JPH08316741A - Linearizer for non-monotonous phase distortion compensation - Google Patents

Linearizer for non-monotonous phase distortion compensation

Info

Publication number
JPH08316741A
JPH08316741A JP12373195A JP12373195A JPH08316741A JP H08316741 A JPH08316741 A JP H08316741A JP 12373195 A JP12373195 A JP 12373195A JP 12373195 A JP12373195 A JP 12373195A JP H08316741 A JPH08316741 A JP H08316741A
Authority
JP
Japan
Prior art keywords
amplifier
phase
input level
output
linearizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12373195A
Other languages
Japanese (ja)
Other versions
JP2708014B2 (en
Inventor
Yutaka Nakano
裕 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12373195A priority Critical patent/JP2708014B2/en
Publication of JPH08316741A publication Critical patent/JPH08316741A/en
Application granted granted Critical
Publication of JP2708014B2 publication Critical patent/JP2708014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Networks Using Active Elements (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE: To compensate a phase characteristic of an amplifier changing non- monotonously with respect to an RF input level by adding a distortion generating route connecting an amplifier and a phase change device after a variable attenuator to a conventional linearizer and revising a fixed resistor attenuator before a linear amplifier into a variable attenuator. CONSTITUTION: Since amplifiers 3, 7, 10 all operates in the linear region when an RF input level is sufficiently low, the gain vectors of routes α, β in the linear and nonlinear amplifier route show prescribed values with respect to a change in the RF input level. On the other hand, as the RF level increases, since only the amplifier 7 operates in the linear region, the route α is decreased as the RF input level increases and the phase of the resultant vector C' is changed. When the RF input level is further increased, since the amplifier 10 operates also in the nonlinear region, the gain vectors of the routes α, β are both decreased and the phase of the resultant vector C" is further changed. Thus, a linearizer with a non-monotonous phase characteristic with respect to the RF input level change is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリニアライザーに関し、
特にRF入力レベルの変化に対し、非単調に位相が変化
する増幅器等に接続する位相歪補償用リニアライザーに
関する。
FIELD OF THE INVENTION The present invention relates to a linearizer,
In particular, the present invention relates to a phase distortion compensation linearizer connected to an amplifier or the like whose phase changes non-monotonically with respect to a change in RF input level.

【0002】[0002]

【従来の技術】図3は、従来の位相歪補償用リニアライ
ザーの構成を示すブロック図、図4(a),(b)は、
従来例での利得ベクトルとその合成ベクトルを示すベク
トル図である。
2. Description of the Related Art FIG. 3 is a block diagram showing the configuration of a conventional linearizer for phase distortion compensation, and FIGS. 4 (a) and 4 (b) are
It is a vector diagram which shows the gain vector in the prior art example, and its synthetic | combination vector.

【0003】従来のリニアライザーは、図3に示すよう
に、入力RF信号を2つに分波する分波器1と、この分
波器1の一方の出力端に接続された固定抵抗減衰器13
と、この固定抵抗減衰器13に接続された位相変化器4
と、この位相変化器4に接続された増幅器3と、分波器
1の他方の出力端に接続された増幅器7と、この増幅器
7に接続された可変減衰器8と、増幅器3の出力と可変
減衰器8の出力を合成する合波器5を有している。ここ
で、増幅器3、増幅器7の動作はともにRF入力レベル
に対して異なる線形領域を有するものである。
As shown in FIG. 3, a conventional linearizer includes a demultiplexer 1 for demultiplexing an input RF signal into two, and a fixed resistance attenuator connected to one output end of the demultiplexer 1. Thirteen
And the phase changer 4 connected to the fixed resistance attenuator 13
An amplifier 3 connected to the phase changer 4, an amplifier 7 connected to the other output terminal of the demultiplexer 1, a variable attenuator 8 connected to the amplifier 7, and an output of the amplifier 3. It has a multiplexer 5 that combines the outputs of the variable attenuators 8. Here, the operations of the amplifier 3 and the amplifier 7 both have different linear regions with respect to the RF input level.

【0004】次に、動作について説明する。ここで説明
のために、図3において位相変化器4、及び増幅器3に
て構成されるルートを線形増幅ルートと、また、増幅器
7、及び可変減衰器8にて構成されるルートを非線形増
幅ルートと呼ぶことにする。RF入力レベルが低い領域
では増幅器3、増幅器7ともに線形領域にて動作するた
めRF入力レベルの変化に対して利得は変化しない。こ
のため、図4−(a)に示すように、線形増幅ルートの
利得ベクトル[A]及び非線形増幅ルートの利得ベクト
ル[B]はRF入力レベルの変化に対して一定の値を示
す。したがって合波器5の出力に相当する合成ベクトル
[C]の位相は変化しない。
Next, the operation will be described. For the sake of explanation, the route formed by the phase changer 4 and the amplifier 3 in FIG. 3 is a linear amplification route, and the route formed by the amplifier 7 and the variable attenuator 8 is a non-linear amplification route. I will call it. In the region where the RF input level is low, both the amplifier 3 and the amplifier 7 operate in the linear region, so that the gain does not change with the change in the RF input level. Therefore, as shown in FIG. 4A, the gain vector [A] of the linear amplification route and the gain vector [B] of the non-linear amplification route show constant values with respect to changes in the RF input level. Therefore, the phase of the combined vector [C] corresponding to the output of the multiplexer 5 does not change.

【0005】一方、RF入力レベルが高い領域では増幅
器7のみが非線形領域で動作するため、図4ー(b)に
示すようにRF入力レベルが増加するにつれて、非線形
増幅ルートの利得ベクトル[B′]だけが小さくなり、
合成ベクトル[C′]の位相が変化する。この位相変化
がリニアライザーの後段に接続される増幅器等の位相変
化を相殺するように構成されることによって、増幅器等
の位相歪が補償されることになる。
On the other hand, in the region where the RF input level is high, only the amplifier 7 operates in the nonlinear region. Therefore, as the RF input level increases as shown in FIG. 4B, the gain vector [B 'of the nonlinear amplification route is obtained. ] Becomes smaller,
The phase of the composite vector [C '] changes. By being configured so that this phase change cancels the phase change of the amplifier or the like connected to the latter stage of the linearizer, the phase distortion of the amplifier or the like is compensated.

【0006】[0006]

【発明が解決しようとする課題】従来のリニアライザー
においては、RF入力レベルの変化に対し、単調な位相
変化をもつ増幅器等の位相変化を補償する機能を持ち得
るが、非単調な位相変化をもつ増幅器等を補償すること
が困難であった。
A conventional linearizer may have a function of compensating for a phase change of an amplifier or the like having a monotonous phase change with respect to a change of an RF input level, but a non-monotonic phase change is caused. It was difficult to compensate the amplifier etc.

【0007】本発明の目的は、従来技術の欠点に鑑み
て、RF入力レベルの変化に対して非単調な位相歪特性
を持つ増幅器に対してすぐれた位相歪補償が可能とする
位相歪補償用リニアライザーを提供することにある。
In view of the drawbacks of the prior art, it is an object of the present invention to provide a phase distortion compensator capable of excellent phase distortion compensation for an amplifier having a non-monotonic phase distortion characteristic with respect to a change in RF input level. To provide a linearizer.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明の非単調位相歪補償用リニアライザーは、
入力RF信号を2波に分配する第1の分波器と、前記第
1の分波器の片方の出力端に接続された第1の可変減衰
器と、前記第1の可変減衰器に任意の順番に接続された
第1の増幅器と第1の位相変化器を含む第1の経路と、
前記第1の分波器の他方の出力端に接続された第2の分
波器と、前記第2の分波器の片方の出力端に任意の順番
に接続された第2の増幅器と第2の可変減衰器とを含む
第2の経路と、前記第1の経路の出力と前記第2の経路
の出力を合成する第1の合波器と、前記第2の分波器の
他方の出力端に接続された第3の可変減衰器と、前記第
3の可変減衰器の出力に任意の順番に接続された第3の
増幅器と第2の位相変化器を含む第3の経路と、前記第
1の合波器の出力と前記第3の経路の出力を合成する第
2の合波器とから成るものである。
In order to solve the above problems, the linearizer for non-monotonic phase distortion compensation of the present invention is
A first demultiplexer for dividing an input RF signal into two waves, a first variable attenuator connected to one output end of the first demultiplexer, and an arbitrary variable attenuator for the first variable attenuator A first path including a first amplifier and a first phase changer connected in sequence,
A second demultiplexer connected to the other output terminal of the first demultiplexer, and a second amplifier connected to one output terminal of the second demultiplexer in any order. A second path including two variable attenuators, a first multiplexer that combines the output of the first path and the output of the second path, and the other of the second demultiplexer A third variable attenuator connected to the output end, a third path including a third amplifier and a second phase changer connected to the output of the third variable attenuator in any order, The second multiplexer combines the output of the first multiplexer and the output of the third path.

【0009】[0009]

【作用】本発明、非単調位相歪補償用リニアライザーの
ように、入力RF信号を2波に分配する第1の分波器の
片方の出力端に接続された第1の可変減衰器に任意の順
番に接続された第1の増幅器と第1の位相変化器を含む
第1の経路と、第1の分波器の他方の出力端に接続され
た第2の分波器の片方の出力端に任意の順番に接続され
た第2の増幅器と第2の可変減衰器とを含む第2の経路
と、さらに第2の分波器の他方の出力端に接続された第
3の可変減衰器の出力に任意の順番に接続された第3の
増幅器と第2の位相変化器を含む第3の経路とを設け、
3つの増幅器を、それぞれ、RF入力レベルに対して異
なる線形領域のものとし、第1の経路の出力と第2の経
路の出力を第1の合波器で合成し、さらに第1の合波器
の出力と第3の経路の出力を第2の合波器で合成するこ
とによって、非単調なRF入力レベルー位相特性の出力
を得ることができる。
According to the present invention, like the non-monotonic phase distortion compensating linearizer, the first variable attenuator connected to one output terminal of the first demultiplexer for dividing the input RF signal into two waves can be optionally used. A first path including a first amplifier and a first phase changer connected in this order, and one output of a second duplexer connected to the other output end of the first duplexer A second path including a second amplifier and a second variable attenuator connected to the end in any order, and a third variable attenuation connected to the other output end of the second demultiplexer A third amplifier connected to the output of the converter in any order and a third path including a second phase changer,
Each of the three amplifiers has a different linear region with respect to the RF input level, the output of the first path and the output of the second path are combined by the first combiner, and the first combiner is further combined. An output having a non-monotonic RF input level-phase characteristic can be obtained by synthesizing the output of the converter and the output of the third path by the second multiplexer.

【0010】[0010]

【実施例】図1は、本発明の非単調位相歪補償用リニア
ライザーの一実施例を示すブロック図、図2(a)〜
(c)は利得ベクトルとその合成ベクトルを示すベクト
ル図、(d)は実施例における入力レベルー位相変化の
関係を示す出力特性図、(e)は補償対象である増幅器
等の非単調な位相歪特性を示す出力特性図である。
1 is a block diagram showing an embodiment of a linearizer for non-monotonic phase distortion compensation according to the present invention, FIG.
(C) is a vector diagram showing the gain vector and its combined vector, (d) is an output characteristic diagram showing the relationship between the input level and the phase change in the embodiment, and (e) is the non-monotonic phase distortion of the amplifier or the like to be compensated It is an output characteristic view which shows a characteristic.

【0011】図1において、1は入力RF信号を2波に
分配する第1の分波器で、2は分波器1の片方の出力端
に接続された可変減衰器、3及び4はそれぞれ増幅器及
び位相変化器である。6は分波器1の他方の出力端に接
続された分波器で、7及び8は分波器6の片方の出力端
に接続された増幅器及び可変減衰器である。5は位相変
化器4の出力と可変減衰器8の出力を合成する合波器で
ある。分波器6の他方の出力端には可変減衰器9、増幅
器10及び位相変化器11が接続され、12は合波器5
の出力と位相変化器11の出力を合成する合波器であ
る。ここで、増幅器3、増幅器7及び10の動作は、そ
れぞれ、RF入力レベルに対して異なる線形領域を有す
るものである。
In FIG. 1, 1 is a first demultiplexer for dividing an input RF signal into two waves, 2 is a variable attenuator connected to one output end of the demultiplexer 1, and 3 and 4 are respectively. An amplifier and a phase changer. Reference numeral 6 is a branching filter connected to the other output terminal of the branching filter 1, and reference numerals 7 and 8 are an amplifier and a variable attenuator connected to one output terminal of the branching filter 6. Reference numeral 5 is a multiplexer for combining the output of the phase changer 4 and the output of the variable attenuator 8. The variable attenuator 9, the amplifier 10 and the phase changer 11 are connected to the other output end of the demultiplexer 6, and 12 is the multiplexer 5
Is a multiplexer for synthesizing the output of 1 and the output of the phase changer 11. Here, the operations of the amplifier 3 and the amplifiers 7 and 10 have different linear regions with respect to the RF input level.

【0012】まず説明のために、可変減衰器2、増幅器
3、位相変化器4にて構成されるルートを線形増幅ルー
トと、また、増幅器7、可変減衰器8にて構成されるル
ートを非線形増幅ルートαと、そして可変減衰器9、増
幅器10、位相変化器11にて構成されるルートを非線
形増幅ルートβと呼ぶことにする。
First, for the sake of explanation, the route constituted by the variable attenuator 2, the amplifier 3 and the phase changer 4 is a linear amplification route, and the route constituted by the amplifier 7 and the variable attenuator 8 is non-linear. The amplification route α and the route formed by the variable attenuator 9, the amplifier 10 and the phase changer 11 will be referred to as a non-linear amplification route β.

【0013】次に、動作について説明する。まず最初
に、RF入力レベルが十分低い領域においては、増幅器
3、増幅器7、増幅器10共に線形領域にて動作するた
め、図2ー(a)に示す様に線形増幅ルートの利得ベク
トル[A]及び非線形増幅ルートαの利得ベクトル[B
1 ]及び、非線形増幅ルートβの利得ベクトル[B2
はRF入力レベルの変化に対して一定の値を示す。した
がって合波器12の出力に相当する合成ベクトル[C]
の位相は変化しない。
Next, the operation will be described. First, in the region where the RF input level is sufficiently low, all of the amplifier 3, the amplifier 7, and the amplifier 10 operate in the linear region, so that the gain vector [A] of the linear amplification route as shown in FIG. And the gain vector of the nonlinear amplification route α [B
1 ] and the gain vector [B 2 ] of the nonlinear amplification route β
Indicates a constant value with respect to changes in the RF input level. Therefore, the composite vector [C] corresponding to the output of the multiplexer 12
The phase of does not change.

【0014】ところが、RF入力レベルが上昇するにつ
れて、まず増幅器7のみが非線形領域で動作することに
なるため、図2ー(b)に示すようにRF入力レベルが
上昇するにつれて非線形増幅ルートαの利得ベクトルが
[B1 → B1′]と小さくなり、合成ベクトル[C′]
の位相が変化する。
However, as the RF input level rises, first, only the amplifier 7 operates in the non-linear region. Therefore, as shown in FIG. 2B, the non-linear amplification route α of the non-linear amplification route α increases. The gain vector becomes small as [B 1 → B 1 ′], and the combined vector [C ′]
The phase of changes.

【0015】そして、さらにRF入力レベルを高くする
と、増幅器7のみでなく、増幅器10も非線形領域で動
作するようになるため、図2ー(c)に示す様にRF入
力レベルが上昇するにつれて、非線形増幅ルートαの利
得ベクトル[B1→B1′]及び非線形増幅ルートβの利
得ベクトル[B2→B2′]が共に小さくなり、合成ベク
トル[C″]の位相がさらに変化する。この動作時にお
ける入力レベルー位相の変化例を図2ー(d)に示す。
When the RF input level is further increased, not only the amplifier 7 but also the amplifier 10 operates in the non-linear region. Therefore, as shown in FIG. 2C, as the RF input level rises, Both the gain vector [B 1 → B 1 ′] of the nonlinear amplification route α and the gain vector [B 2 → B 2 ′] of the nonlinear amplification route β become smaller, and the phase of the combined vector [C ″] further changes. An example of changes in input level-phase during operation is shown in FIG.

【0016】本実施例において、非単調位相歪補償用リ
ニアライザーの入力レベルー位相特性は、各可変減衰器
2、8及び9の減衰量の調整、各位相変化器4及び11
による移相、さらには各増幅器3、7及び10の利得を
変更することによって任意に変えることが容易に出来
る。
In the present embodiment, the input level-phase characteristics of the non-monotonic phase distortion compensating linearizer are the adjustment of the attenuation amount of each variable attenuator 2, 8 and 9, and each phase changer 4 and 11.
Can be easily changed arbitrarily by changing the phase shift according to (3) and changing the gain of each amplifier 3, 7, and 10.

【0017】これより、RF入力レベル変化に対して非
単調な位相特性をもつリニアライザーを実現することが
でき、得られる非単調位相歪補償用リニアライザーを、
図2ー(e)に示す様なRF入力レベル変化に対して非
単調な位相特性をもつ増幅器等の前段に接続することに
より、増幅器等の位相歪が補償される。
As a result, a linearizer having a non-monotonic phase characteristic with respect to a change in the RF input level can be realized, and the obtained non-monotonic phase distortion compensating linearizer is:
The phase distortion of the amplifier or the like is compensated by connecting to the front stage of the amplifier or the like having a non-monotonic phase characteristic with respect to the RF input level change as shown in FIG.

【0018】[0018]

【発明の効果】以上説明したように、本発明は、従来の
リニアライザーに可変減衰器の後に増幅器と位相変化器
が任意の順番に接続された歪発生ルートを追加し、さら
に、線形動作する増幅器の前に位置する固定抵抗減衰器
を可変減衰器に変更したことにより、RF入力レベルの
変化に対して非単調な位相歪特性を持つ増幅器に対して
すぐれた位相歪補償をすることができる。
As described above, according to the present invention, a distortion generating route in which an amplifier and a phase changer are connected in any order after a variable attenuator is added to a conventional linearizer, and further linear operation is performed. By changing the fixed resistance attenuator located in front of the amplifier to a variable attenuator, excellent phase distortion compensation can be performed for an amplifier having a non-monotonic phase distortion characteristic with respect to a change in RF input level. .

【図面の簡単な説明】[Brief description of drawings]

【図1】非単調位相歪補償用リニアライザーの一実施例
の構成を示すブロック図。
FIG. 1 is a block diagram showing the configuration of an embodiment of a linearizer for non-monotonic phase distortion compensation.

【図2】(a)〜(c)実施例での利得ベクトルとその
合成ベクトルを示すベクトル図。 (d)実施例におけ
る入力レベルー位相変化の関係を示す出力特性図。
(e)補償対象である増幅器等の非単調な位相歪特性を
示す出力特性図
FIG. 2 is a vector diagram showing a gain vector and its combined vector in the embodiments (a) to (c). (D) An output characteristic diagram showing the relationship between the input level and the phase change in the example.
(E) Output characteristic diagram showing non-monotonic phase distortion characteristics of the amplifier or the like to be compensated

【図3】従来の位相歪補償用リニアライザーの構成を示
すブロック図。
FIG. 3 is a block diagram showing a configuration of a conventional linearizer for phase distortion compensation.

【図4】(a),(b)従来例での利得ベクトルとその
合成ベクトルを示すベクトル図。
4A and 4B are vector diagrams showing a gain vector and a composite vector thereof in a conventional example.

【符号の説明】[Explanation of symbols]

1 分波器 2 可変減衰器 3 増幅器 4 位相変化器 5 合波器 6 分波器 7 増幅器 8 可変減衰器 9 可変減衰器 10 増幅器 11 位相変化器 12 合波器 13 固定抵抗減衰器 1 demultiplexer 2 variable attenuator 3 amplifier 4 phase changer 5 multiplexer 6 demultiplexer 7 amplifier 8 variable attenuator 9 variable attenuator 10 amplifier 11 phase changer 12 multiplexer 13 fixed resistance attenuator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入力RF信号を2波に分配する第1の分
波器と、前記第1の分波器の片方の出力端に接続された
第1の可変減衰器と、前記第1の可変減衰器に任意の順
番に接続された第1の増幅器と第1の位相変化器を含む
第1の経路と、前記第1の分波器の他方の出力端に接続
された第2の分波器と、前記第2の分波器の片方の出力
端に任意の順番に接続された第2の増幅器と第2の可変
減衰器とを含む第2の経路と、前記第1の経路の出力と
前記第2の経路の出力を合成する第1の合波器と、前記
第2の分波器の他方の出力端に接続された第3の可変減
衰器と、前記第3の可変減衰器の出力に任意の順番に接
続された第3の増幅器と第2の位相変化器を含む第3の
経路と、前記第1の合波器の出力と前記第3の経路の出
力を合成する第2の合波器とを備えることを特徴とする
非単調位相歪補償用リニアライザー。
1. A first demultiplexer for dividing an input RF signal into two waves, a first variable attenuator connected to one output terminal of the first demultiplexer, and the first demultiplexer. A first path including a first amplifier and a first phase changer connected in any order to the variable attenuator, and a second branch connected to the other output end of the first demultiplexer. A second path including a wave filter, a second amplifier and a second variable attenuator, which are connected to one output end of the second branching filter in any order, and A first multiplexer for combining an output and an output of the second path; a third variable attenuator connected to the other output end of the second demultiplexer; and a third variable attenuation A third path including a third amplifier and a second phase changer connected to the output of the multiplexer in any order, and the output of the first multiplexer and the output of the third path are combined. Second A linearizer for non-monotonic phase distortion compensation, which comprises a multiplexer.
【請求項2】 請求項1記載の3つの増幅器が、それぞ
れ、RF入力レベルに対して動作の異なる線形領域を有
することを特徴とする非単調位相歪補償用リニアライザ
ー。
2. A linearizer for non-monotonic phase distortion compensation, wherein each of the three amplifiers according to claim 1 has a linear region that operates differently with respect to an RF input level.
JP12373195A 1995-05-23 1995-05-23 Linearizer for non-monotonic phase distortion compensation Expired - Lifetime JP2708014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12373195A JP2708014B2 (en) 1995-05-23 1995-05-23 Linearizer for non-monotonic phase distortion compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12373195A JP2708014B2 (en) 1995-05-23 1995-05-23 Linearizer for non-monotonic phase distortion compensation

Publications (2)

Publication Number Publication Date
JPH08316741A true JPH08316741A (en) 1996-11-29
JP2708014B2 JP2708014B2 (en) 1998-02-04

Family

ID=14867959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12373195A Expired - Lifetime JP2708014B2 (en) 1995-05-23 1995-05-23 Linearizer for non-monotonic phase distortion compensation

Country Status (1)

Country Link
JP (1) JP2708014B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328315B1 (en) * 1999-05-14 2002-03-16 김철동 Apparatus for controling a magnitude and phase of radio frequency signal
JPWO2005027340A1 (en) * 2003-09-10 2007-11-08 株式会社日立国際電気 Distortion compensation amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328315B1 (en) * 1999-05-14 2002-03-16 김철동 Apparatus for controling a magnitude and phase of radio frequency signal
JPWO2005027340A1 (en) * 2003-09-10 2007-11-08 株式会社日立国際電気 Distortion compensation amplifier

Also Published As

Publication number Publication date
JP2708014B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US4943783A (en) Feed forward distortion correction circuit
JP3360464B2 (en) Feed forward amplifier
US5043673A (en) Compensating circuit for a high frequency amplifier
JP2708014B2 (en) Linearizer for non-monotonic phase distortion compensation
US4087737A (en) Phase shifting circuit
JPH09172338A (en) Method and device for linearizing at different output levelsamplitude and phase responses of traveling-wave tube and semiconductor amplifier
US6198346B1 (en) Adaptive linear amplifier without output power loss
JPH0846459A (en) Microwave amplifier circuit
JPH0251287B2 (en)
JPH05315848A (en) Low distortion amplifier circuit
JPH0797733B2 (en) Non-linear distortion compensation circuit for power amplifier
JPS5839407B2 (en) Nonlinear distortion compensator
JP3978919B2 (en) Limiter circuit
JPH0496508A (en) Distortion compensation circuit
JPH0435084B2 (en)
JPH06104658A (en) Nonlinear compensation circuit
JP2002135061A (en) Low distortion signal converter and method for regulating the same
JP3993362B2 (en) Predistortion circuit and distortion control method for distortion wave signal
JPH05335842A (en) Nonlinear compensation circuit
JP2730616B2 (en) Non-linearity compensation circuit
JPH0385911A (en) Level control circuit
JPH01123510A (en) Cross modulation removing circuit for high frequency amplifier
JPH06350346A (en) Nonlinear distortion compensation circuit for high frequency amplifier
JPH0244905A (en) Distortion generating circuit
JPH03195204A (en) Low distortion high frequency amplifier circuit