JPH08318131A - Waste gas treating agent and treating method - Google Patents

Waste gas treating agent and treating method

Info

Publication number
JPH08318131A
JPH08318131A JP7128290A JP12829095A JPH08318131A JP H08318131 A JPH08318131 A JP H08318131A JP 7128290 A JP7128290 A JP 7128290A JP 12829095 A JP12829095 A JP 12829095A JP H08318131 A JPH08318131 A JP H08318131A
Authority
JP
Japan
Prior art keywords
silane
gas
treating
treating agent
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7128290A
Other languages
Japanese (ja)
Inventor
Isao Harada
功 原田
Makoto Aritsuka
眞 在塚
Maki Hoshikawa
真樹 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP7128290A priority Critical patent/JPH08318131A/en
Publication of JPH08318131A publication Critical patent/JPH08318131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: To treat a waste gas contg. silane-base gas from a semiconductor producing device while suppressing the evolution of heat and to remove the silane-base gas by using hydrotalcite having a specified structure and a precursor having an amorphous structure as treating agents. CONSTITUTION: A treating agent 5 to be used consists essentially of hydrotalcite shown by (M<3+> XM<2+> 1- X(OH)2 X<+> (A<n-> x/nmH2 O)X<-> and a precursor having an amorphous structure, where M<3+> is a trivalent metal ion, M<2+> is bivalent-metal ion, and A<n-> is an n-valent anion. The silane-base gas in the waste gas from a semiconductor producing device is brought into contact with the solid treating agent 5 packed in a column 1 attached to the discharge port of the device. Consequently, the silane concn. in the waste gas is decreased to <=0.5ppm, preferably to <=0.1ppm, while suppressing heat evolution. Meanwhile, M<3+> is Al<3+> , Fe<3+> , or Cr<3+> , M<2+> is Mg<2+> , Mn<2+> or Cu<2+> , and A<n-> is OH<-> , Cl<-> , NO3 <-> , CO3 <2-> or SO4 <2-> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシラン系ガスを含む排ガ
スを高度処理するための処理剤及び処理方法に関する。
さらに詳しくは、半導体製造用シラン系ガスの排ガスと
接触せしめて高度処理するための処理剤及び処理方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treating agent and a treating method for highly treating exhaust gas containing a silane-based gas.
More specifically, the present invention relates to a treating agent and a treating method for performing advanced treatment by bringing the silane-based gas for semiconductor production into contact with exhaust gas.

【0002】[0002]

【従来の技術】今日の半導体工業の発展はめざましく、
超LSI、化合物半導体、アモルフアス太陽電池など、
まさに日進月歩の技術革新を続けており、半導体製造用
ガス使用量も増大しつつある。かかる半導体製造用ガス
のうち、特にモノシラン(SiH)、ジシラン(Si
)、トリシラン(Si)等のシラン系ガス
は、熱分解、光分解、プラズマ分解等の方法により、単
結晶シリコン、多結晶シリコン、アモルフアスシリコ
ン、シリコン酸化膜、シリコン窒化膜等の形成に不可欠
なガスである。しかしながら、かかるガスは反応性、自
然発火性が強い上に、例えば、モノシランの場合、吸収
により呼吸器を激しく刺激するなど毒性が強く、若し高
濃度で外部に放出されるならば、人体および自然環境へ
の悪影響ははかりしれないものがある。そのため、我国
においては、良好な作業環境の保持、自然環境破壊の防
止を目的として、半導体工業における排ガス中のシラン
系ガス濃度の規制が強化されつつある。しかも米国にお
いては、「米国産業衛生監督官会議」がモノシランの作
業環境濃度を0.5ppmと設定するなど激しい規制が
実施されることになっている。通常、半導体製造用に
は、水素、ヘリウム、アルゴン、窒素などのガスでシラ
ン系ガスを数%から数十%に希釈したガスが用いられる
ことが多いが、時には、希釈しない100%のシラン系
ガスが用いられることもある。
2. Description of the Related Art The development of today's semiconductor industry is remarkable.
VLSI, compound semiconductors, amorphous solar cells, etc.
Indeed, technological innovation is advancing day by day, and the amount of gas used for semiconductor manufacturing is also increasing. Among such semiconductor manufacturing gases, especially monosilane (SiH 4 ) and disilane (Si
Silane-based gas such as 2 H 6 ), trisilane (Si 3 H 8 ), etc. is formed by a method such as thermal decomposition, photo-decomposition, plasma decomposition or the like into single crystal silicon, polycrystalline silicon, amorphous silicon, silicon oxide film, silicon nitride. It is an essential gas for the formation of films. However, such a gas is highly reactive and spontaneously igniting, and in the case of monosilane, for example, it is highly toxic such as causing severe respiratory irritation by absorption, and if released in high concentration to the outside of the human body, There are immeasurable negative effects on the natural environment. Therefore, in Japan, regulations on the concentration of silane-based gas in exhaust gas in the semiconductor industry are being strengthened for the purpose of maintaining a good working environment and preventing destruction of the natural environment. Moreover, in the United States, severe regulations are being enforced, such as the "American Council for Industrial Health Supervisors" setting the working environment concentration of monosilane to 0.5 ppm. In general, for manufacturing semiconductors, a gas obtained by diluting a silane-based gas with a gas such as hydrogen, helium, argon, or nitrogen from several% to several tens of% is often used, but sometimes a 100% silane-based gas that is not diluted is used. Gas may also be used.

【0003】このような、シラン系ガスを安全に除害化
する方法には、シラン系ガスを高濃度に含むガスを空気
と混合して燃焼させる様工夫された装置によって処理し
たり、水酸化アルカリ水溶液と接触する方法(特開昭5
6−84619号公報、同57−94323号公報)等
の手段によってシラン系ガス濃度をできる限り低減処理
した後、大気放出する方法が知られている。
Such a method for safely detoxifying a silane-based gas is treated by an apparatus devised to mix a gas containing a high concentration of the silane-based gas with air and burned, or a hydroxylation. Method of contact with aqueous alkali solution
6-84619, 57-94323) and the like, a method is known in which the silane-based gas concentration is reduced as much as possible and then released into the atmosphere.

【0004】また近年では排気口にカラムを取り付け、
これに処理剤として金属酸化物を充填する方法(特公平
4−19886号公報)や、塩基性炭酸銅を充填する方
法も採られるようになった。しかしながら、このような
処理剤を用いる方法では、処理剤にシラン系ガスを通気
中、発熱を伴ったり、あるいは、通気処理後、処理剤を
大気中に暴露した際に発熱、発火するというトラブルが
生じている。したがって、取扱い上、安全であって、か
つ排ガス中のシラン系ガスを少なくとも0.5ppm、
好ましくは0.1ppm程度まで完全に除去する技術の
開発が期待されている。
In recent years, a column has been attached to the exhaust port,
A method of filling this with a metal oxide as a treating agent (Japanese Patent Publication No. 4-19886) and a method of filling basic copper carbonate have also been adopted. However, in the method of using such a treating agent, there is a problem that heat is generated while the silane-based gas is passed through the treating agent, or after the aeration treatment, the treating agent is heated and ignited when exposed to the atmosphere. Has occurred. Therefore, it is safe in handling, and the silane-based gas in the exhaust gas is at least 0.5 ppm,
It is expected to develop a technique for completely removing the metal, preferably up to about 0.1 ppm.

【0005】[0005]

【発明が解決しようとする課題】すなわち、本発明の目
的は、半導体製造装置の排ガス中のシラン系ガスを、排
出口にカラムを取り付け、これに処理剤を充填し、安
全、かつほぼ完全にシラン系ガスを除去する処理方法を
提供することにある。その要旨とするところは、処理剤
にシラン系ガスを通気中、あるいは通気後の処理剤を大
気中に暴露時の起こる発熱を従来よりも低下させ、また
半導体製造装置からのシラン系ガスを含む排ガスを、排
ガス中のシラン系の濃度を少なくとも0.5ppm以
下、好ましくは0.1ppm以下、すなわち、実質的に
シラン系ガスを含まない高度処理剤及び処理方法を提供
することにある。
That is, an object of the present invention is to install a silane-based gas in the exhaust gas of a semiconductor manufacturing apparatus at a discharge port equipped with a column, and to fill it with a treating agent to ensure safe and almost complete treatment. It is to provide a treatment method for removing a silane-based gas. The gist is to reduce the heat generated when the silane-based gas is passed through the treatment agent or after the treatment agent is exposed to the atmosphere, and to include the silane-based gas from the semiconductor manufacturing equipment. It is an object of the present invention to provide an advanced treatment agent and a treatment method for exhaust gas having a silane-based concentration in the exhaust gas of at least 0.5 ppm or less, preferably 0.1 ppm or less, that is, substantially free of silane-based gas.

【0006】[0006]

【課題を解決するための手段】本発明は半導体製造装置
からのシラン系ガスを含む排ガスを、特定の処理剤を用
い、該処理剤をカラムに充填し、従来よりも発熱を低下
させ排ガスを除去するものである。即ち、本発明は一般
式が化2で構成される、ハイドロタルサイト及び非結晶
構造を有する前駆体のうち、M3+が三価の金属イオ
ン、M2+が二価の金属イオン及びAn−がn価の陰イ
オンを主体としてなるシラン系ガスを含む排ガスの処理
剤及び該処理剤を半導体装置から排出するシラン系ガス
を含む排ガスと気固接触によって処理することを特徴と
する排ガスの処理方法に関する。
According to the present invention, exhaust gas containing silane-based gas from a semiconductor manufacturing apparatus is filled in a column with a specific processing agent to reduce heat generation as compared with the conventional method. To remove. That is, in the present invention, among the precursors having a general formula represented by the formula 2 and having a hydrotalcite and an amorphous structure, M 3+ is a trivalent metal ion, M 2+ is a divalent metal ion and A n−. Of exhaust gas containing a silane-based gas whose main component is an n-valent anion and gas-solid contact with the exhaust gas containing the silane-based gas discharged from the semiconductor device. Regarding the method.

【化2】[M3+ 2+ 1−X(OH)
X+[An− X/nmHO]X−
Embedded image [M 3+ X M 2+ 1-X (OH) 2 ]
X + [A n- X / n mH 2 O] X-

【0007】以下、本発明を詳細に説明する。本発明の
処理剤の主成分の一つである結晶構造を持つハイドロタ
ルサイトは、[M3+ 2+ 1−X(OH)X+
[An− X/nmHO]X−で表され、M3+が三価
の金属イオン、M2+が二価の金属イオン及びAn−
n価の陰イオンを主体としてなる成分が最も効果的であ
る。中でもM3+が三価の金属イオンであるAl3+
Fe3+またはCr3+、M2+が二価の金属イオンで
あるMg2+、Mn2+またはCu2+、及びA
陰イオンであるOH、Cl、NO 、CO 2−
またはSO 2−が好ましい。更にはこのようなハイド
ロタルサイトのうち、AlMg(OH)16(CO
)・4HOやAlCu(OH)20(CO
1.5・6HO、AlMn(OH)16(C
)・4HO等が最も好んで用いられる。これら結
晶構造を持つハイドロタルサイトの一般的な製法には、
例えばM2+にCuを用いた場合、炭酸ナトリウム水溶
液に、0.16≦X≦0.33となる既知量の硝酸銅と
硝酸アルミニウムの水溶液を混ぜ合わせ、スラリーpH
を6〜7となるように調整する。更に80〜90℃の温
度で熟成後、ろ過、乾燥することによって得られる層状
化合物、すなわち、ハイドロタルサイト構造をもつ粉体
を得ることができる。
Hereinafter, the present invention will be described in detail. Hydrotalcite having a crystal structure, which is one of the main components of the treating agent of the present invention, is [M 3+ X M 2+ 1-X (OH) 2 ] X +.
[A n− X / n mH 2 O] X− , where M 3+ is a trivalent metal ion, M 2+ is a divalent metal ion, and A n− is a component mainly composed of an n-valent anion. Most effective. Among them, Al 3+ in which M 3+ is a trivalent metal ion,
Fe 3+ or Cr 3+ , Mg 2+ in which M 2+ is a divalent metal ion, Mn 2+ or Cu 2+ , and OH , Cl , NO 3 , CO 3 2− in which An is an anion.
Alternatively, SO 4 2− is preferable. Furthermore, among such hydrotalcites, Al 2 Mg 6 (OH) 16 (CO
3 ) .4H 2 O and Al 3 Cu 7 (OH) 20 (CO 3 )
1.5 · 6H 2 O, Al 2 Mn 6 (OH) 16 (C
O 3 ) .4H 2 O is most preferably used. The general production method of hydrotalcite with these crystal structures is:
For example, when Cu is used for M 2+ , a known amount of 0.16 ≦ X ≦ 0.33 of copper nitrate and aluminum nitrate is mixed with an aqueous solution of sodium carbonate to obtain a slurry pH.
Is adjusted to be 6 to 7. Furthermore, after aging at a temperature of 80 to 90 ° C., a layered compound obtained by filtering and drying, that is, a powder having a hydrotalcite structure can be obtained.

【0008】本発明の処理剤であるもう一つは、前記と
同一組成である非晶質な構造を有する前駆体である。非
晶質な構造を有する前駆体は、前記するハイドロタルサ
イトの製法のうち、熟成操作を除くことによって得るこ
とが出来る。これらは、前記した製造方法によっても、
また一般に市販されるものであっても使用できる。ま
た、本発明に於いて、ハイドロタルサイト構造を有する
粉体と、その前駆体となる非晶質な構造を有する粉体の
混合物であっても良い。また未反応生成物としてAl
(OH)や、原料であるアルカリ成分等が微量含まれ
ていてもその効果には何ら差し支えない。
The other treating agent of the present invention is a precursor having the same composition as the above and having an amorphous structure. The precursor having an amorphous structure can be obtained by removing the aging operation from the above hydrotalcite production method. These are also produced by the manufacturing method described above.
Further, even those which are commercially available can be used. Further, in the present invention, a mixture of a powder having a hydrotalcite structure and a powder having an amorphous structure as a precursor thereof may be used. In addition, as unreacted products, Al
Even if a small amount of (OH) 3 or an alkaline component as a raw material is contained, there is no problem in its effect.

【0009】本発明の処理剤は、前記の成分を主体とす
るものであって、実際の処理操作を行う場合には、これ
を充填層とし、該充填層にシラン系ガスを含有する排ガ
スを通気処理して行う。この場合、処理剤たるハイドロ
タルサイトの粒子は微細なものとし1m/g以上の比
表面積(SA)をもたせ、シラン系ガスとの気固接触能
を向上させることが望ましい。これらは、そのまま使用
することもできるが、より微細な粒子に粉砕したり、所
望の組成で混練したり、さらに適当な形状に成形しても
よい。また、一般的に担体として知られている、例えば
Al、SiO、ゼオライトなどに担持したもの
でもよい。尚、本発明のシラン系ガスとは、モノシラン
(SiH)、ジシラン(Si)、トリシラン
(Si)に加え、ホスフィン(PH)、アルシ
ン(AsH)、ジボラン(B)等、ガス状の水
素化金属化合物をいう。
The treating agent of the present invention is mainly composed of the above-mentioned components, and when an actual treating operation is carried out, this is used as a packed bed, and exhaust gas containing a silane gas is contained in the packed bed. Aeration is performed. In this case, it is desirable that the particles of the hydrotalcite as a treating agent be fine and have a specific surface area (SA) of 1 m 2 / g or more to improve the gas-solid contact ability with the silane-based gas. These may be used as they are, but may be pulverized into finer particles, kneaded with a desired composition, or molded into an appropriate shape. Further, it may be supported on, for example, Al 2 O 3 , SiO 2 , zeolite, etc. which are generally known as carriers. The silane-based gas of the present invention means monosilane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), phosphine (PH 3 ), arsine (AsH 3 ), diborane (B). 2 H 6 ), etc., and a gaseous metal hydride compound.

【0010】また、処理剤の排ガス処理能力を高めるた
め、処理温度は高い方が通常より効果的である。したが
って、充填層で操作する場合は、充填層の加熱を行ない
ながら排ガスを送入することが好ましい。しかしなが
ら、本発明の処理剤に於いては、かかる加熱を全く必要
とせず、室温でも十分にその排ガス除去機能を果し得る
ものもあり、また処理すべきシラン系排ガスの濃度や目
的とする除去率によっては、必ずしも必要不可欠なもの
ではない。なお、実施例に示す如く本発明におけるハイ
ドロタルサイトを主体とする処理剤による処理において
は、排ガス中のシラン系ガス濃度を0.1ppm以下、
すなわち、検出限界以下に処理することができる。
Further, in order to enhance the exhaust gas treating ability of the treating agent, a higher treating temperature is more effective than usual. Therefore, when operating in a packed bed, it is preferable to feed the exhaust gas while heating the packed bed. However, some of the treating agents of the present invention do not require such heating at all and can sufficiently perform the exhaust gas removing function even at room temperature, and the concentration of the silane-based exhaust gas to be treated and the desired removal Depending on the rate, it is not absolutely necessary. Incidentally, as shown in Examples, in the treatment with the treatment agent mainly composed of hydrotalcite in the present invention, the concentration of silane-based gas in the exhaust gas is 0.1 ppm or less,
That is, it can be processed below the detection limit.

【0011】本発明の処理剤を使用し、例えばこれを充
填層として操作する場合の充填層としては、1系列の充
填層でも十分ではあるが、充填剤の再生や交換等の操作
上の観点からこれを複数並列方式とし、それぞれを処理
層、再処理層とし相互に切り換えて使用するのが望まし
い。なお、実際の半導体製造においては、シラン、ジシ
ラン、トリシランガスによるシリコン膜に、砒素、ホウ
素、リン等のドーピングをしばしば行うので、シラン、
ジシラン、トリシランガスとともにドーパントたるアル
シン、ホスフィン、ジボラン等を含有している排ガスが
排出されるが、本発明の処理剤を使用すれば、かかるド
ープ用ガスとして利用されるホスフィン、ジボランまた
はアルシン等のガスについてもシラン、ジシラン、トリ
シランガスと共に除去することができるという利点を有
する。
When the treating agent of the present invention is used, for example, when it is operated as a packed bed, a packed bed of one series is sufficient, but an operating point of view such as regeneration or replacement of the packing material. Therefore, it is desirable to use a plurality of parallel methods and use them as a processing layer and a reprocessing layer, respectively, by switching between them. In actual semiconductor manufacturing, since arsenic, boron, phosphorus, etc. are often doped in a silicon film with silane, disilane, or trisilane gas, silane,
Exhaust gas containing disilane, trisilane gas and dopants arsine, phosphine, diborane, etc. is discharged, but if the treatment agent of the present invention is used, phosphine, diborane, arsine, etc. used as such a doping gas can be obtained. The gas has an advantage that it can be removed together with silane, disilane and trisilane gases.

【0012】[0012]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明する。 実施例1〜2 2.1モルのNaCO溶解液3Lに、2モルのCu
(NO−Al(NO(Cu2+/Al3+
=2.3)混合溶解液3Lを滴下しpH6にした。この
間懸濁液を高速で回転し40℃に保ち、30分後、洗浄
濾過を行った。この半分を60℃にて乾燥し、比表面積
24m/gのAlCu(OH) (CO
1.56HOでの非晶質な構造を有する前駆体を得
た。残りの半分を再び純水に懸濁し、高速で回転し90
℃に保ち、1時間熟成を行った。その後、洗浄濾過を行
い60℃にて乾燥し、比表面積13m/gの結晶構造
を有するハイドロタルサイトを得た。この同組成の2種
の粉剤を、小型タブレットマシンで3.2mm×3.2
mmφの円柱状タブレットを成型し、処理剤とした。次
に図1に示す、長さ500mm、内径25mmφのSU
S製の充填カラム1で、両側にガス導入口2、ガス排気
口3、カラムの内側中央部に熱伝対温度計4を備えた装
置を使用し、このカラムの中央部に、上記処理剤5を各
々100cc充填し、25℃の室温下で、ガス導入管よ
りNで希釈されたSiH濃度1%のガスを300c
c/minで通気した。充填カラム1のガス排気口3よ
りガスを補集し、ガス中のモノシラン濃度を分析した。
分析は光イオン化検出器を備えたガスクロマトグラフ
(日立製263−30型)により行なった。分離カラム
は Porapak−Tであり、モノシランの検出限界
は0.1ppmである。排気口よりモノシランが検出さ
れるまでの時間、及び通気中の最高温度を測定した。ま
た、ガス排気口3よりモノシランが検出された後、カラ
ム内をNガスでパージし、更にガス導入口2よりAi
rを25℃の室温下で、300cc/minの流量で通
気し、通気中の最高温度を測定した結果、表1に示すよ
うに大きく発熱することはなっかった。試験結果は、表
1に示す。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. Examples 1 to 2 To 2.1 L of Na 2 CO 3 solution 3 L, 2 mol of Cu was added.
(NO 3) 2 -Al (NO 3) 3 (Cu 2+ / Al 3+
= 2.3) 3 L of the mixed solution was added dropwise to adjust the pH to 6. During this period, the suspension was rotated at high speed and kept at 40 ° C., and after 30 minutes, washing filtration was performed. This half is dried at 60 ° C. to obtain Al 3 Cu 7 (OH) 2 0 (CO 3 ) having a specific surface area of 24 m 2 / g.
A precursor having an amorphous structure at 1.5 6 H 2 O was obtained. Resuspend the other half in pure water and spin at high speed for 90
The temperature was kept at 0 ° C. and aging was carried out for 1 hour. Then, it was washed and filtered and dried at 60 ° C. to obtain hydrotalcite having a crystal structure with a specific surface area of 13 m 2 / g. The two powders of the same composition were used to measure 3.2 mm x 3.2 on a small tablet machine.
A cylindrical tablet having a diameter of mmφ was formed into a treating agent. Next, the SU with a length of 500 mm and an inner diameter of 25 mmφ shown in FIG.
In the packed column 1 made of S, an apparatus equipped with a gas inlet 2, a gas outlet 3 on both sides, and a thermocouple thermometer 4 in the center of the inside of the column was used. 5 was filled with 100 cc of each, and at room temperature of 25 ° C., 300 c of a gas having a SiH 4 concentration of 1% diluted with N 2 was introduced through a gas inlet pipe.
Aeration was performed at c / min. Gas was collected from the gas exhaust port 3 of the packed column 1 and the concentration of monosilane in the gas was analyzed.
The analysis was performed with a gas chromatograph (type 263-30 manufactured by Hitachi) equipped with a photoionization detector. The separation column is Porapak-T, and the detection limit of monosilane is 0.1 ppm. The time until the monosilane was detected from the exhaust port and the maximum temperature during ventilation were measured. Further, after monosilane was detected from the gas exhaust port 3, the inside of the column was purged with N 2 gas, and Ai was further introduced from the gas inlet port 2.
r was aerated at room temperature of 25 ° C. at a flow rate of 300 cc / min, and the maximum temperature during aeration was measured. As a result, as shown in Table 1, a large amount of heat was not generated. The test results are shown in Table 1.

【0013】実施例3〜4 1.8モルのNaCOと0.4モルのNaOH溶解
液3Lに、2モルのMg(NO−Al(NO
(Cu2+/Al3+=3)混合溶解液3Lを滴下し
pH6にした。この間懸濁液を高速で回転し40℃に保
ち、30分後、洗浄濾過を行った。この半分を60℃に
て乾燥し、比表面積27m/gの非晶質な構造を有す
る前駆体を得た。残りの半分は実施例1と同様に熟成を
行った。その後、洗浄濾過を行い60℃にて乾燥し、比
表面積15m/gの結晶構造を有するハイドロタルサ
イトを得た。そして、それぞれ小型タブレットマシンで
3.2mm×3.2mmφの円柱状タブレットを成型し
た。これを実施例1〜2と同じ装置を使用し、同様の方
法で試験を行った。試験結果は、表1に示す。
Examples 3 to 4 2 mol of Mg (NO 3 ) 2 -Al (NO 3 ) was added to 3 L of 1.8 mol of Na 2 CO 3 and 0.4 mol of NaOH solution.
3 L of 3 (Cu 2+ / Al 3+ = 3) mixed solution was added dropwise to adjust the pH to 6. During this period, the suspension was rotated at high speed and kept at 40 ° C., and after 30 minutes, washing filtration was performed. This half was dried at 60 ° C. to obtain a precursor having an amorphous structure with a specific surface area of 27 m 2 / g. The other half was aged as in Example 1. Then, it was washed and filtered and dried at 60 ° C. to obtain hydrotalcite having a crystal structure with a specific surface area of 15 m 2 / g. Then, cylindrical tablets each having a size of 3.2 mm × 3.2 mmφ were formed by a small tablet machine. This was tested by the same method using the same apparatus as in Examples 1 and 2. The test results are shown in Table 1.

【0014】実施例5〜6 比表面積16m/gのAlMn(OH)16(C
)4HOのハイドロタルサイト、及び同組成の比
表面積25m/gの非晶質な構造を有する前駆体を、
それぞれ小型タブレットマシンで3.2mm×3.2m
mφの円柱状タブレットを成型した。これを実施例1〜
2と同じ装置を使用し、同様の方法で試験を行った。試
験結果は、表1に示す。
Examples 5 to 6 Al 2 Mn 6 (OH) 16 (C having a specific surface area of 16 m 2 / g)
O 3 ) 4H 2 O hydrotalcite and a precursor having the same composition and an amorphous structure with a specific surface area of 25 m 2 / g,
Each is a small tablet machine 3.2 mm x 3.2 m
A cylindrical tablet of mφ was molded. Example 1
A test was conducted in the same manner using the same device as in 2. The test results are shown in Table 1.

【0015】実施例7〜12 実施例1〜2と同様のハイドロタルサイト及び非晶質な
構造を有する前駆体ををAl、SiO、合成ゼ
オライト(MS−4A)の3種の担体に、それぞれ20
%ずつ担持した。これを実施例1〜2と同じ装置を使用
し、同様の方法で試験を行った。試験結果は、表1に示
す。
Examples 7 to 12 Precursors having the same hydrotalcite and amorphous structure as in Examples 1 to 2 were prepared from three kinds of Al 2 O 3 , SiO 2 and synthetic zeolite (MS-4A). 20 for each carrier
% Loading. This was tested by the same method using the same apparatus as in Examples 1 and 2. The test results are shown in Table 1.

【0016】実施例13〜15 実施例1で成型した、比表面積13m/gのAl
(OH)20(CO1.56HOのハイドロ
タルサイトを、表1に示すNガスで1%に希釈された
それぞれのシラン系ガスを、実施例1〜2と同様の操作
で試験を行った。試験結果は、表1に示す。尚、当該ガ
スの検出限界は、いずれも0.1ppmである。
Examples 13 to 15 Al 3 C molded in Example 1 and having a specific surface area of 13 m 2 / g
u 7 (OH) 20 (CO 3 ) 1.5 6H 2 O hydrotalcite was diluted with N 2 gas shown in Table 1 to 1%, and each silane-based gas was treated in the same manner as in Examples 1 and 2. The test was conducted by the following procedure. The test results are shown in Table 1. The detection limit of the gas is 0.1 ppm in all cases.

【0017】[0017]

【表1】 [Table 1]

【0018】比較例1〜12 実施例において用いたシラン系含有ガスを炭酸ナトリウ
ム、酸化マンガン、塩基性炭酸銅を処理剤としてカラム
に充填し通気した。その他は実施例1〜2と同様の方法
で試験を行なった。試験結果を、表2に示した。
Comparative Examples 1 to 12 The silane-containing gas used in the examples was filled in a column with sodium carbonate, manganese oxide, and basic copper carbonate as treating agents and aerated. Others were tested in the same manner as in Examples 1 and 2. The test results are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明では従来技術では達成されなかっ
た、排ガス中に含まれるシラン系ガスの処理温度を高温
にすることなく、0.1ppm以下まで除害することが
でき、かつシラン系ガス通気中の発熱が小さく、しかも
通気後の処理剤を大気中に暴露した時に起こる発熱、発
火といった問題点を解決したものである。したがって、
本発明の処理剤は、極めて、安全に使用できるのであ
る。すなわち、本発明の範囲外である比較例は、排ガス
中に含まれるシラン系ガスの処理時間が短く、また、処
理時間が比較的長い場合には通気後の処理剤を大気中に
暴露した時に起こる発熱が大きく危険となる欠点を有す
る。これに対し、本発明の範囲内である実施例はこれら
の性能がすべて優れている。このようなシラン系ガスの
処理剤及び処理方法を提供することは、半導体工業に於
いて、排ガス中に含まれるシラン系ガスを処理する上
で、安全性の向上や低コスト化を図ることが出来、その
効果は大きい。
EFFECTS OF THE INVENTION In the present invention, it is possible to remove silane-based gas contained in exhaust gas up to 0.1 ppm or less without raising the treatment temperature of the silane-based gas, which has not been achieved by the prior art. This method solves the problems of low heat generation during aeration and heat generation and ignition that occur when the treatment agent after aeration is exposed to the atmosphere. Therefore,
The treatment agent of the present invention can be used extremely safely. That is, Comparative Examples outside the scope of the present invention, the treatment time of the silane-based gas contained in the exhaust gas is short, and when the treatment time is relatively long, when the treating agent after aeration is exposed to the atmosphere. It has the drawback that the heat generated is large and dangerous. On the other hand, the examples within the scope of the present invention are all excellent in these performances. Providing such a silane-based gas treating agent and treatment method can improve the safety and reduce the cost in treating the silane-based gas contained in the exhaust gas in the semiconductor industry. It's done, and the effect is great.

【0021】[0021]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に用いる排ガス処理方法のカラム断面
図の一例
FIG. 1 is an example of a column sectional view of an exhaust gas treatment method used in the present invention.

【符号の説明】[Explanation of symbols]

1 カラム 2 ガス導入口 3 ガス排気口 4 熱電対温度計 5 処理剤 1 column 2 gas inlet 3 gas exhaust 4 thermocouple thermometer 5 treatment agent

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式が化1で構成される、ハイドロ
タルサイト及び非結晶構造を有する前駆体のうち、M
3+が三価の金属イオン、M2+が二価の金属イオン及
びAn−がn価の陰イオンを主体としてなるシラン系ガ
スを含む排ガスの処理剤。 【化1】[M3+ 2+ 1−X(OH)X+[A
n− X/nmHO]X−
1. Among hydrotalcites and precursors having an amorphous structure, represented by the general formula:
An exhaust gas treating agent containing a silane-based gas in which 3+ is a trivalent metal ion, M 2+ is a divalent metal ion, and A n− is an n-valent anion. Embedded image [M 3+ X M 2+ 1-X (OH) 2 ] X + [A
n- X / n mH 2 O] X-
【請求項2】 請求項1の処理剤を半導体装置から排
出するシラン系ガスを含む排ガスと気固接触によって処
理することを特徴とする排ガスの処理方法。
2. A method for treating exhaust gas, comprising treating the treating agent according to claim 1 with exhaust gas containing a silane-based gas discharged from a semiconductor device by gas-solid contact.
【請求項3】 M3+がAl3+、Fe3+またはC
3+、M2+がMg2+、Mn2+またはCu2+
びAn−がOH、Cl、NO 、CO 2−また
はSO 2−の陰イオンである請求項1記載の処理剤。
3. M3+Is Al3+, Fe3+Or C
r3+, M2+Is Mg2+, Mn2+Or Cu2+Over
And An-Is OH, Cl, NOThree , CO Three 2-Also
Is SOFour 2-The treatment agent according to claim 1, which is an anion of
JP7128290A 1995-05-26 1995-05-26 Waste gas treating agent and treating method Pending JPH08318131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7128290A JPH08318131A (en) 1995-05-26 1995-05-26 Waste gas treating agent and treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7128290A JPH08318131A (en) 1995-05-26 1995-05-26 Waste gas treating agent and treating method

Publications (1)

Publication Number Publication Date
JPH08318131A true JPH08318131A (en) 1996-12-03

Family

ID=14981162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7128290A Pending JPH08318131A (en) 1995-05-26 1995-05-26 Waste gas treating agent and treating method

Country Status (1)

Country Link
JP (1) JPH08318131A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279444A (en) * 2004-03-29 2005-10-13 Kyocera Corp Manufacturing method of hydroxide particle
KR100654885B1 (en) * 2005-06-01 2006-12-06 장길상 Method for decomposing nitrogen oxides with carbon monoxide
WO2009096597A1 (en) * 2008-01-31 2009-08-06 Kyowa Chemical Industry Co., Ltd. Selective adsorbent material, and method for production thereof
WO2010109671A1 (en) * 2009-03-27 2010-09-30 ズードケミー触媒株式会社 Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279444A (en) * 2004-03-29 2005-10-13 Kyocera Corp Manufacturing method of hydroxide particle
JP4511227B2 (en) * 2004-03-29 2010-07-28 京セラ株式会社 Method for producing hydroxide particles
KR100654885B1 (en) * 2005-06-01 2006-12-06 장길상 Method for decomposing nitrogen oxides with carbon monoxide
WO2009096597A1 (en) * 2008-01-31 2009-08-06 Kyowa Chemical Industry Co., Ltd. Selective adsorbent material, and method for production thereof
JP2009178682A (en) * 2008-01-31 2009-08-13 National Institute Of Advanced Industrial & Technology Selective adsorbent and its production method
WO2010109671A1 (en) * 2009-03-27 2010-09-30 ズードケミー触媒株式会社 Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride
US8568672B2 (en) 2009-03-27 2013-10-29 Sued-Chemie Catalysts Japan Inc. Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride
JP6006492B2 (en) * 2009-03-27 2016-10-12 クラリアント触媒株式会社 Exhaust gas abatement agent containing volatile inorganic hydride and exhaust gas abatement method containing volatile inorganic hydride

Similar Documents

Publication Publication Date Title
JPH04502726A (en) Dry exhaust gas control method
JPS60125233A (en) High degree treatment of exhaust gas
JPH1149509A (en) Production of polycrystalline silicon with little carbon content
JPH08318131A (en) Waste gas treating agent and treating method
WO2001089666A1 (en) Composition and method for rendering halogen-containing gas harmless
JPH08192024A (en) Processing agent for waste gas and treatment of the gas
JP3574973B2 (en) Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants
JP2972975B2 (en) Hazardous exhaust gas abatement method and abatement agent
KR20010061933A (en) Cleaning agent and cleaning process of harmful gas
JPS6295119A (en) Method for removing gaseous hydride
US7067091B2 (en) Treating agent for metal-hydride-containing exhaust gas and method of preparing the same as well as method of treating metal-hydride-containing exhaust gas
JP2561616B2 (en) Solid remover for harmful components
JPH10182128A (en) Production of high purity silicon powder
JP3667804B2 (en) How to remove harmful gases
JP4486215B2 (en) How to recover the pesticide
JPS62286521A (en) Method for purifying exhaust gas
JPH0724738B2 (en) Advanced treatment agent for exhaust gas
JPH09187623A (en) Harmful matter removing agent for organometallic compound and removing method of harmful matter in harmful gas
JP3227601B2 (en) Harmful exhaust gas abatement agent
JPS6190726A (en) Removing agent
JPH0699128B2 (en) Silane refining agent and refining method
JPH0687943B2 (en) Exhaust gas purification method
JP3362918B2 (en) Exhaust gas purification method
JPH09285716A (en) Harm removing agent and inspection method of raw material
JP2932056B2 (en) Solid detection agent for harmful components

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees