invention is a silicon nitride-based sintered body which precipitates crystals in a grain boundary phase and is superior in strength and fracture toughness at a higher temperature than before,
And a method for producing the same.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する窒化ケイ素系焼結体は、粒界相が
重量比で20%以下で、残部が窒化ケイ素及び/又はサ
イアロンと窒化ケイ素の結晶粒子の主相からなる窒化ケ
イ素系焼結体であって;前記主相がβ−Si34及び/
又はβ’−サイアロンからなる粒子相を含み、且つ主相
に対する該β−Si34及び/又はβ’−サイアロンの
粒子相の量比が0.5〜1.0の範囲にあり;前記粒界相
が結晶成分としてRe2717(但しReは3A族元
素、Aは4A族元素を意味する、以下同じ)を含むこと
を特徴とする。
In order to achieve the above object, the silicon nitride-based sintered body provided by the present invention has a grain boundary phase of 20% by weight or less and the balance of silicon nitride and / or sialon. A silicon nitride-based sintered body comprising a main phase of crystal particles of silicon nitride; wherein the main phase is β-Si 3 N 4 and / or
Or a particle phase consisting of β'-sialon, and the amount ratio of the particle phase of β-Si 3 N 4 and / or β'-sialon to the main phase is in the range of 0.5 to 1.0; The grain boundary phase is characterized by containing Re 2 A 7 O 17 (wherein Re means a 3A group element and A means a 4A group element; the same applies hereinafter) as a crystal component.

【0019】更に、本発明の窒化ケイ素系焼結体の前記
粒界相に、前記Re2717からなる第1の結晶成分の
他に、第2の結晶成分としてReSiNO2、Re3Al
512、ReAlO3及びSi34・Y23の少なくとも
1種を含んでいても良い。又この粒界相中の結晶成分の
主相中のβ−Si34及び/又はβ’−サイアロンの粒
子相に対する量比は0.3〜4.0の範囲にあることが好
ましい。
Further, in the grain boundary phase of the silicon nitride-based sintered body of the present invention, in addition to the first crystal component composed of Re 2 A 7 O 17 , the second crystal component is ReSiNO 2 , Re 3 Al
At least one of 5 O 12 , ReAlO 3, and Si 3 N 4 .Y 2 O 3 may be contained. The ratio of the crystal components in the grain boundary phase to the particle phase of β-Si 3 N 4 and / or β'-sialon in the main phase is preferably in the range of 0.3 to 4.0.

【0020】尚、本発明において、主相に対するβ−S
34及び/又はβ’−サイアロンの粒子相の量比と
は、主相を構成するSi34とサイアロンの全ての結晶
粒子のX線回折線の各ピーク強度の総和に対する、主相
中のβ−Si34とβ’−サイアロンの結晶粒子の各ピ
ーク強度の和の比率を言う。
In the present invention, β-S for the main phase
The amount ratio of the particle phase of i 3 N 4 and / or β′-sialon is the main ratio with respect to the sum of the peak intensities of the X-ray diffraction lines of all the crystal particles of Si 3 N 4 and sialon constituting the main phase. It is the ratio of the sum of the peak intensities of the crystal particles of β-Si 3 N 4 and β'-sialon in the phase.

【0021】又、本発明において、粒界相中の結晶成分
の主相中のβ−Si34及び/又はβ’−サイアロンの
粒子相に対する量比とは、JCPDS33−1160カ
ードに示される(200)又はそれに該当するβ’−サ
イアロンのX線回折線のピーク強度に対する、粒界相中
の全ての結晶成分のX線回折線の各ピーク強度の総和の
比率を意味する。
In the present invention, the amount ratio of β-Si 3 N 4 and / or β'-sialon in the main phase of the crystal component in the grain boundary phase to the particle phase is shown in JCPDS33-1160 card. This means the ratio of the sum of the peak intensities of the X-ray diffraction lines of all the crystal components in the grain boundary phase to the peak intensity of the X-ray diffraction lines of (200) or β′-sialon corresponding thereto.

【0022】本発明が提供する窒化ケイ素系焼結体の製
造方法は、窒化ケイ素系粉末80〜98重量%と、AO
2(但しAは4A族元素を意味する)粉末からなる第1
成分と、Re23(但しReは3A族元素を意味する、
以下同じ)とAlN、ReN、SiO2、Al23、Mx
y(但しMxyは酸化物で、MはLi、Na、Ca、
Mg又は3A族元素を意味する)の少なくとも1種とを
組合せた単一化合物の粉末、又は前記単一化合物を組合
せた組成の複合化合物の粉末、若しくはこれらにSi3
4・Y23粉末を加えた混合粉末のいずれか少なくとも
1種から選ばれた第2成分とからなる、焼結助剤系粉末
2〜20重量%とを混合し;得られた混合原料粉末を成
形した成形体を窒素加圧雰囲気中で焼結した後;得られ
た焼結体を非酸化性雰囲気中において、1050℃から
1600℃までの温度域内で核形成と結晶成長のための
熱処理を行うことを特徴とする。
The method for producing a silicon nitride-based sintered body provided by the present invention comprises: 80 to 98% by weight of silicon nitride-based powder;
2 (where A means group 4A element) 1st consisting of powder
Component and Re 2 O 3 (where Re means a Group 3A element,
The same shall apply hereinafter) and AlN, ReN, SiO 2 , Al 2 O 3 , M x
O y (where M x O y is an oxide, M is Li, Na, Ca,
Powder of a single compound in combination with at least one of Mg or a group 3A element), or powder of a compound compound in which the single compound is combined, or Si 3
2 to 20% by weight of a sintering aid system powder, which is composed of a second component selected from at least one of the mixed powders to which the N 4 · Y 2 O 3 powder is added, is mixed; After sintering the compact formed by molding the raw material powder in a nitrogen pressure atmosphere; for the nucleation and crystal growth of the obtained sintered body in a temperature range of 1050 ° C to 1600 ° C in a non-oxidizing atmosphere. Is characterized by performing the heat treatment of.

【0023】[0023]

【作用】本発明の窒化ケイ素系焼結体は、上記のごとく
20重量%以下の粒界相と、残部の主相であるSi34
及び/又はサイアロンの結晶粒子とからなる。尚、粒界
相が2〜20重量%で、主相が80〜98重量%であれ
ばより好ましい。主相が80重量%未満、即ち粒界相が
20重量%を越えると、粒界相に結晶成分が含まれてい
ても、十分な強度の焼結体が得られない場合もあり、ま
た粒界相が2重量%未満、即ち主相が98重量%を越え
ると、焼結による緻密化が困難となる場合もあるので好
ましくない。
The silicon nitride-based sintered body of the present invention has the grain boundary phase of 20% by weight or less and the remaining main phase of Si 3 N 4 as described above.
And / or sialon crystal particles. It is more preferable that the grain boundary phase is 2 to 20% by weight and the main phase is 80 to 98% by weight. If the main phase is less than 80% by weight, that is, if the grain boundary phase exceeds 20% by weight, a sintered body having sufficient strength may not be obtained even if the grain boundary phase contains a crystal component, and If the boundary phase is less than 2% by weight, that is, the main phase exceeds 98% by weight, it may be difficult to densify by sintering, which is not preferable.

【0024】Si34及び/又はサイアロンからなる主
相は、β−Si34及び/又はβ’−サイアロンの粒子
相を含み、その組合せをまとめると表1のようになる。
ここで、α’−サイアロンはMx(Si,Al)12(O,N)
16(但し0<x≦2)の化学式で表され、β’−サイア
ロンはSi6-zAlz8-z(但し0<x≦4.2)の化学
式で表されるものである。但し、上記化学式においてM
はNa、Li、Mg、Ca又は3A族元素の1種又は2
種以上を意味する。
The main phase composed of Si 3 N 4 and / or sialon contains the β-Si 3 N 4 and / or β′-sialon particle phase, and the combination thereof is summarized in Table 1.
Here, α′-sialon is M x (Si, Al) 12 (O, N)
16 (where 0 <x ≦ 2) and β′-sialon are represented by the formula Si 6-z Al z N 8-z (where 0 <x ≦ 4.2). However, in the above chemical formula, M
Is Na, Li, Mg, Ca, or one or two of Group 3A elements
Means more than species.

【0025】[0025]

【表1】 (注)○は存在する相を表す。[Table 1] (Note) ○ indicates the existing phase.

【0026】上記主相については、表1に示すα相、β
相、α’相β’相の組合せからなる結晶粒子の中でのβ
−Si34及び/又はβ’−サイアロンの全結晶粒子に
対する量比、即ち先に定義したX線回折線のピーク強度
による(β+β’)/(α+β+α’+β’)比を0.
5〜1とする必要がある。このβ−Si34及び/又は
β’−サイアロンの量比が0.5未満では等軸晶のα−
Si34又はα’−サイアロンが多くなり、β−Si3
4及び/又はβ’−サイアロンによるネットワーク構
造が充分形成されず、従って高い靭性の焼結体が得られ
ない。
Regarding the above main phases, α phase and β shown in Table 1
Β in a crystal grain consisting of a combination of α phase and α'phase β'phase
Ratio to the total crystal grains of -Si 3 N 4 and / or β'- sialon, i.e. by the peak intensity of X-ray diffraction lines as defined above and (β + β ') / ( α + β + α' + β ') ratio of 0.
It must be 5 to 1. When the amount ratio of β-Si 3 N 4 and / or β'-sialon is less than 0.5, equiaxed α-
Si 3 N 4 or α′-sialon increases, and β-Si 3
A network structure of N 4 and / or β′-sialon is not sufficiently formed, and therefore a sintered body having high toughness cannot be obtained.

【0027】尚、α’−サイアロンは高温下にさらされ
ると一部がβ’−サイアロンに転移し、そのため結晶内
に取り込まれたYあるいはAlが粒界に析出されるの
で、高温での機械特性が低下する。従って、主相のSi
34とサイアロンの組合せでは、α−Si34とβ’−
サイアロンの組合せが最も好ましい。又、主相は全てβ
−Si34又はβ’−サイアロンであっても良く、その
場合の上記量比は1となる。
When the α'-sialon is exposed to a high temperature, a part of the α'-sialon is transformed into a β'-sialon, which causes Y or Al incorporated in the crystal to be precipitated at the grain boundaries. The characteristics deteriorate. Therefore, the main phase Si
In the combination of 3 N 4 and sialon, α-Si 3 N 4 and β'-
Most preferred is a combination of sialon. The main phase is all β
It may be —Si 3 N 4 or β′-sialon, in which case the above amount ratio is 1.

【0028】β−Si34粒子あるいはβ’−サイアロ
ン粒子は、その平均長軸径が0.4〜10μm且つアス
ペクト比が1.4〜10であることが望ましい。即ち、
主相であるβ−Si34粒子あるいはβ’−サイアロン
粒子が細かくなり過ぎたり等軸晶に近い形状になると、
β−Si34あるいはβ’−サイアロンのネットワーク
組織の継目が多くなり、上記範囲内のものに比べ耐衝撃
性や靭性の改善が小さくなり、逆に大き過ぎたり長径化
し過ぎると、上記範囲内のものに比べ緻密な焼結体を得
ることがより難しくなり、その結果強度や靭性の改善が
小さくなるからである。
The β-Si 3 N 4 particles or β'-sialon particles preferably have an average major axis diameter of 0.4 to 10 μm and an aspect ratio of 1.4 to 10. That is,
When β-Si 3 N 4 particles or β'-sialon particles, which are the main phase, become too fine or have a shape close to an equiaxed crystal,
The number of joints in the network structure of β-Si 3 N 4 or β'-sialon increases, and the impact resistance and toughness are less improved than those in the above range. This is because it becomes more difficult to obtain a dense sintered body as compared with the one inside, and as a result, the improvement in strength and toughness becomes smaller.

【0029】一方、粒界相は第1の結晶成分としてRe
2717を必ず含み、更に第2の結晶成分としてReS
iNO2(ReN・SiO2)、Re3Al512(3Re2
3・5Al23)、ReAlO3(Re23・Al23
及びSi34・Y23の少なくとも1種を含むことが多
い。第1の結晶成分としてはReがYであるか又はAが
Hfであるものが好ましく、第2の結晶成分もReがY
である組成のものが好ましい。
On the other hand, the grain boundary phase is Re as the first crystal component.
2 A 7 O 17 must be contained, and ReS as the second crystal component.
iNO 2 (ReN · SiO 2 ), Re 3 Al 5 O 12 (3Re 2
O 3 · 5Al 2 O 3 ), ReAlO 3 (Re 2 O 3 · Al 2 O 3 )
And often contains at least one of Si 3 N 4 .Y 2 O 3 . The first crystal component is preferably one in which Re is Y or A is Hf, and the second crystal component is also one in which Re is Y.
It is preferable that the composition is

【0030】これら粒界相中の各結晶成分の量的指標と
して、粒界相中の結晶成分の主相中のβ−Si34相及
び/又はβ’−サイアロン相に対する量比、即ち先に定
義したX線回折線メインピーク強度による粒界結晶/
(β+β’)の比が、0.3〜4.0の範囲にあることが
好ましく、0.5〜2.0の範囲が更に好ましい。この粒
界結晶成分の量比が0.3未満では、粒界相に前記組合
せの微結晶が生成しないか又はその生成量が少ないた
め、高温での強度、靭性、耐摩耗性が共に低下する。逆
に、この粒界結晶成分の量比が4.0を越えると、焼結
体中のSi34又はサイアロンの量が相対的に減少し、
充分な強度を得ることができなくなる。
As a quantitative index of each crystal component in the grain boundary phase, the amount ratio of the crystal component in the grain boundary phase to the β-Si 3 N 4 phase and / or the β'-sialon phase in the main phase, that is, Grain boundary crystal by the X-ray diffraction line main peak intensity defined above /
The ratio of (β + β ′) is preferably in the range of 0.3 to 4.0, and more preferably in the range of 0.5 to 2.0. If the amount ratio of the grain boundary crystal components is less than 0.3, the fine crystals of the above combination are not generated in the grain boundary phase or the amount thereof is small, so that the strength, toughness, and wear resistance at high temperatures are deteriorated. . On the contrary, if the amount ratio of the grain boundary crystal component exceeds 4.0, the amount of Si 3 N 4 or sialon in the sintered body is relatively decreased,
It becomes impossible to obtain sufficient strength.

【0031】上記した結晶成分を粒界相に有する本発明
の窒化ケイ素系焼結体は、室温での曲げ強度1200M
Pa以上及び1300℃〜1400℃での曲げ強度90
0MPa以上の強度特性が安定して得られ、且つ破壊靭
性値KICが5MPa3/2以上となり、高い強度と優れた
靭性を兼ね備えている。
The silicon nitride-based sintered body of the present invention having the above-mentioned crystal component in the grain boundary phase has a bending strength of 1200 M at room temperature.
Flexural strength 90 at Pa or higher and 1300 ° C to 1400 ° C
A strength characteristic of 0 MPa or more is stably obtained, and a fracture toughness value K IC is 5 MPa 3/2 or more, which has both high strength and excellent toughness.

【0032】かかる本発明の窒化ケイ素系焼結体は、出
発原料の窒化ケイ素系粉末とそれに混合する特定の焼結
助剤系粉末の組合せ、及び焼結後の熱処理工程に特徴が
ある方法により製造することができる。まず、出発原料
である窒化ケイ素系粉末としては、α−Si34粉末を
用いるが、必要に応じてβ−Si34粉末を加えること
もできる。
The silicon nitride-based sintered body of the present invention is characterized by a combination of a starting material silicon nitride-based powder and a specific sintering aid-based powder mixed therewith, and a heat treatment step after sintering. It can be manufactured. First, α-Si 3 N 4 powder is used as the starting material silicon nitride-based powder, but β-Si 3 N 4 powder can be added if necessary.

【0033】かかる窒化ケイ素系粉末に焼結助剤系粉末
を加えるが、焼結助剤系粉末は第1成分としてのAO2
粉末と第2成分とからなり、第2成分はRe23とAl
N、ReN、SiO2、Al23及びMxyの少なくと
も1種との単一化合物の混合粉末か、又はこれら単一化
合物を組合せた組成の複合化合物の粉末、若しくはこれ
らの粉末にSi34・Y23粉末を加えた混合粉末から
なる。上記焼結助剤のうち、第2成分はサイアロン形成
剤としても作用し、その一部又は全部がSi34粒子内
に固溶してサイアロンを形成する。ここでReは3A族
元素を示すが、具体的にはY、La、Scの他に、C
e、Pr、Nd、Pm、Sm、Eu、Gd、Dy、E
r、Ybのようなランタニドも含む。又、Aは4A族元
素であり、Ti、Zr、Hfを示す。
A sintering aid type powder is added to the silicon nitride type powder, and the sintering aid type powder is AO 2 as the first component.
It consists of powder and a second component, the second component being Re 2 O 3 and Al.
A mixed powder of a single compound with at least one of N, ReN, SiO 2 , Al 2 O 3 and M x O y , or a composite compound powder having a composition in which these single compounds are combined, or these powders It is composed of a mixed powder to which Si 3 N 4 .Y 2 O 3 powder is added. Of the above-mentioned sintering aids, the second component also acts as a sialon-forming agent, and a part or all of them form a solid solution in the Si 3 N 4 particles to form sialon. Here, Re represents a 3A group element, and specifically, in addition to Y, La, Sc, C
e, Pr, Nd, Pm, Sm, Eu, Gd, Dy, E
It also includes lanthanides such as r and Yb. A is a Group 4A element and represents Ti, Zr, and Hf.

【0034】焼結助剤系粉末の第2成分の形態について
は、従来より行われてきたような、Re23、AlN、
ReN、SiO2、Al23、Mxy等の単一化合物の
形態で添加しても良いが、これらの単一化合物の少なく
とも2種を組み合わせた任意の組成の複合化合物の形態
で添加することがより好ましい。かかる複合化合物の形
態で添加することによって、従来のごとく単一化合物の
まま添加して焼結により複合化合物を形成させた場合よ
りも、均質に焼結が進行し、より一層低温で緻密化し得
るからである。その結果、主相の結晶粒子が微細化し、
強度、靭性、耐摩耗性の点で優れた焼結体を得ることが
できる。
Regarding the form of the second component of the sintering aid type powder, Re 2 O 3 , AlN,
Although it may be added in the form of a single compound such as ReN, SiO 2 , Al 2 O 3 and M x O y, it may be added in the form of a composite compound of any composition in which at least two of these single compounds are combined. It is more preferable to add. By adding in the form of such a composite compound, the sintering progresses more homogeneously than in the conventional case where a single compound is added as it is to form a composite compound by sintering, and it is possible to densify at a lower temperature. Because. As a result, the crystal grains of the main phase become finer,
It is possible to obtain a sintered body excellent in strength, toughness, and wear resistance.

【0035】例えば、図1は主相がSi34である場合
において、HfO2粉末と共に添加した焼結助剤系粉末
の添加形態とその効果の違いを示す一例であるが、5モ
ルのAl23と3モルのY23をそれぞれ単一化合物で
添加した場合よりも、5モルのAl23と3モルのY2
3を複合化合物Y3Al512として添加した方が、焼
結温度が約100℃ほど低下し、低温で緻密化すること
が理解できる。この点はサイアロン又はサイアロンとS
34を主相とした場合にもあてはまる。又、複合化合
物粉末に、前記単一化合物の粉末の少なくとも1種を添
加して使用しても良い。
For example, FIG. 1 is an example showing the difference between the addition form of the sintering aid type powder added together with the HfO 2 powder and the effect thereof when the main phase is Si 3 N 4 . Compared with the case where Al 2 O 3 and 3 mol Y 2 O 3 are respectively added as a single compound, 5 mol Al 2 O 3 and 3 mol Y 2 are added.
It can be understood that the addition of O 3 as the composite compound Y 3 Al 5 O 12 lowers the sintering temperature by about 100 ° C. and densifies at low temperature. This point is Sialon or Sialon and S
It is also applicable when i 3 N 4 is the main phase. Further, at least one kind of powder of the single compound may be added to the composite compound powder for use.

【0036】又、窒化ケイ素系粉末と焼結助剤系粉末の
混合割合は、窒化ケイ素系粉末80〜98重量%に焼結
助剤系粉末2〜20重量%とする。焼結助剤系粉末が2
0重量%を越えると、窒化ケイ素系粉末が少なくなり過
ぎるため脆弱な焼結体しか得られず、高温において強度
が急激に低下する。焼結助剤系粉末が2重量%未満で
は、焼結助剤の量が少な過ぎるため、焼結が充分に進行
しないからである。尚、前記したように焼結助剤の中に
はSi34と固溶してサイアロンを形成する成分も含ま
れるため、焼結体中の相構成としては粒界相が20重量
%を越えることはない。
The mixing ratio of the silicon nitride powder and the sintering aid powder is 80 to 98% by weight of the silicon nitride powder and 2 to 20% by weight of the sintering aid powder. 2 powders of sintering aid system
If it exceeds 0% by weight, the amount of silicon nitride powder becomes too small, so that only a brittle sintered body can be obtained, and the strength sharply decreases at high temperatures. This is because if the amount of the sintering aid type powder is less than 2% by weight, the amount of the sintering aid is too small and the sintering does not proceed sufficiently. As described above, since the sintering aid also contains a component that forms a solid solution with Si 3 N 4 to form sialon, the grain structure of the sintered body is 20% by weight of the grain boundary phase. It cannot be exceeded.

【0037】上記の窒化ケイ素系粉末と焼結助剤系粉末
は通常のごとく混合され、その混合粉末は各種の成形法
により成形される。この成形体は窒素加圧雰囲気中で焼
結することにより窒化ケイ素系焼結体とされるが、本発
明方法では得られた焼結体に更に核形成と結晶成長のた
めの熱処理を施すことによって、最終的にその粒界相が
前記の結晶成分並びにその量的指標を満たすものとな
る。尚、前記焼結体を更に50〜1000atmの高圧
窒素雰囲気中で緻密化処理することにより、一層緻密で
高強度の焼結体とすることができる。
The above-mentioned silicon nitride powder and sintering aid powder are mixed as usual, and the mixed powder is molded by various molding methods. This molded body is made into a silicon nitride-based sintered body by sintering in a nitrogen pressure atmosphere. In the method of the present invention, the obtained sintered body is further subjected to heat treatment for nucleation and crystal growth. As a result, the grain boundary phase finally satisfies the above-mentioned crystal component and its quantitative index. By further densifying the sintered body in a high-pressure nitrogen atmosphere of 50 to 1000 atm, a more dense and high-strength sintered body can be obtained.

【0038】窒化ケイ素系焼結体の熱処理温度は、10
50℃以上で1600℃以下の温度域内とする。この温
度範囲内において、粒界相の結晶成分となるべき核の形
成と、その核の結晶成長とが実現される。尚、熱処理雰
囲気を非酸化性雰囲気とするのは、焼結体表面の酸化並
びに強度の低下を防ぐためである。
The heat treatment temperature of the silicon nitride sintered body is 10
Within the temperature range of 50 ° C or higher and 1600 ° C or lower. Within this temperature range, the formation of nuclei to be the crystal component of the grain boundary phase and the crystal growth of the nuclei are realized. The heat treatment atmosphere is set to a non-oxidizing atmosphere in order to prevent the surface of the sintered body from being oxidized and from being deteriorated in strength.

【0039】上記熱処理温度を1050℃〜1600℃
の範囲とするのは、1050℃未満では粒界相に結晶の
核が生成されず、逆に1600℃を越えると粒界相に目
的とする組成の結晶成分が得られないか、又は主相成分
が昇華する恐れがあるからである。尚、1600℃まで
の間に添加する単一化合物の組合せ組成に対応する共晶
点が存在する場合には、熱処理温度はその共晶点温度ま
でとする。単一化合物の組み合わせ組成に対応する共晶
点とは、例えば複合化合物がY3Al512の場合、5モ
ルのAl23と3モルのY23の組成に対応するから、
その共晶点は1760℃となる。
The heat treatment temperature is 1050 ° C. to 1600 ° C.
When the temperature is lower than 1050 ° C, crystal nuclei are not formed in the grain boundary phase, and when the temperature exceeds 1600 ° C, the crystal component of the intended composition cannot be obtained in the grain boundary phase, or the main phase This is because the ingredients may sublime. When there is a eutectic point corresponding to the combined composition of the single compounds added up to 1600 ° C., the heat treatment temperature is up to the eutectic point temperature. The eutectic point corresponding to the combined composition of single compounds corresponds to the composition of 5 mols Al 2 O 3 and 3 mols Y 2 O 3 when the composite compound is Y 3 Al 5 O 12 , for example,
Its eutectic point is 1760 ° C.

【0040】上記熱処理工程の好ましい態様として、1
050〜1350℃で0.5〜12時間の核形成を行っ
た後、引き続き昇温して1300〜1600℃(若しく
は前記共晶点まで)の温度域内で結晶成長を行うことが
できる。この場合、結晶成長温度は結晶核形成温度より
も高くなければならないことは言うまでもない。このよ
うに2段階のステップを経ることによって、1段階ステ
ップに比べ焼結時にはガラス相であった粒界相をより多
く結晶化させることが可能となり、焼結体の高温強度、
靭性及び耐摩耗性が一層向上する。即ち、室温での曲げ
強度が1220MPa以上、1300℃での曲げ強度が
950MPa以上、且つ破壊靭性KICが5.5MPa3/2
以上のものが安定して得られる。
As a preferred mode of the heat treatment step, 1
After nucleation at 050 to 1350 ° C. for 0.5 to 12 hours, the temperature can be continuously raised to perform crystal growth within a temperature range of 1300 to 1600 ° C. (or the eutectic point). In this case, it goes without saying that the crystal growth temperature must be higher than the crystal nucleus formation temperature. By performing the two-step process as described above, it becomes possible to crystallize more of the grain boundary phase, which was the glass phase at the time of sintering, as compared with the one-step process.
The toughness and wear resistance are further improved. That is, the bending strength at room temperature is 1220 MPa or more, the bending strength at 1300 ° C. is 950 MPa or more, and the fracture toughness K IC is 5.5 MPa 3/2.
The above can be stably obtained.

【0041】上記核形成ステップにおいて、核形成条件
が1050℃未満又は0.5時間未満では核形成がなさ
れず、1350℃を越える核形成温度では必要とする組
合せの結晶成分並びにその量的指標を満たすことができ
ない。又、核形成時間が12時間を越えても形成される
核は増加しないので、12時間以内とすることが好まし
い。
In the above nucleation step, nucleation is not performed under nucleation conditions of less than 1050 ° C. or less than 0.5 hours, and at the nucleation temperature of more than 1350 ° C., the necessary combination of crystal components and its quantitative index are shown. Can't meet. Further, the nuclei formed do not increase even if the nucleation time exceeds 12 hours, so that it is preferably within 12 hours.

【0042】又、引き続いての結晶成長ステップでは、
結晶成長温度が1300℃よりも低いと結晶核が充分に
成長せず、1600℃を越えるか又は単一化合物の組み
合わせ組成に対応する共晶点を越えると粒界相に目的と
する組成の結晶成分が得られないか、主相成分が昇華す
る恐れがあるからである。結晶成長の時間は0.5〜2
4時間が好ましい。0.5時間未満では結晶化が進まな
いため所望の特性が得られず、24時間を越えても結晶
化がもはや進行しないばかりか、焼結体表面の肌荒れが
生じるからである。
In the subsequent crystal growth step,
If the crystal growth temperature is lower than 1300 ° C., the crystal nuclei do not grow sufficiently, and if it exceeds 1600 ° C. or exceeds the eutectic point corresponding to the combined composition of single compounds, the crystal of the target composition in the grain boundary phase is obtained. This is because the components may not be obtained or the main phase component may sublime. Crystal growth time is 0.5-2
4 hours is preferred. This is because if the time is less than 0.5 hours, the desired characteristics cannot be obtained because the crystallization does not proceed, and if the time exceeds 24 hours, the crystallization does not proceed any more and the surface of the sintered body becomes rough.

【0043】核形成と結晶成長のための熱処理工程、好
ましくは上記2段階のステップからなる熱処理工程を、
前述の時間の上限範囲内で1サイクルの時間と前記範囲
内の温度のプログラムを刻んで2サイクル以上複数回連
続して繰り返すことにより、粒界相の結晶化が一層進行
され、焼結体の高温強度、靭性、及び耐摩耗性が更に改
善される。即ち、上記の繰り返し熱処理によって、室温
での曲げ強度が1300MPa以上、1300℃での曲
げ強度が1100MPa以上、且つ破壊靭性KICが6.
0MPa3/2以上のものが安定して得られる。
A heat treatment process for nucleation and crystal growth, preferably a heat treatment process consisting of the above two steps,
The crystallization of the grain boundary phase is further promoted by engraving the program of the time of one cycle within the upper limit of the above time and the temperature within the above range and repeating the cycle two or more times continuously. High temperature strength, toughness, and wear resistance are further improved. That is, by the above repeated heat treatment, the bending strength at room temperature is 1300 MPa or more, the bending strength at 1300 ° C. is 1100 MPa or more, and the fracture toughness K IC is 6.
A value of 0 MPa 3/2 or more can be stably obtained.

【0044】尚、前記熱処理工程は、焼結体を得るため
の焼結工程の冷却過程の中に織り込んで実施しても良
い。又、焼結工程とは切り放し、焼結で得られた焼結体
に機械加工又はコーティング処理を施した後に行っても
良い。特に機械加工後に熱処理を行う場合には、加工時
の表面の傷や欠陥等がヒーリング効果によって修復され
るという副次的効果が得られる。更には、結晶核形成ス
テップを行う前に予め粒界相に液相が生じる温度まで昇
温して保持した後、結晶核形成温度まで冷却して、結晶
核形成ステップと結晶成長ステップを施しても良い。
The heat treatment process may be carried out by incorporating it into the cooling process of the sintering process for obtaining the sintered body. Alternatively, it may be performed after the sintering step is cut off and the sintered body obtained by sintering is subjected to machining or coating treatment. In particular, when heat treatment is performed after machining, the secondary effect that the scratches and defects on the surface during machining are restored by the healing effect is obtained. Furthermore, before performing the crystal nucleation step, the temperature is raised to a temperature at which a liquid phase occurs in the grain boundary phase and held in advance, then cooled to the crystal nucleation temperature, and the crystal nucleation step and the crystal growth step are performed. Is also good.

【0045】[0045]

【実施例】実施例1 平均粒径0.7μmのα−Si34粉末90重量%と、
焼結助剤として平均粒径0.8μmの複合化合物Y3Al
512粉末8重量%及びHfO2粉末2重量%とを混合し
た。Y3Al512粉末は、予めY23粉末とAl23
末を混合し、1150〜1650℃で焼成して得たもの
である。
Example 1 90% by weight of α-Si 3 N 4 powder having an average particle size of 0.7 μm,
Composite compound Y 3 Al having an average particle size of 0.8 μm as a sintering aid
8% by weight of 5 O 12 powder and 2% by weight of HfO 2 powder were mixed. The Y 3 Al 5 O 12 powder is obtained by previously mixing the Y 2 O 3 powder and the Al 2 O 3 powder and firing the mixture at 1150 to 1650 ° C.

【0046】この混合粉末100重量部に対して、分散
剤としてポリエチレンアミンを3重量部、溶媒としてエ
タノールを120重量部添加し、アルミナボールで均一
に混合し、乾燥した後、5t/cm2の静水圧プレスに
より直径70mm及び厚さ8mmの円盤状に成形した。
得られた成形体を真空中で600℃に加熱し、1時間保
持して脱脂した。
To 100 parts by weight of this mixed powder, 3 parts by weight of polyethyleneamine as a dispersant and 120 parts by weight of ethanol as a solvent were added, and the mixture was uniformly mixed with an alumina ball, dried and then dried at 5 t / cm 2 . A hydrostatic press was used to form a disk having a diameter of 70 mm and a thickness of 8 mm.
The obtained molded body was heated to 600 ° C. in vacuum and held for 1 hour to degrease.

【0047】比較のために、上記複合化合物Y3Al5
12の粉末の代わりに、単一化合物を組み合わせて、即ち
平均粒径0.6μmのAl23粉末5重量%と平均粒径
1.0μmのY23粉末3重量%を配合した以外は上記
と同様の方法により、成形体を作製した。
For comparison, the above composite compound Y 3 Al 5 O
Instead of the 12 powders, a single compound was combined, ie 5% by weight of Al 2 O 3 powder having an average particle size of 0.6 μm and 3% by weight of Y 2 O 3 powder having an average particle size of 1.0 μm. A molded body was produced by the same method as described above.

【0048】上記各成形体を8気圧の窒素加圧雰囲気中
にて1700℃、1750℃、1800℃、1850
℃、及び1900℃の各温度で4時間焼結し、それぞれ
焼結体を得た。得られた各焼結体の密度を測定した結果
を図1に示した。図1から明らかなように、焼結助剤と
して単一化合物を組み合わせて用いるよりも、それら単
一化合物を複合化合物の形にして添加した方が優れた焼
結性を示し、より低温で緻密な焼結体が得られることが
分かる。
Each of the above-mentioned compacts was subjected to 1700 ° C., 1750 ° C., 1800 ° C., 1850 ° C. in a nitrogen pressure atmosphere of 8 atm.
C. and 1900.degree. C. for 4 hours to obtain a sintered body. The result of measuring the density of each obtained sintered body is shown in FIG. As is clear from FIG. 1, it is better to add these single compounds in the form of a composite compound than to use a single compound in combination as a sintering aid, and to improve the sinterability at a lower temperature. It can be seen that various sintered bodies can be obtained.

【0049】次に、焼結助剤として上記複合化合物を用
い、上記と同様に作製した複数の成形体を1800℃で
4時間焼結し、得られた各焼結体を抗折試験片形状に加
工して、1.5気圧の窒素雰囲気中(試料13は大気
中)において図2に示す核形成処理と結晶成長処理の結
晶化処理パターンで熱処理を実施した。この時の核形成
処理の温度aと保持時間b、及び結晶成長処理の温度c
と保持時間dを下記表2に示した。尚、昇温速度はいず
れも10℃/分、冷却は空冷とした。
Next, using the above-mentioned composite compound as a sintering aid, a plurality of compacts produced in the same manner as above were sintered at 1800 ° C. for 4 hours, and each of the resulting sintered compacts was subjected to a bending test piece shape. Then, heat treatment was performed in a nitrogen atmosphere of 1.5 atm (Sample 13 is in the air) according to the crystallization treatment pattern of the nucleation treatment and the crystal growth treatment shown in FIG. At this time, the temperature a of the nucleation treatment and the holding time b, and the temperature c of the crystal growth treatment
And the retention time d are shown in Table 2 below. The rate of temperature increase was 10 ° C./min and the cooling was air cooling.

【0050】[0050]

【表2】 (注)表中の*を付した試料は比較例である。尚、試料
4は1段階熱処理の本発明例であり、試料14は熱処理
なしの比較例である。又、試料13は熱処理を大気中で
行った比較例である。
[Table 2] (Note) Samples marked with * in the table are comparative examples. Sample 4 is an example of the present invention in which one-step heat treatment is performed, and sample 14 is a comparative example without heat treatment. Further, sample 13 is a comparative example in which the heat treatment was performed in the atmosphere.

【0051】上記熱処理後の各焼結体について、X線回
折法により粒界相に含まれる結晶成分を求めると共に、
その粒界相結晶成分の主相中のβ−Si34及び/又は
β’−サイアロンの粒子相に対する量比(以下粒界結晶
量比と称する)を求め、その結果を表3に示した。尚、
主相のSi34とサイアロンの結晶粒子に対するその中
のβ−Si34及び/又はβ’−サイアロンの量比(以
下β、β’量比と称する)は、いずれの試料も1であっ
た。
For each sintered body after the above heat treatment, the crystal component contained in the grain boundary phase was determined by the X-ray diffraction method, and
The amount ratio of β-Si 3 N 4 and / or β'-sialon in the main phase of the grain boundary phase crystal component to the particle phase (hereinafter referred to as grain boundary crystal amount ratio) was determined, and the results are shown in Table 3. It was still,
The amount ratio of β-Si 3 N 4 and / or β′-sialon in the main phase Si 3 N 4 and sialon crystal particles (hereinafter referred to as β, β ′ amount ratio) is 1 in each sample. Met.

【0052】[0052]

【表3】 (注)表中の*を付した試料は比較例である。[Table 3] (Note) Samples marked with * in the table are comparative examples.

【0053】又、各焼結体について、相対密度、常温と
1400℃における3点曲げ強度と破壊靭性を測定し、
更に常温と1400℃における硬度を測定して、結果を
下記表4に示した。尚、試料8と12の焼結体には肌荒
れが認められ、試料9では焼結体の一部が昇華した。
For each sintered body, the relative density, the three-point bending strength at room temperature and 1400 ° C., and the fracture toughness were measured,
Further, the hardness at room temperature and 1400 ° C. was measured, and the results are shown in Table 4 below. Roughness was observed in the sintered bodies of Samples 8 and 12, and in Sample 9, a part of the sintered body sublimated.

【0054】[0054]

【表4】 曲げ強度(kg/mm2) 破壊靭性(MPa3/2) 相対密度 硬 度(HV) 試料 常 温 1300℃ 常 温 1300℃ (%) 常温 1300℃ 1 122 99 5.5 4.1 99.4 1532 1050 2 126 97 5.7 4.3 99.4 1543 1038 3 125 101 5.5 4.0 99.2 1516 1041 4 120 90 5.0 3.8 99.5 1538 1011 5* 112 48 4.5 2.5 97.4 1509 911 6* 118 56 4.7 3.1 99.1 1530 911 7* 110 53 4.9 2.2 99.2 1521 893 8* 127 73 5.0 2.5 99.4 1509 953 9* 58 28 4.7 3.1 90.3 1423 879 10* 98 31 4.8 2.9 99.4 1530 882 11* 118 43 4.5 3.0 99.2 1522 903 12* 126 88 4.8 3.0 99.5 1531 901 13* 110 39 3.1 2.8 94.8 1479 819 14* 111 42 4.9 2.4 99.3 1476 891 (注)表中の*を付した試料は比較例である。[Table 4] Bending strength (kg / mm 2 ) Fracture toughness (MPa 3/2 ) Relative density hardness (H V ) Sample normal temperature 1300 ℃ Normal temperature 1300 ℃ (%) Normal temperature 1300 ℃ 1 122 99 5.5 4.1 99.4 1532 1050 2 126 97 5.7 4.3 99.4 1543 1038 3 125 101 5.5 4.0 99.2 1516 1041 4 120 90 5.0 3.8 99.5 1538 1011 5 * 112 48 4.5 2.5 97.4 1509 911 6 * 118 56 4.7 3.1 99.1 1530 911 7 * 110 53 4.9 2.2 99.2 1521 893 8 * 127 73 5.0 2.5 99.4 1509 953 9 * 58 28 4.7 3.1 90.3 1423 879 10 * 98 31 4.8 2.9 99.4 1530 882 11 * 118 43 4.5 3.0 99.2 1522 903 12 * 126 88 4.8 3.0 99.5 1531 901 13 * 110 39 3.1 2.8 94.8 1479 819 14 * 111 42 4.9 2.4 99.3 1476 891 (Note) The samples marked with * in the table are comparative examples.

【0055】上記の結果から、本発明例の試料の粒界相
には、必ずY2Hf717が析出し、更にYSiNO2
3Al512、YAlO3、Si34・Y23等の結晶成
分が析出している場合もある。一方、比較例の試料の粒
界相では、Y2Hf717の結晶成分が得られていない。
試料1と4は熱処理の最高温度とその温度での処理時間
が各々1480℃で12時間と等しいが、結晶核生成ス
テップを設けた試料1の方が高温特性の優れていること
が分かる。又、試料4は熱処理を施していない試料14
よりも高温特性が優れている。そして、比較例の試料と
比較して、本発明例の試料は、常温及び高温における曲
げ強度や破壊靭性が遥かに優れていることが分かる。
From the above results, Y 2 Hf 7 O 17 was always precipitated in the grain boundary phase of the sample of the present invention, and further YSiNO 2 ,
In some cases, crystal components such as Y 3 Al 5 O 12 , YAlO 3 , and Si 3 N 4 .Y 2 O 3 are precipitated. On the other hand, in the grain boundary phase of the sample of the comparative example, the crystal component of Y 2 Hf 7 O 17 was not obtained.
Samples 1 and 4 are equal to the maximum temperature of the heat treatment and the treatment time at that temperature is equal to 12 hours at 1480 ° C., respectively, but it can be seen that Sample 1 provided with the crystal nucleation step is superior in high temperature characteristics. In addition, the sample 4 is the sample 14 which is not heat-treated.
High temperature characteristics are better than Further, it can be seen that the sample of the present invention example is far superior in bending strength and fracture toughness at room temperature and high temperature as compared with the sample of the comparative example.

【0056】実施例2 前記実施例1と同様に、α−Si34粉末に焼結助剤と
して複合化合物Y3Al512粉末とHfO2粉末を添加
して焼結体を製造し、この焼結体を連続して実施例1の
試料2と同一条件で熱処理(核形成+結晶成長)して、
本実施例の試料15とした。又、同様に焼結体を製造
し、連続してこの焼結体に図3に示す核形成と結晶成長
の結晶化処理を2回繰り返す熱処理を施し、本実施例の
試料16とした。その後、両試料15、16とも型番S
NG434の切削工具形状に加工した。
Example 2 In the same manner as in Example 1, the composite compound Y 3 Al 5 O 12 powder and HfO 2 powder were added to α-Si 3 N 4 powder as a sintering aid to manufacture a sintered body. This sintered body is continuously heat-treated (nucleation + crystal growth) under the same conditions as in Sample 2 of Example 1,
This was Sample 15 of this example. Further, a sintered body was manufactured in the same manner, and the sintered body was continuously subjected to heat treatment in which the crystallization treatment of nucleation and crystal growth shown in FIG. 3 was repeated twice, to obtain Sample 16 of this example. After that, both samples 15 and 16 are model S
It processed into the cutting tool shape of NG434.

【0057】更に、上記のごとく実施例1と同様に製造
した焼結体を型番SNG434の切削工具形状に加工し
た後、実施例1の試料2と同一条件で熱処理(核形成+
結晶成長)して、本実施例の試料17とした。又、同様
に焼結体を加工した後、図3に示す核形成と結晶成長処
理を2回繰り返す熱処理を行うことにより、本実施例の
試料18を得た。尚、比較例として、同様に焼結体を加
工したままで、熱処理を行わないものを試料19とし
た。
Further, the sintered body manufactured as in Example 1 as described above was processed into the shape of a cutting tool of model number SNG434, and then heat-treated under the same conditions as in Sample 2 of Example 1 (nucleation +
Crystal growth) was performed to obtain Sample 17 of this example. After processing the sintered body in the same manner, a heat treatment of repeating nucleation and crystal growth treatment shown in FIG. 3 was performed twice to obtain a sample 18 of this example. In addition, as a comparative example, a sample 19 was similarly processed as it was but not subjected to heat treatment.

【0058】これら各試料について、実施例1と同様に
X線回折法により、粒界相中の結晶成分とその粒界結晶
量比を求めた。尚、試料15〜18における粒界相の結
晶成分は実施例1の表3に示した試料2と同じく、Y2
Hf717とYSiNO2であったが、試料19には粒界
相に結晶成分の析出はなかった。又、いずれの試料も
β、β’量比は1であった。
For each of these samples, the crystal component in the grain boundary phase and the grain boundary crystal amount ratio were determined by the X-ray diffraction method in the same manner as in Example 1. The crystal components of the grain boundary phase in Samples 15 to 18 are the same as those in Sample 2 shown in Table 3 of Example 1 in Y 2
Hf 7 O 17 and YSiNO 2 were included, but in Sample 19, no crystal component was precipitated in the grain boundary phase. Further, in all the samples, the β / β ′ amount ratio was 1.

【0059】上記各試料の焼結体について、常温及び1
400℃の3点曲げ強度、及び常温での破壊靭性、相対
密度を求めた。又、切削性能を評価するため、V=40
0m/min、f=0.1mm/刃、d=1.5mmの切
削条件で、被削材としてFC250ディスクブレーキ1
00個を湿式切削し、それぞれのチップの摩耗量を求め
た。
With respect to the sintered body of each of the above-mentioned samples, at room temperature and 1
Three-point bending strength at 400 ° C., fracture toughness at room temperature, and relative density were determined. In order to evaluate cutting performance, V = 40
FC250 disc brake 1 as a work material under the cutting conditions of 0 m / min, f = 0.1 mm / blade, and d = 1.5 mm.
Wet cutting of 00 pieces was carried out, and the wear amount of each chip was obtained.

【0060】更に、上記と同様に作製した各試料からな
る直径8mm×長さ25mmの試験片を用いて、100
0℃で摩擦摩耗試験を実施し、比摩耗量を求めた。相手
材は鋼を使い、回転数900rpm、荷重300Nとし
た。これらの結果を、粒界結晶量比と共に下記表5にま
とめて示した。
Further, using a test piece having a diameter of 8 mm and a length of 25 mm made of each sample manufactured in the same manner as described above, 100
A friction wear test was carried out at 0 ° C. to determine the specific wear amount. The mating material was steel, and the rotation speed was 900 rpm and the load was 300 N. The results are summarized in Table 5 below together with the grain boundary crystal amount ratio.

【0061】[0061]

【表5】 粒界結晶 強度(kg/mm2) 破壊靭性 密 度 切削試験 比摩試料 量 比 常 温 1300℃ (MPa3/2) (%) 摩耗量(mm) 耗量 15 0.99 130 103 6.1 99.3 0.298 7.9 16 0.81 132 108 6.5 99.4 0.222 5.4 17 0.98 131 105 6.3 99.2 0.251 6.9 18 2.83 136 113 6.7 99.3 0.196 4.5 19* なし 121 28 5.4 99.2 0.713 13.0 (注)表中の*を付した試料は比較例である。又、比摩耗量の単位は×10-9m m3/N・mmである。Table 5 Grain boundary crystal strength (kg / mm 2) Fracture toughness density cutting test ratio frictional sample weight ratio ordinary temperature 1300 ℃ (MPa 3/2) (% ) wear amount (mm) 耗量 15 0.99 130 103 6.1 99.3 0.298 7.9 16 0.81 132 108 6.5 99.4 0.222 5.4 17 0.98 131 105 6.3 99.2 0.251 6.9 18 2.83 136 113 6.7 99.3 0.196 4.5 19 * None 121 28 5.4 99.2 0.713 13.0 (Note) Samples marked with * in the table are comparative examples. Is. The unit of the specific wear amount is × 10 -9 mm 3 / N · mm.

【0062】上記切削試験の結果から、焼結後そのまま
連続して熱処理するよりも、焼結後に一旦加工してから
熱処理した方が、高温特性並びに切削性能が優れている
ことが分かる。又、核形成と結晶成長の熱処理を1回で
終了するよりも、2回以上連続して行った方が、更に特
性が向上することが判明した。
From the results of the above cutting test, it can be seen that the high temperature characteristics and the cutting performance are better when the material is once processed after sintering and then heat treated than when continuously heat treated as it is after sintering. Further, it has been found that the characteristics are further improved by continuously performing the heat treatment for nucleation and crystal growth twice or more than once.

【0063】又、摩擦摩耗試験においても、焼結後に加
工し更に2回連続して熱処理した試料18が最も摩耗量
が少なく、結晶化のための熱処理を施していない試料1
9が最も摩耗量が多い。この結果から、粒界相を結晶化
することにより、耐摩耗性が向上することが分かった。
Also in the friction and wear test, sample 18 processed after sintering and further heat-treated twice successively has the smallest amount of wear, and sample 1 which has not been heat-treated for crystallization.
9 is the most worn. From this result, it was found that the wear resistance is improved by crystallizing the grain boundary phase.

【0064】実施例3 平均粒径0.9μmのSi34粉末と、下記表6に示す
焼結助剤粉末とを混合し、アセトンを溶媒としてボール
ミルで48時間混練した。得られた混合粉末100重量
部に対して、分散剤としてポリエチレンアミン3重量
部、溶剤としてエタノール120重量部を添加し、アル
ミナボールで均一に混合した後、乾燥し、それぞれ直方
体にプレス成形した。各成形体を真空中で600℃に加
熱し、1時間保持して脱脂した。
Example 3 Si 3 N 4 powder having an average particle size of 0.9 μm was mixed with a sintering aid powder shown in Table 6 below, and kneaded in a ball mill for 48 hours using acetone as a solvent. To 100 parts by weight of the obtained mixed powder, 3 parts by weight of polyethyleneamine as a dispersant and 120 parts by weight of ethanol as a solvent were added, uniformly mixed with alumina balls, dried, and pressed into rectangular parallelepipeds. Each molded body was heated to 600 ° C. in vacuum and kept for 1 hour for degreasing.

【0065】[0065]

【表6】 (注)表中の*を付した試料は比較例である。[Table 6] (Note) Samples marked with * in the table are comparative examples.

【0066】次に、本発明例の試料20〜24について
は、脱脂後の各成形体を、6気圧の窒素雰囲気中におい
て1800℃で4時間焼結し、更に1000気圧窒素雰
囲気中において1820℃で2時間のHIP処理を行っ
た。その後、粒界相を結晶化させるための熱処理を行っ
た。熱処理条件は、1.5気圧の窒素雰囲気中にて12
00℃で2時間保持した後、1550℃で5時間保持し
た。
For samples 20 to 24 of the present invention, the degreased compacts were sintered at 1800 ° C. for 4 hours in a nitrogen atmosphere at 6 atm, and then 1820 ° C. in a nitrogen atmosphere at 1000 atm. HIP treatment was performed for 2 hours. After that, a heat treatment for crystallizing the grain boundary phase was performed. The heat treatment condition is 12 in a nitrogen atmosphere of 1.5 atm.
After holding at 00 ° C for 2 hours, it was held at 1550 ° C for 5 hours.

【0067】一方、比較例のうち、試料25と28は上
記と同様に焼結し、同様にHIP処理を行った後、試料
25については上記と同様に熱処理を行ったが、試料2
8は熱処理を行なわなかった。又、試料26と27は、
上記と同じ窒素雰囲気中にて1750℃で3時間焼結し
た後、上記と同様の条件でHIP処理を行ったが、熱処
理は行なわなかった。
On the other hand, among the comparative examples, Samples 25 and 28 were sintered in the same manner as described above, subjected to HIP treatment in the same manner, and then subjected to heat treatment in the same manner as in Sample 25.
No. 8 did not undergo heat treatment. Samples 26 and 27 are
After sintering at 1750 ° C. for 3 hours in the same nitrogen atmosphere as above, HIP treatment was performed under the same conditions as above, but no heat treatment was performed.

【0068】上記のごとく製造した各焼結体について、
実施例1と同様にして、粒界相中の結晶成分及びその粒
界結晶量比を求め、表7にその結果を示した。尚、試料
20、23、24、25には、β’−サイアロンが形成
されていた。
For each sintered body manufactured as described above,
In the same manner as in Example 1, the crystal components in the grain boundary phase and the grain boundary crystal amount ratio were determined, and the results are shown in Table 7. In addition, in samples 20, 23, 24, and 25, β'-sialon was formed.

【0069】[0069]

【表7】 (注)表中の*を付した試料は比較例である。[Table 7] (Note) Samples marked with * in the table are comparative examples.

【0070】又、上記の各焼結体について、常温と14
00℃での3点曲げ強度並びに破壊靭性を求めた。更
に、各焼結体の試料についてSNG432形状に成形、
焼結、加工した工具を用いて、V=600mm/mi
n、f=0.8mm/rev、d=2.0mmの条件で、
直径200mmのディスク状FC250材を40枚削っ
た後の摩耗状態を調べた。結果を表8に示した。
For each of the above-mentioned sintered bodies, room temperature and 14
Three-point bending strength at 00 ° C. and fracture toughness were determined. Further, each sintered body sample was molded into an SNG432 shape,
V = 600 mm / mi using a sintered and processed tool
Under the conditions of n, f = 0.8 mm / rev and d = 2.0 mm,
The abrasion state was investigated after 40 disc-shaped FC250 materials having a diameter of 200 mm were ground. The results are shown in Table 8.

【0071】[0071]

【表8】 (注)表中の*を付した試料は比較例である。[Table 8] (Note) Samples marked with * in the table are comparative examples.

【0072】試料25はHfO2を添加していないた
め、熱処理により粒界相に所定の結晶成分が析出せず、
高温での曲げ強度や靭性が著しく低下している。試料2
6、27は粒界相にY2Hf27が存在しているが、高
温特性は劣っている。又、試料28は熱処理を行ってい
ないため、粒界相がガラス相の状態であり、高温での曲
げ強度と靭性が急激に低下している。本発明による試料
20〜24は、比較例に比べて結晶相の結晶化の程度が
高く、高温での曲げ強度及び靭性も高くなり、切削性能
にも優れていることが分かる。実施例4
Since Sample 25 did not contain HfO 2 , a predetermined crystal component did not precipitate in the grain boundary phase due to the heat treatment.
Bending strength and toughness at high temperature are significantly reduced. Sample 2
In Nos. 6 and 27, Y 2 Hf 2 O 7 was present in the grain boundary phase, but the high temperature characteristics were poor. Further, since the sample 28 was not heat-treated, the grain boundary phase was in the glass phase state, and the flexural strength and toughness at high temperatures drastically decreased. It can be seen that Samples 20 to 24 according to the present invention have a higher degree of crystallization of the crystal phase, higher bending strength and toughness at high temperatures, and excellent cutting performance as compared with Comparative Examples. Example 4

【0073】平均粒径1.1μmのSi34粉末と、平
均粒径0.9μmのY3Al512粉末とMgO粉末、平
均粒径1.3μmのAlN粉末、平均粒径1.2μmのH
fO2粉末を、下記表9に示す割合で混合した。
Si 3 N 4 powder having an average particle size of 1.1 μm, Y 3 Al 5 O 12 powder and MgO powder having an average particle size of 0.9 μm, AlN powder having an average particle size of 1.3 μm, and an average particle size of 1. 2 μm H
The fO 2 powder was mixed in the proportions shown in Table 9 below.

【0074】[0074]

【表9】 (注)表中の*を付した試料は比較例である。[Table 9] (Note) Samples marked with * in the table are comparative examples.

【0075】これらの原料粉末を用いて、実施例3と同
様に混合、成形、焼結、HIP処理を行い、それぞれ焼
結体を製造した。更に、各焼結体を1.5気圧の窒素雰
囲気中において1100℃で1時間保持した後、引き続
いて1440℃で5時間保持する熱処理を施した。
Using these raw material powders, mixing, molding, sintering and HIP treatment were carried out in the same manner as in Example 3 to produce sintered bodies. Further, each sintered body was held at 1100 ° C. for 1 hour in a nitrogen atmosphere of 1.5 atm, and subsequently, heat treatment was performed at 1440 ° C. for 5 hours.

【0076】上記のごとく製造した各焼結体について、
実施例1と同様にして、粒界相中の結晶成分及びその粒
界結晶量比を求め、表10にその結果を示した。尚、試
料29、30、32には、α’−及びβ’−サイアロン
が形成されていた。又、実施例1と同様にして、3点曲
げ強度及び破壊靭性を測定し、結果を表10に併せて示
した。
For each sintered body manufactured as described above,
In the same manner as in Example 1, the crystal components in the grain boundary phase and the grain boundary crystal amount ratio were determined, and the results are shown in Table 10. Note that samples 29, 30, and 32 had α'- and β'-sialon formed. Further, the three-point bending strength and the fracture toughness were measured in the same manner as in Example 1, and the results are also shown in Table 10.

【0077】[0077]

【表10】 粒界結晶 曲げ強度(kg/mm2) 破壊靭性(MPa3/2) 試料 量 比 粒界相結晶成分 室 温 1400℃ 室 温 1400℃ 29 1.31 Y2Hf7O17 130 95 5.8 4.6 30 1.06 Y2Hf7O17 Y2Si2O7 126 93 6.6 4.4 31 0.96 Y2Hf7O17 122 94 6.8 4.8 32* 0.21 Y2Si2O7 115 34 6.5 2.8 (注)表中の*を付した試料は比較例である。[Table 10] Grain boundary crystal bending strength (kg / mm 2 ) Fracture toughness (MPa 3/2 ) Sample amount Specific grain boundary phase Crystal component room temperature 1400 ℃ room temperature 1400 ℃ 29 1.31 Y 2 Hf 7 O 17 130 95 5.8 4.6 30 1.06 Y 2 Hf 7 O 17 Y 2 Si 2 O 7 126 93 6.6 4.4 31 0.96 Y 2 Hf 7 O 17 122 94 6.8 4.8 32 * 0.21 Y 2 Si 2 O 7 115 34 6.5 2.8 (Note) In the table The sample marked with * is a comparative example.

【0078】この結果から、本発明の試料29〜31に
おいては、粒界相にY2Hf717が存在し、比較例より
も高温特性が優れていることが分かる。
From these results, it is understood that in Samples 29 to 31 of the present invention, Y 2 Hf 7 O 17 is present in the grain boundary phase, and the high temperature characteristics are superior to those of the comparative example.

【0079】実施例5 平均粒径1.5μmのSi34粉末91重量%と、焼結
助剤として平均粒径0.9μmのDy3Al512粉末4
重量%、平均粒径1.3μmのMgO粉末1重量%及び
Al23粉末2重量%、平均粒径1.2μmのHfO2
末2重量%とを混合した。HfO2粉末を含まない比較
例(試料37)として、同じSi34粉末93重量%、
Dy3Al512粉末5重量%、MgO粉末1重量%、及
びAl23粉末2重量%を混合した。
Example 5 91% by weight of Si 3 N 4 powder having an average particle size of 1.5 μm and Dy 3 Al 5 O 12 powder 4 having an average particle size of 0.9 μm as a sintering aid
% By weight, 1% by weight of MgO powder having an average particle size of 1.3 μm, 2 % by weight of Al 2 O 3 powder, and 2% by weight of HfO 2 powder having an average particle size of 1.2 μm. As a comparative example (Sample 37) containing no HfO 2 powder, 93 wt% of the same Si 3 N 4 powder,
5 wt% of Dy 3 Al 5 O 12 powder, 1 wt% of MgO powder, and 2 wt% of Al 2 O 3 powder were mixed.

【0080】これらの各原料粉末を、実施例3と同様に
混合、成形、脱脂した後、下記表11に示す条件で焼結
とHIP処理をそれぞれ実施した。焼結とHIPは全て
窒素雰囲気中で行い、焼結は3気圧及びHIPは500
気圧の加圧条件で行った。更に、得られた焼結体を1.
5気圧の窒素雰囲気中において1160℃で3時間保持
した後、1450℃で8時間保持して熱処理を行った。
After mixing, molding and degreasing each of these raw material powders in the same manner as in Example 3, sintering and HIP treatment were carried out under the conditions shown in Table 11 below. Sintering and HIP are all performed in a nitrogen atmosphere, sintering is 3 atm and HIP is 500
It was carried out under pressure at atmospheric pressure. Furthermore, 1.
After holding at 1160 ° C. for 3 hours in a nitrogen atmosphere of 5 atm, heat treatment was performed at 1450 ° C. for 8 hours.

【0081】[0081]

【表11】試料 焼 結 条 件 HIP条件 33 1650℃×4H 1520℃×2H 34 1750℃×4H 1620℃×2H 35 1850℃×4H 1700℃×2H 36 1850℃×8H 1810℃×2H 37* 1750℃×4H 1700℃×2H (注)表中の*を付した試料は比較例である。[Table 11] Sample firing conditions HIP condition 33 1650 ℃ × 4H 1520 ℃ × 2H 34 1750 ℃ × 4H 1620 ℃ × 2H 35 1850 ℃ × 4H 1700 ℃ × 2H 36 1850 ℃ × 8H 1810 ℃ × 2H 37 * 1750 ℃ × 4H 1700 ℃ × 2H (Note) * marked sample in the table is a comparative example.

【0082】上記のごとく製造した各焼結体について、
実施例1と同様にして、β、β’量比並びに粒界相中の
結晶成分及びその粒界結晶量比、並びにβ−Si34
子又はβ’−サイアロン粒子の平均長軸径とアスペクト
比を求め、表12にその結果を示した。又、実施例1と
同様にして、3点曲げ強度及び破壊靭性を測定し、結果
を表13に示した。
For each sintered body manufactured as described above,
In the same manner as in Example 1, the β, β'amount ratio, the crystal component in the grain boundary phase and the grain boundary crystal amount ratio, and the average major axis diameter of the β-Si 3 N 4 particles or the β'-sialon particles were determined. The aspect ratio was determined and the results are shown in Table 12. In addition, three-point bending strength and fracture toughness were measured in the same manner as in Example 1, and the results are shown in Table 13.

【0083】[0083]

【表12】 β、β’粒界結晶 平均長軸径試料 量 比 量 比 粒界相結晶成分 (μm) アスヘ゜クト比 33 0.52 3.1 Dy2Hf7O17 0.9 1.8 34 0.71 2.1 Dy2Hf7O17 3.3 6.7 35 0.88 1.3 Dy2Hf7O17 Dy2SiO5 9.1 9.0 36 1.00 0.9 Dy2Hf7O17 9.9 12 37* 1.00 0.2 Dy2Si2O7 3.3 6.7 (注)表中の*を付した試料は比較例である。TABLE 12 beta, beta 'grain boundary crystal average major axis diameter sample weight ratio amount ratio grain boundary phase crystal component ([mu] m) Asuhe ° transfected ratio 33 0.52 3.1 Dy 2 Hf 7 O 17 0.9 1.8 34 0.71 2.1 Dy 2 Hf 7 O 17 3.3 6.7 35 0.88 1.3 Dy 2 Hf 7 O 17 Dy 2 SiO 5 9.1 9.0 36 1.00 0.9 Dy 2 Hf 7 O 17 9.9 12 37 * 1.00 0.2 Dy 2 Si 2 O 7 3.3 6.7 (Note) * in the table The sample is a comparative example.

【0084】[0084]

【表13】 (注)表中の*を付した試料は比較例である。[Table 13] (Note) Samples marked with * in the table are comparative examples.

【0085】この結果から、本発明の試料33〜36で
は粒界相に結晶成分としてDy2Hf717が存在し、粒
界相結晶成分の結晶化度(粒界結晶量比)は0.9〜3.
1であるのに対して、比較例の試料37ではDy2Si2
7が結晶成分として存在し、その粒界結晶量比は僅か
に0.2であった。又、本発明の試料ではβ−Si34
又はβ’−サイアロン粒子のアスペクト比が1.4〜1
2の範囲にある。これらにより、本発明の試料は比較例
に比べて著しく優れた特性を有しているが、試料35と
36の比較からβ−Si34又はβ’−サイアロン粒子
のアスペクト比は1.4〜10の範囲がより好ましいこ
とが分かった。
From these results, in Samples 33 to 36 of the present invention, Dy 2 Hf 7 O 17 was present as a crystal component in the grain boundary phase, and the crystallinity (grain boundary crystal amount ratio) of the grain boundary phase crystal component was 0. .9-3.
However, in the sample 37 of the comparative example, Dy 2 Si 2
O 7 was present as a crystal component, and its grain boundary crystal amount ratio was only 0.2. Further, in the sample of the present invention, β-Si 3 N 4
Or, the aspect ratio of β'-sialon particles is 1.4 to 1
It is in the range of 2. From these, the sample of the present invention has remarkably excellent characteristics as compared with the comparative example, but from the comparison of the samples 35 and 36, the aspect ratio of β-Si 3 N 4 or β'-sialon particles is 1.4. It has been found that a range of -10 is more preferable.

【0086】実施例6 平均粒径1.5μmのSi34粉末、平均粒径0.9μm
のY3Al512粉末、平均粒径1.3μmのMgO粉
末、Al23粉末、AlN粉末、平均粒径1.4μmの
23粉末、平均粒径1.1μmのTiO2粉末又はZr
2粉末を、それぞれ表14に示す割合で混合した。
Example 6 Si 3 N 4 powder having an average particle size of 1.5 μm, average particle size of 0.9 μm
Y 3 Al 5 O 12 powder, MgO powder with an average particle size of 1.3 μm, Al 2 O 3 powder, AlN powder, Y 2 O 3 powder with an average particle size of 1.4 μm, TiO 2 with an average particle size of 1.1 μm Powder or Zr
The O 2 powders were mixed in the proportions shown in Table 14, respectively.

【0087】[0087]

【表14】 Si3N4 焼 結 助 剤 と 添 加 量 (wt%) 試料 (wt%) Y3Al5O12 Al2O3 Y2O3 MgO AlN TiO2 ZrO2 38 83 8 3 2 1 1 2 0 39 88 5 3 2 0 1 1 0 40 95 2 2 0 0 0 1 0 41 83 8 3 2 1 1 0 2 42* 84 7 4 2 2 1 0 0 43* 93 4 2 1 0 0 0 0 (注)表中の*を付した試料は比較例である。[Table 14] Si 3 N 4 sintering aid and additive amount (wt%) Sample (wt%) Y 3 Al 5 O 12 Al 2 O 3 Y 2 O 3 MgO AlN TiO 2 ZrO 2 38 83 8 3 2 1 1 2 0 39 88 5 3 2 0 1 1 0 40 95 2 2 0 0 0 1 0 41 83 8 3 2 1 1 0 2 42 * 84 7 4 2 2 1 0 0 43 * 93 4 2 1 0 0 0 0 (Note) Samples marked with * in the table are comparative examples.

【0088】これらの原料粉末を、実施例3と同様に、
混合、成形、脱脂した後、焼結とHIP処理を実施し
た。更に得られた各焼結体を1.5気圧の窒素雰囲気中
において1060℃で1時間保持した後、1400℃で
2時間保持することにより熱処理を行った。
These raw material powders were treated in the same manner as in Example 3,
After mixing, molding and degreasing, sintering and HIP treatment were performed. Further, each of the obtained sintered bodies was heat-treated by holding it at 1,060 ° C. for 1 hour in a nitrogen atmosphere of 1.5 atm and then at 1,400 ° C. for 2 hours.

【0089】上記のごとく製造した各焼結体について、
実施例1と同様にして、粒界相中の結晶成分及びその粒
界結晶量比を求め、表15にその結果を示した。尚、試
料40と43の主相にはβ−Si34、それ以外の試料
の主相にはα’−及びβ’−サイアロンが形成されてい
た。又、実施例1と同様にして、3点曲げ強度及び破壊
靭性を測定し、結果を表15に併せて示した。下記表1
5の結果から、粒界相にY2Ti717あるいはY2Zr7
17の結晶成分が析出した場合に、高温特性が優れてい
ることが分かる。
For each sintered body manufactured as described above,
The crystal component in the grain boundary phase and the grain boundary crystal amount ratio were determined in the same manner as in Example 1, and the results are shown in Table 15. In addition, β-Si 3 N 4 was formed in the main phases of Samples 40 and 43, and α′- and β′-sialon were formed in the main phases of the other samples. Further, the three-point bending strength and the fracture toughness were measured in the same manner as in Example 1, and the results are also shown in Table 15. Table 1 below
From the result of No. 5, it was confirmed that Y 2 Ti 7 O 17 or Y 2 Zr 7 was added to the grain boundary phase.
It can be seen that the high temperature characteristics are excellent when the crystal component of O 17 is deposited.

【0090】[0090]

【表15】 粒界結晶 曲げ強度(kg/mm2) 破壊靭性(MPa3/2) 試料 量 比 粒界相結晶成分 室 温 1400℃ 室 温 1400℃ 38 0.97 Y2Ti7O17 127 100 6.7 4.2 39 0.81 Y2Ti7O17 121 93 6.8 4.1 40 0.71 Y2Ti7O17 Y2Si2O7 123 92 6.4 4.4 41 0.98 Y2Zr7O17 125 96 6.6 4.2 42* 0.58 Y2SiO5 120 26 6.3 3.2 43* 0.31 Y2Si2O7 120 30 5.1 2.7 (注)表中の*を付した試料は比較例である。[Table 15] Grain boundary crystal bending strength (kg / mm 2 ) Fracture toughness (MPa 3/2 ) Sample amount Specific grain boundary phase Crystal component room temperature 1400 ℃ room temperature 1400 ℃ 38 0.97 Y 2 Ti 7 O 17 127 100 6.7 4.2 39 0.81 Y 2 Ti 7 O 17 121 93 6.8 4.1 40 0.71 Y 2 Ti 7 O 17 Y 2 Si 2 O 7 123 92 6.4 4.4 41 0.98 Y 2 Zr 7 O 17 125 96 6.6 4.2 42 * 0.58 Y 2 SiO 5 120 26 6.3 3.2 43 * 0.31 Y 2 Si 2 O 7 120 30 5.1 2.7 (Note) The samples marked with * in the table are comparative examples.

【0091】実施例7 平均粒径0.7μmのSi34粉末、平均粒径1.6μm
のY3Al512粉末、AlN粉末、平均粒径1.3μm
のMgO粉末、平均粒径1.2μmのHfO2粉末を、そ
れぞれ表16に示す割合で混合した。
Example 7 Si 3 N 4 powder having an average particle size of 0.7 μm, average particle size of 1.6 μm
Y 3 Al 5 O 12 powder, AlN powder, average particle size 1.3 μm
MgO powder and HfO 2 powder having an average particle diameter of 1.2 μm were mixed in the proportions shown in Table 16.

【0092】[0092]

【表16】 (注)表中の*を付した試料は比較例である。[Table 16] (Note) Samples marked with * in the table are comparative examples.

【0093】これらの原料粉末を、実施例3と同様に、
混合、成形、脱脂した後、焼結とHIP処理を実施し
た。更に得られた各焼結体を1.5気圧の窒素雰囲気中
において1100℃で3時間保持した後、1450℃で
4時間保持することにより熱処理を行った。
These raw material powders were treated in the same manner as in Example 3,
After mixing, molding and degreasing, sintering and HIP treatment were performed. Further, each of the obtained sintered bodies was heat-treated by holding it at 1100 ° C. for 3 hours in a nitrogen atmosphere of 1.5 atm, and then at 1450 ° C. for 4 hours.

【0094】上記のごとく製造した各焼結体について、
実施例1と同様にして、粒界相中の結晶成分及びその粒
界結晶量比を求め、表17にその結果を示した。又、実
施例1と同様にして、3点曲げ強度及び破壊靭性を測定
し、結果を表17に併せて示した。
For each sintered body manufactured as described above,
In the same manner as in Example 1, the crystal components in the grain boundary phase and the grain boundary crystal amount ratio were determined, and the results are shown in Table 17. Further, the three-point bending strength and the fracture toughness were measured in the same manner as in Example 1, and the results are also shown in Table 17.

【0095】[0095]

【表17】 粒界結晶 粒界相 曲げ強度(kg/mm2) 破壊靭性(MPa3/2) 試料 量 比 結晶成分 室 温 1400℃ 室 温 1400℃ 44 1.43 Y2Hf7O17 123 99 6.8 4.3 45 0.98 Y2Hf7O17 120 96 6.7 4.3 46 1.23 Y2Hf7O17 122 97 6.8 4.2 47* 0.24 Y2Hf2O7 89 32 4.3 2.3 48* 1.55 Y2Hf2O7 78 26 4.3 2.1 (注)表中の*を付した試料は比較例である。[Table 17] Grain boundary crystal Grain boundary phase Bending strength (kg / mm 2 ) Fracture toughness (MPa 3/2 ) Sample amount Specific crystal composition chamber temperature 1400 ° C chamber temperature 1400 ° C 44 1.43 Y 2 Hf 7 O 17 123 99 6.8 4.3 45 0.98 Y 2 Hf 7 O 17 120 96 6.7 4.3 46 1.23 Y 2 Hf 7 O 17 122 97 6.8 4.2 47 * 0.24 Y 2 Hf 2 O 7 89 32 4.3 2.3 48 * 1.55 Y 2 Hf 2 O 7 78 26 4.3 2.1 (Note) Samples marked with * in the table are comparative examples.

【0096】以上の結果より、焼結助剤の添加量が2重
量%未満あるいは20重量%を越える場合には、高温の
みならず常温においても機械的特性が劣化することが分
かる。即ち、焼結助剤が2重量%未満では十分に焼結せ
ず、20重量%を越えると窒化ケイ素自体の機械的な特
性が発揮できないためである。
From the above results, it is understood that when the addition amount of the sintering aid is less than 2% by weight or exceeds 20% by weight, the mechanical properties are deteriorated not only at high temperature but also at room temperature. That is, if the amount of the sintering aid is less than 2% by weight, the sintering is not sufficiently performed, and if it exceeds 20% by weight, the mechanical properties of silicon nitride itself cannot be exhibited.

【0097】実施例8 実施例7の試料44と同様に製造した焼結体の試験片を
一旦炉から取り出し、特性評価試験片及び切削試験片に
加工した後、以下の熱処理を施した。比較例として、同
じ試験片について熱処理を施さない試料も作製した。
Example 8 A test piece of a sintered body manufactured in the same manner as the sample 44 of Example 7 was once taken out from the furnace, processed into a characteristic evaluation test piece and a cutting test piece, and then subjected to the following heat treatment. As a comparative example, a sample without heat treatment was also prepared for the same test piece.

【0098】即ち、試料49については、図4に示すよ
うに、常温から一旦1700℃まで昇温してその温度で
1時間保持した後、1100℃まで冷却してその温度で
4時間保持し、更に1450℃まで昇温してその温度で
5時間保持した。試料50については、図5に示すよう
に、常温から1100℃まで昇温してその温度で4時間
保持した後、1450℃に昇温してその温度で5時間保
持した。
That is, as to the sample 49, as shown in FIG. 4, the temperature was once raised from room temperature to 1700 ° C. and kept at that temperature for 1 hour, then cooled to 1100 ° C. and kept at that temperature for 4 hours. The temperature was further raised to 1450 ° C. and the temperature was maintained for 5 hours. As shown in FIG. 5, the sample 50 was heated from room temperature to 1100 ° C. and held at that temperature for 4 hours, then heated to 1450 ° C. and held at that temperature for 5 hours.

【0099】得られた各試料の特性評価試験片につい
て、実施例1と同様にして、粒界相中の結晶成分及びそ
の粒界結晶量比を求め、3点曲げ強度及び破壊靭性を測
定し、それぞれ結果を表18に示した。又、各切削試験
片(SNG432形状)については、V=800mm/
min、f=0.4mm/rev、d=1.5mmの条件
で、直径200mmのディスク状FC250材を50枚
削った後の摩耗状態を調べ、表18に摩耗量として示し
た。
With respect to the characteristic evaluation test pieces of each of the obtained samples, the crystal components in the grain boundary phase and the grain boundary crystal amount ratio were determined in the same manner as in Example 1, and the three-point bending strength and the fracture toughness were measured. The results are shown in Table 18. For each cutting test piece (SNG432 shape), V = 800 mm /
Under the conditions of min, f = 0.4 mm / rev, and d = 1.5 mm, the wear state after 50 disc-shaped FC250 materials with a diameter of 200 mm were ground was examined, and Table 18 shows the wear amount.

【0100】[0100]

【表18】 粒界結晶 粒界相 曲げ強度(kg/mm2) 破壊靭性(MPa3/2) 切削試験試料 量 比 結晶成分 室 温 1400℃ 室 温 1400℃ 摩耗量(mm) 49 3.11 Y2Hf7O17 124 101 6.8 4.2 0.277 50 1.26 Y2Hf7O17 122 91 6.8 4.1 0.311 51* 0 なし 122 34 6.8 2.7 0.698 (注)表中の*を付した試料は比較例である。[Table 18] Grain boundary crystal Grain boundary phase Bending strength (kg / mm 2 ) Fracture toughness (MPa 3/2 ) Cutting test sample volume Specific crystal component chamber temperature 1400 ° C chamber temperature 1400 ° C Wear amount (mm) 49 3.11 Y 2 Hf 7 O 17 124 101 6.8 4.2 0.277 50 1.26 Y 2 Hf 7 O 17 122 91 6.8 4.1 0.311 51 * 0 None 122 34 6.8 2.7 0.698 (Note) Samples marked with * in the table are comparative examples.

【0101】試料49のように、一旦粒界相が液相状態
になる温度まで昇温させてから、冷却途中で結晶核を形
成させて成長させるプロセスを経た方が、粒界相に結晶
成分が多量に形成され、従って高温特性にも優れること
が分かる。
As in the case of sample 49, it is better to go through the process of once raising the temperature of the grain boundary phase to a liquid state and then growing by forming crystal nuclei during cooling. It can be seen that a large amount is formed and therefore the high temperature characteristics are also excellent.

【0102】[0102]

【発明の効果】本発明によれば、粒界相に特定の結晶成
分を析出させることにより、従来よりも強度及び破壊靭
性に優れ、特に高温での強度及び破壊靭性に優れた窒化
ケイ素系焼結体を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, by precipitating a specific crystal component in the grain boundary phase, a silicon nitride-based calcinated that is more excellent in strength and fracture toughness than before, and particularly excellent in high temperature strength and fracture toughness. A tie can be provided.

【0103】この窒化ケイ素系焼結体は、強度及び破壊
靭性における優れた特性と共に、高温での硬度や耐摩耗
性にも優れているので、切削工具材料、耐摩耗工具材
料、構造用材料等として特に有用である。
Since this silicon nitride-based sintered body is excellent in strength and fracture toughness as well as in hardness and wear resistance at high temperatures, cutting tool materials, wear resistant tool materials, structural materials, etc. Is particularly useful as

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法における焼結助剤の第2成分として
2種の単一化合物とその複合化合物を用いた場合におけ
る焼結性を示すグラフである。
FIG. 1 is a graph showing the sinterability when two kinds of single compounds and their composite compounds are used as the second component of the sintering aid in the method of the present invention.

【図2】実施例1での粒界相結晶化のための熱処理プロ
グラムを示すグラフである。
2 is a graph showing a heat treatment program for crystallizing a grain boundary phase in Example 1. FIG.

【図3】実施例2での粒界相結晶化のための熱処理プロ
グラムを示すグラフである。
FIG. 3 is a graph showing a heat treatment program for grain boundary phase crystallization in Example 2.

【図4】実施例8で粒界相結晶化の比較に用いた1つの
熱処理プログラムを示すグラフである。
FIG. 4 is a graph showing one heat treatment program used for comparison of grain boundary phase crystallization in Example 8.

【図5】実施例8で粒界相結晶化の比較に用いた他の熱
処理プログラムを示すグラフである。
5 is a graph showing another heat treatment program used for comparison of grain boundary phase crystallization in Example 8. FIG.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 粒界相が重量比で20%以下で、残部が
窒化ケイ素及び/又はサイアロンと窒化ケイ素の結晶粒
子の主相からなる窒化ケイ素系焼結体であって;前記主
相がβ−Si34及び/又はβ’−サイアロンからなる
粒子相を含み、且つ主相に対する該β−Si34及び/
又はβ’−サイアロンの粒子相の量比が0.5〜1.0の
範囲にあり;前記粒界相が結晶成分としてRe2717
(但しReは3A族元素、Aは4A族元素を意味する)
を含むことを特徴とする窒化ケイ素系焼結体。
1. A silicon nitride-based sintered body comprising a grain boundary phase in a weight ratio of 20% or less, the remainder being silicon nitride and / or a main phase of crystal particles of sialon and silicon nitride; wherein the main phase is beta-Si 3 includes N 4 and / or particulate phase consisting of β'- sialon, and the relative main phase beta-Si 3 N 4 and /
Or the amount ratio of the β'-sialon particle phase is in the range of 0.5 to 1.0; the grain boundary phase is a crystalline component of Re 2 A 7 O 17
(However, Re means 3A group element, A means 4A group element)
A silicon nitride-based sintered body comprising:
【請求項2】 前記粒界相が第2の結晶成分としてRe
SiNO2(但しReは3A族元素を意味する、以下同
じ)、Re3Al512、ReAlO3及びSi34・Y2
3の少なくとも1種を含むことを特徴とする、請求項
1に記載の窒化ケイ素系焼結体。
2. The grain boundary phase is Re as a second crystal component.
SiNO 2 (however, Re means a Group 3A element, the same applies hereinafter), Re 3 Al 5 O 12 , ReAlO 3 and Si 3 N 4 Y 2
The silicon nitride-based sintered body according to claim 1, comprising at least one kind of O 3 .
【請求項3】 前記粒界相中の結晶成分の主相中のβ−
Si34及び/又はβ’−サイアロンの粒子相に対する
量比が0.3〜4.0の範囲にあることを特徴とする、請
求項1又は2に記載の窒化ケイ素系焼結体。
3. β- in the main phase of the crystal component in the grain boundary phase
The silicon nitride-based sintered body according to claim 1 or 2, wherein the ratio of the amount of Si 3 N 4 and / or β'-sialon to the particle phase is in the range of 0.3 to 4.0.
【請求項4】 前記ReがYであることを特徴とする、
請求項1〜3のいずれかに記載の窒化ケイ素系焼結体。
4. The Re is Y,
The silicon nitride-based sintered body according to claim 1.
【請求項5】 前記AがHfであることを特徴とする、
請求項1〜3のいずれかに記載の窒化ケイ素系焼結体。
5. The above A is Hf,
The silicon nitride-based sintered body according to claim 1.
【請求項6】 前記β−Si34粒子又はβ’−サイア
ロン粒子の平均長軸径が0.4〜10μm、アスペクト
比が1.4〜10であることを特徴とする、請求項1〜
5のいずれかに記載の窒化ケイ素系焼結体。
6. The average major axis diameter of the β-Si 3 N 4 particles or β′-sialon particles is 0.4 to 10 μm, and the aspect ratio is 1.4 to 10. ~
5. The silicon nitride-based sintered body according to any one of 5 above.
【請求項7】 窒化ケイ素系粉末80〜98重量%と、
AO2(但しAは4A族元素を意味する)粉末からなる
第1成分と、Re23(但しReは3A族元素を意味す
る、以下同じ)とAlN、ReN、SiO2、Al
23、Mxy(但しMxyは酸化物で、MはLi、N
a、Ca、Mg又は3A族元素を意味する)の少なくと
も1種とを組合せた単一化合物の粉末、又は前記単一化
合物を組合せた組成の複合化合物の粉末、若しくはこれ
らにSi34・Y23粉末を加えた混合粉末のいずれか
少なくとも1種から選ばれた第2成分とからなる、焼結
助剤系粉末2〜20重量%とを混合し;得られた混合原
料粉末を成形した成形体を窒素加圧雰囲気中で焼結した
後;得られた焼結体を非酸化性雰囲気中において、10
50℃から1600℃までの温度域内で核形成と結晶成
長のための熱処理を行うことを特徴とする窒化ケイ素系
焼結体の製造方法。
7. A silicon nitride powder of 80 to 98% by weight,
AO 2 (however, A means group 4A element) powder as the first component, Re 2 O 3 (however, Re means group 3A element, the same applies hereinafter), AlN, ReN, SiO 2 , Al
2 O 3 , M x O y (where M x O y is an oxide, M is Li, N
a, Ca, Mg or at least one of Group 3A elements) in combination with a single compound powder, or a composite compound powder in which the single compound is combined, or Si 3 N 4 ·. 2 to 20% by weight of a sintering aid powder, which is composed of a second component selected from at least one of the Y 2 O 3 powders, is mixed; After sintering the formed compact in a nitrogen pressure atmosphere, the obtained sintered body is subjected to 10 in a non-oxidizing atmosphere.
A method for producing a silicon nitride-based sintered body, which comprises performing heat treatment for nucleation and crystal growth within a temperature range of 50 ° C to 1600 ° C.
【請求項8】 前記熱処理工程は、1050〜1350
℃で0.5〜12時間の核形成を行った後、引き続き昇
温して1300〜1600℃の温度域内で結晶成長を行
うことを特徴とする、請求項7に記載の窒化ケイ素系焼
結体の製造方法。
8. The heat treatment process comprises 1050 to 1350.
The silicon nitride-based sintering according to claim 7, wherein after the nucleation is performed at 0.5 ° C for 0.5 to 12 hours, the temperature is subsequently raised to perform crystal growth within a temperature range of 1300 to 1600 ° C. Body manufacturing method.
【請求項9】 前記核形成処理と結晶成長処理からなる
熱処理工程を複数回連続して繰り返すことを特徴とす
る、請求項8に記載の窒化ケイ素系焼結体の製造方法。
9. The method for producing a silicon nitride-based sintered body according to claim 8, wherein the heat treatment step including the nucleation treatment and the crystal growth treatment is continuously repeated a plurality of times.
【請求項10】 前記熱処理工程は、前記焼結工程の冷
却過程の中で行われることを特徴とする、請求項7〜9
のいずれかに記載の窒化ケイ素系焼結体の製造方法。
10. The heat treatment process according to claim 7, wherein the heat treatment process is performed during a cooling process of the sintering process.
9. A method for producing a silicon nitride-based sintered body according to any one of 1.
【請求項11】 前記熱処理工程は、前記焼結工程で得
られた焼結体に機械加工又はコーティング処理を施した
後行われることを特徴とする、請求項7〜9のいずれか
に記載の窒化ケイ素系焼結体の製造方法。
11. The heat treatment step according to claim 7, wherein the heat treatment step is performed after the sintered body obtained in the sintering step is subjected to machining or coating treatment. A method for manufacturing a silicon nitride-based sintered body.
JP7121363A 1995-05-19 1995-05-19 Silicon nitride sintered material and its production Pending JPH08319165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121363A JPH08319165A (en) 1995-05-19 1995-05-19 Silicon nitride sintered material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121363A JPH08319165A (en) 1995-05-19 1995-05-19 Silicon nitride sintered material and its production

Publications (1)

Publication Number Publication Date
JPH08319165A true JPH08319165A (en) 1996-12-03

Family

ID=14809401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121363A Pending JPH08319165A (en) 1995-05-19 1995-05-19 Silicon nitride sintered material and its production

Country Status (1)

Country Link
JP (1) JPH08319165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207366A (en) * 2015-01-23 2017-09-26 株式会社东芝 Highly thermally conductive property silicon nitride sinter, the silicon nitride board and silicon nitride circuit substrate and semiconductor device for having used it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207366A (en) * 2015-01-23 2017-09-26 株式会社东芝 Highly thermally conductive property silicon nitride sinter, the silicon nitride board and silicon nitride circuit substrate and semiconductor device for having used it
EP3248956A4 (en) * 2015-01-23 2018-08-22 Kabushiki Kaisha Toshiba, Inc. Silicon nitride sintered compact having high thermal conductivity, silicon nitride substrate and silicon nitride circuit substrate using same, and semiconductor device
US10308560B2 (en) 2015-01-23 2019-06-04 Kabushiki Kaisha Toshiba High thermal conductive silicon nitride sintered body, and silicon nitride substrate and silicon nitride circuit board and semiconductor apparatus using the same
CN107207366B (en) * 2015-01-23 2020-11-24 株式会社东芝 High thermal conductivity silicon nitride sintered body, silicon nitride substrate and silicon nitride circuit substrate using same, and semiconductor device

Similar Documents

Publication Publication Date Title
US5312788A (en) High toughness, high strength sintered silicon nitride
US5738820A (en) Sintered silicon nitride-based body and process for producing the same
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JPS605079A (en) Manufacture of sialon base ceramics
JP3395247B2 (en) Silicon nitride based sintered body
US5759933A (en) Gas pressure sintered silicon nitride having high strength and stress rupture resistance
JPH08319165A (en) Silicon nitride sintered material and its production
JPH09268069A (en) Highly heat conductive material and its production
JP2927919B2 (en) Crystallizing heat treatment method for silicon nitride sintered body
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPH05139840A (en) Siliceous nitride sintered compact and its production
JPH05148026A (en) Sintered silicon nitride
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JP2534214B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPH02233560A (en) High-strength calcined sialon-based compact
JPH0840774A (en) Silicon nitride sintered product
JP3082432B2 (en) Manufacturing method of aluminum oxide based ceramic cutting tool with excellent toughness
WO1993021129A1 (en) Sintered silicon nitride of high toughness, strength and reliability
JPH06100376A (en) Sintered beta-sialon and its production