JPH08316559A - Laser wavelength stabilizing device - Google Patents

Laser wavelength stabilizing device

Info

Publication number
JPH08316559A
JPH08316559A JP13886495A JP13886495A JPH08316559A JP H08316559 A JPH08316559 A JP H08316559A JP 13886495 A JP13886495 A JP 13886495A JP 13886495 A JP13886495 A JP 13886495A JP H08316559 A JPH08316559 A JP H08316559A
Authority
JP
Japan
Prior art keywords
wavelength
laser
light source
axial mode
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13886495A
Other languages
Japanese (ja)
Inventor
Fumio Murakami
文夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP13886495A priority Critical patent/JPH08316559A/en
Publication of JPH08316559A publication Critical patent/JPH08316559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE: To make the wavelength of an outputted laser beam coincident with a reference wavelength by a method wherein an isolated laser beam of axial mode is received by a wavelength reference device, the laser beam transmitted through the reference device is converted into electrical signals through a photoelectric converter to operate a wavelength controller. CONSTITUTION: When an He-Ne laser of resonant wavelength L is used as a laser ray source 1, a laser ray source possessed of an axial mode represented by a formula, fi=C/2L, can be obtained, where c denotes the velocity of light. The laser beams of these two axial modes emitted from the laser ray source 1 are capable of being separated into two laser beams of different axial modes through a mode separating optical system 2. Therefore, a laser beam of axial mode a separated by the mode separating optical system 2 is inputted into a wavelength reference device 3. The laser beam transmitted through the wavelength reference device 3 is converted into electrical signals through a photoelectric converter 4, and the converted electrical signals are inputted into a wavelength controller 5. The wavelength of a laser beam of axial mode a can be set coincident with the center wavelength of the wavelength reference device 3 by controlling the laser ray source 1 using the electrical signals outputted from the photoelectric converter 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザの発振波長を安定
化させるレーザ波長安定化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser wavelength stabilizing device for stabilizing the oscillation wavelength of a laser.

【0002】[0002]

【従来の技術】従来のこの種のレーザ波長安定化装置
は、ファブリ・ペロー干渉計(Fabry-Perot interferome
ter) の共振スペクトル、あるいは原子または分子の吸
収スペクトルの中心を波長基準とし、単一軸モードのレ
ーザ光源から得られるレーザ光の波長を、この波長基準
と一致させる制御を行っており、共振スペクトルや吸収
スペクトルの中心の検出は、レーザ光を周波数変調し
て、このレーザ光が周波数基準となる共振または吸収ス
ペクトルを透過して得られる信号光を、周波数変調信号
で位相敏感検波して得られる共振または吸収特性の微分
波形を用いている。
2. Description of the Related Art A conventional laser wavelength stabilizer of this type is a Fabry-Perot interferometer.
(ter) resonance spectrum or the center of the absorption spectrum of atoms or molecules is used as the wavelength reference, and the wavelength of the laser light obtained from the single-axis mode laser light source is controlled to match this wavelength reference. The center of the absorption spectrum is detected by frequency-modulating the laser light and performing resonance on the signal light obtained by the resonance or absorption spectrum of the laser light, which is the frequency reference, by phase-sensitive detection with a frequency-modulated signal. Alternatively, the differential waveform of the absorption characteristic is used.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来のレ
ーザ波長安定化装置は以上のようにレーザ光を周波数変
調して共振スペクトルや吸収スペクトルの中心を検出し
ているので、安定化したいレーザ波長そのものが周波数
変調されてしまい、その有用性が制限される。また、レ
ーザ光を2つに分岐して一部を上述の周波数基準信号の
検出用に用い、残りを安定化光源として外部に出力する
構成のため、出力されるレーザ光源の光強度が弱くなる
等の問題点があった。特に周波数基準となる吸収スペク
トルが微弱である場合には、安定度を高めるために周波
数基準検波用に分岐するレーザ光の比率を高める必要が
あるが、このようにすると安定化光源として外部に出力
するレーザ光はさらに微弱になってしまう。
Since the conventional laser wavelength stabilizing device as described above detects the center of the resonance spectrum or the absorption spectrum by frequency-modulating the laser light as described above, the laser to be stabilized is desired. The wavelength itself is frequency-modulated, limiting its usefulness. Further, since the laser light is branched into two and a part of the laser light is used for detecting the frequency reference signal and the rest is output to the outside as a stabilizing light source, the light intensity of the laser light source to be output becomes weak. There were problems such as. In particular, when the absorption spectrum that is the frequency reference is weak, it is necessary to increase the ratio of the laser light branched for frequency reference detection in order to increase the stability. The laser light emitted becomes even weaker.

【0004】[0004]

【課題を解決するための手段】本発明に係わるレーザ波
長安定化装置は、レーザ光源に波長が異なる複数個の軸
モードの光ビームを出射するレーザ光源を用い、このレ
ーザ光源から出射した光ビームを分離光学系を用いて軸
モードの異なる2本の光ビームに分離する手段、分離し
た一方の軸モード(a)の光ビームを波長基準器で受光
し電変換器で電気信号に変換して波長制御器を動作さ
せ、軸モード(a)の光ビームの波長を波長基準器の基
準波長と一致させる手段、分離した他の一方の軸モード
(b)の光ビームを上記安定化光源として出力する手段
を備えたことを特徴とする。
A laser wavelength stabilizing device according to the present invention uses a laser light source for emitting a plurality of axial mode light beams having different wavelengths as a laser light source, and the light beam emitted from the laser light source. Is separated into two light beams having different axial modes using a separation optical system, one of the separated light beams of the axial mode (a) is received by a wavelength reference device and converted into an electric signal by an electric converter. A means for operating the wavelength controller to match the wavelength of the optical beam of the axial mode (a) with the reference wavelength of the wavelength reference device, and outputting the other separated optical beam of the axial mode (b) as the stabilizing light source. It is characterized in that it is provided with a means for doing.

【0005】また、レーザ光源に波長が異なる複数個の
軸モードの光ビームを出射するレーザ光源を用い、この
レーザ光源から出射した光ビームを分離光学系を用いて
軸モードの異なる2本の光ビームに分離する手段、分離
した一方の軸モード(a)の光ビームを波長基準器で受
光し電気信号に変換して波長制御器を動作させ、軸モー
ド(a)の光ビームの波長を波長基準器の基準波長と一
致させる手段、分離した他の一方の軸モード(b)の光
ビームを安定化光源として出力する手段、軸モード
(a)の光ビームの一部と軸モード(b)の光ビームの
一部を取り出し、これらのビート周波数が基準周波数に
一致するように軸モード(b)の光ビームの周波数を補
正する手段を備えたことを特徴とする。
Further, a laser light source which emits a plurality of axial mode light beams having different wavelengths is used as a laser light source, and a light beam emitted from the laser light source is separated into two light beams having different axial modes by using a separation optical system. A means for separating the beam into two beams, one of the separated optical beams of the axial mode (a) is received by the wavelength reference device and converted into an electric signal to operate the wavelength controller, and the wavelength of the optical beam of the axial mode (a) is converted into the wavelength. Means for matching the reference wavelength of the reference device, means for outputting the other separated light beam of the axial mode (b) as a stabilizing light source, part of the optical beam of the axial mode (a) and axial mode (b) And a means for correcting the frequency of the light beam of the axial mode (b) so that the beat frequencies of these light beams coincide with the reference frequency.

【0006】[0006]

【作用】ビート周波数を基準周波数に一致するように制
御することはレーザ波長を基準波長に一致させるように
制御することより容易であり、軸モード(b)の光ビー
ムの波長の安定度を軸モード(a)の光ビームの波長の
安定度と同程度に保つことは容易である。また、これら
2つの軸モード間の波長の差は、ビート周波数から正確
に求めることができる。そして、軸モード(b)の光ビ
ームを外部に取り出して利用すれば、これは波長基準信
号を得るために用いる軸モード(a)の光ビームとは独
立しているため、利用すべき安定化されたレーザ光が周
波数変調を被ったり、その一部しか利用できない等の制
限を受けることがなくなる。
Controlling the beat frequency to match the reference frequency is easier than controlling the laser wavelength to match the reference wavelength, and the stability of the wavelength of the light beam in the axial mode (b) is controlled. It is easy to keep the stability of the wavelength of the light beam in the mode (a) at the same level. Further, the difference in wavelength between these two axial modes can be accurately obtained from the beat frequency. When the axial mode (b) light beam is extracted to the outside and used, it is independent of the axial mode (a) light beam used to obtain the wavelength reference signal, and therefore the stabilization to be used. The generated laser light is not subjected to frequency modulation, and there is no restriction that only part of it can be used.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は本発明の波長安定化装置の構成の一実施例を
示すブロック図であり、図において、1はレーザ光源で
ある。本実施例のレーザ光源1には、複数個の軸モード
(axial mode)で発振するレーザ光源を用いる。このレー
ザ光源1に例えば共振波長がLのHe−Neレーザを用
いれば、Cを光速とし、fi=C/2Lの軸モード間隔
(cavity modespacing)で発振する2つの軸モードを有す
るレーザ光源が得られる。He−Neレーザの場合、こ
れら2つの軸モード間のビート周波数fiは、600M
Hzから1.2GHz程度が一般的である。また、これ
ら2つの軸モードは、その偏光面が互いに直交している
ので、偏光ビームスプリッタ等のモード分離光学系2を
用いて容易に単一軸モードごとの光ビームに分離するこ
とができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the configuration of the wavelength stabilization device of the present invention, in which 1 is a laser light source. The laser light source 1 of this embodiment has a plurality of axis modes.
A laser light source that oscillates in (axial mode) is used. If, for example, a He-Ne laser having a resonance wavelength of L is used as the laser light source 1, C is the speed of light and the axial mode interval of fi = C / 2L.
A laser light source having two axial modes oscillating in (cavity modes pacing) can be obtained. For a He-Ne laser, the beat frequency fi between these two axial modes is 600M.
The frequency is generally from Hz to 1.2 GHz. Further, since the polarization planes of these two axial modes are orthogonal to each other, it is possible to easily separate the light beams for each single axial mode using the mode separation optical system 2 such as a polarization beam splitter.

【0008】従って、モード分離光学系2で分離した一
方の軸モード(a)の光ビームを、波長基準器3に入力
し、その透過光を光電変換器4により電気信号に変換し
て波長制御器5に入力し、波長制御器5で、光電変換器
4からの電気信号を用いて、軸モード(a)の光ビーム
の波長を、波長基準器3の中心波長に一致するようにレ
ーザ光源1を制御する。なお、波長基準器3には、従来
の装置と同様にファブリ・ペロー干渉計や、レーザ光源
1の発振波長範囲内に存在する原子または分子の吸収ス
ペクトルを用いる波長基準器を使用することができ、こ
の制御は従来の装置と同様である。一方、上述の制御に
より安定化されたレーザ光源1から出射される光ビーム
は、上述のようにモード分離光学系2で分離され、安定
化制御のために用いられる軸モード(a)とは別の軸モ
ード(b)の光ビームが安定化光源として外部に出力さ
れる。
Therefore, the light beam of one axial mode (a) separated by the mode separation optical system 2 is input to the wavelength reference device 3, the transmitted light is converted into an electric signal by the photoelectric converter 4, and the wavelength is controlled. The wavelength controller 5 uses the electric signal from the photoelectric converter 4 to input the wavelength of the light beam of the axial mode (a) to the laser source so that the wavelength of the light beam coincides with the center wavelength of the wavelength reference unit 3. Control 1 As the wavelength reference device 3, a Fabry-Perot interferometer or a wavelength reference device using an absorption spectrum of atoms or molecules existing in the oscillation wavelength range of the laser light source 1 can be used as in the conventional device. The control is similar to that of the conventional device. On the other hand, the light beam emitted from the laser light source 1 stabilized by the above control is separated by the mode separation optical system 2 as described above, and is different from the axial mode (a) used for the stabilization control. The light beam in the axis mode (b) is output as a stabilized light source to the outside.

【0009】複数個の軸モードで発振するそれぞれの軸
モードの光ビームの強度は、単一軸モードで発振する同
種のレーザの強度と同程度であることが知られており、
従って外部に出力される軸モード(b)の光ビームは、
従来の装置のように周波数変調されることなく、且つ十
分な強度を有する光源とできる。但し、レーザ光源1が
動作中には、温度などの影響で上述の共振波長Lが常に
わずかながら変化する。従って、この共振波長Lの変化
を補正する必要がある。
It is known that the intensity of each axial mode light beam that oscillates in a plurality of axial modes is about the same as the intensity of a laser of the same type that oscillates in a single axial mode.
Therefore, the optical beam of the axial mode (b) output to the outside is
It is possible to obtain a light source which is not frequency-modulated as in the conventional device and has sufficient intensity. However, while the laser light source 1 is in operation, the above-mentioned resonance wavelength L is always slightly changed due to the influence of temperature and the like. Therefore, it is necessary to correct this change in the resonance wavelength L.

【0010】すなわち、軸モード(b)の光ビームの一
部をビームスプリッタ7により取り出し、ビームスプリ
ッタ8によりその一部を取り出した軸モード(a)の光
ビームとビームスプリッタ9で干渉させ、光電変換器1
0に入力し、ビート周波数fi+fΔ(fΔは共振波長
Lの変化に伴う周波数偏移量)を検出する。なお、波長
板11は、軸モード(a)の光ビームと軸モード(b)
の光ビームとの偏光面を一致させるのに用いられる。こ
の光電変換器10の出力は、偏移周波数制御器12に入
力され、この偏移周波数制御器12で、ビート周波数f
i+fΔと基準周波数fr13とが比較させ、その差が
光周波数シフタ6へ出力され、光周波数シフタ6により
軸モード(b)の光ビームの周波数偏移量fΔが補正さ
れる。なお、この周波数シフタ6は、ブラッグ回折を利
用する音響光学素子や、ドップラー効果を利用する回転
円板により容易に実現できる。
That is, a part of the optical beam of the axial mode (b) is taken out by the beam splitter 7, and a part of the optical beam of the axial mode (a) is made to interfere with the beam splitter 9 by the beam splitter 8. Converter 1
0 is input to detect the beat frequency fi + fΔ (fΔ is the frequency shift amount due to the change of the resonance wavelength L). In addition, the wave plate 11 includes a light beam in the axial mode (a) and an axial mode (b).
It is used to match the plane of polarization with the light beam of. The output of the photoelectric converter 10 is input to the shift frequency controller 12, and the shift frequency controller 12 outputs the beat frequency f.
i + fΔ is compared with the reference frequency fr13, and the difference is output to the optical frequency shifter 6, and the optical frequency shifter 6 corrects the frequency shift amount fΔ of the optical beam in the axial mode (b). The frequency shifter 6 can be easily realized by an acousto-optic device that uses Bragg diffraction or a rotating disk that uses the Doppler effect.

【0011】以上のように本実施例のレーザ波長安定化
装置は、波長が異なる複数個の軸モードで発振するレー
ザ光源を用い、2個の軸モードのうちの一方の軸モード
(a)の光ビームをレーザ光源の波長安定化のために用
い、他方の軸モード(b)を安定化した光源として出力
するようにし、共振波長Lの変化に伴う周波数偏移量f
Δの補正は、軸モード(a)の光ビームの一部と軸モー
ド(b)の光ビームの一部を取り出してそのビート周波
数を所定の基準周波数fr13で補正する構成とした。
周知のようにビート周波数は高感度で検出でき、この補
正に必要な光量はわずかなので、無変調,高出力な安定
化光源が得られることになる。なお、基準周波数13を
可変させて所定の変調を行った安定化光源を出力する装
置とすることもできる。
As described above, the laser wavelength stabilizer of this embodiment uses a laser light source that oscillates in a plurality of axial modes having different wavelengths, and one of the two axial modes (a) is selected. The light beam is used for stabilizing the wavelength of the laser light source, and the other axial mode (b) is output as a stabilized light source, and the frequency shift amount f with the change of the resonance wavelength L is f.
For the correction of Δ, a part of the light beam in the axial mode (a) and a part of the light beam in the axial mode (b) are taken out and the beat frequency thereof is corrected at a predetermined reference frequency fr13.
As is well known, the beat frequency can be detected with high sensitivity, and the amount of light required for this correction is small, so that a stabilized light source with no modulation and high output can be obtained. It is also possible to use a device that outputs a stabilized light source in which the reference frequency 13 is varied and predetermined modulation is performed.

【0012】[0012]

【発明の効果】以上のように本発明のレーザ波長安定化
装置では、無変調,高出力な安定化光源が得られるとい
う効果がある。
As described above, the laser wavelength stabilizing device of the present invention has an effect that a stabilized light source with no modulation and high output can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 モード分離光学系 3 波長基準器 4 光電変換器 5 波長制御器 6 周波数シフタ 7〜9 ビームスプリッタ 10 光電変換器 11 波長板 12 偏移周波数制御器 13 基準周波数 1 Laser Light Source 2 Mode Separation Optical System 3 Wavelength Reference Device 4 Photoelectric Converter 5 Wavelength Controller 6 Frequency Shifter 7-9 Beam Splitter 10 Photoelectric Converter 11 Wave Plate 12 Shift Frequency Controller 13 Reference Frequency

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源からの光ビームを波長基準器
で受光し電気信号に変換して波長制御器を動作させ、上
記レーザ光源からの光ビームの波長を上記波長基準器の
基準波長と一致させる制御を行い安定化光源を得るレー
ザ波長安定化装置において、 上記レーザ光源に波長が異なる複数個の軸モードの光ビ
ームを出射するレーザ光源を用い、このレーザ光源から
出射した光ビームを分離光学系を用いて軸モードの異な
る2本の光ビームに分離する手段、 分離した一方の軸モード(a)の光ビームを上記波長基
準器で受光し電変換器で電気信号に変換して上記波長制
御器を動作させ、上記軸モード(a)の光ビームの波長
を上記波長基準器の基準波長と一致させる手段、 分離した他の一方の軸モード(b)の光ビームを上記安
定化光源として出力する手段、 を備えたことを特徴とするレーザ波長安定化装置。
1. A light beam from a laser light source is received by a wavelength reference device, converted into an electric signal to operate a wavelength controller, and the wavelength of the light beam from the laser light source coincides with the reference wavelength of the wavelength reference device. In the laser wavelength stabilization device for controlling the laser light source to obtain a stabilized light source, a laser light source that emits a plurality of axial mode light beams having different wavelengths is used as the laser light source, and the light beam emitted from the laser light source is separated and separated. Means for separating into two light beams of different axial modes using a system, one of the separated light beams of the axial mode (a) is received by the wavelength reference device and converted into an electric signal by an electric converter, and the wavelength A means for operating the controller to match the wavelength of the light beam of the axial mode (a) with the reference wavelength of the wavelength reference device, and the other separated light beam of the axial mode (b) as the stabilizing light source. A laser wavelength stabilizing device comprising: a means for outputting.
【請求項2】 レーザ光源からの光ビームを波長基準器
で受光し電気信号に変換して波長制御器を動作させ、上
記レーザ光源からの光ビームの波長を上記波長基準器の
基準波長と一致させる制御を行い安定化光源を得るレー
ザ波長安定化装置において、 上記レーザ光源に波長が異なる複数個の軸モードの光ビ
ームを出射するレーザ光源を用い、このレーザ光源から
出射した光ビームを分離光学系を用いて軸モードの異な
る2本の光ビームに分離する手段、 分離した一方の軸モード(a)の光ビームを上記波長基
準器で受光し電気信号に変換して上記波長制御器を動作
させ、上記軸モード(a)の光ビームの波長を上記波長
基準器の基準波長と一致させる手段、 分離した他の一方の軸モード(b)の光ビームを上記安
定化光源として出力する手段、 上記軸モード(a)の光ビームの一部と上記軸モード
(b)の光ビームの一部を取り出し、これらのビート周
波数が基準周波数に一致するように上記軸モード(b)
の光ビームの周波数を補正する手段、 を備えたことを特徴とするレーザ波長安定化装置。
2. A light beam from a laser light source is received by a wavelength reference device, converted into an electric signal, and a wavelength controller is operated to match the wavelength of the light beam from the laser light source with the reference wavelength of the wavelength reference device. In the laser wavelength stabilization device for controlling the laser light source to obtain a stabilized light source, a laser light source that emits a plurality of axial mode light beams having different wavelengths is used as the laser light source, and the light beam emitted from the laser light source is separated and separated. Means for separating into two light beams of different axial modes using a system, one of the separated light beams of the axial mode (a) is received by the wavelength reference device and converted into an electric signal to operate the wavelength controller Means for matching the wavelength of the light beam of the axial mode (a) with the reference wavelength of the wavelength reference device, and a means for outputting the other separated light beam of the axial mode (b) as the stabilizing light source. A part of the light beam of the axial mode (a) and a part of the light beam of the axial mode (b) are taken out, and the axial mode (b) is adjusted so that their beat frequencies coincide with the reference frequency.
A laser wavelength stabilizing device comprising means for correcting the frequency of the light beam.
JP13886495A 1995-05-15 1995-05-15 Laser wavelength stabilizing device Pending JPH08316559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13886495A JPH08316559A (en) 1995-05-15 1995-05-15 Laser wavelength stabilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13886495A JPH08316559A (en) 1995-05-15 1995-05-15 Laser wavelength stabilizing device

Publications (1)

Publication Number Publication Date
JPH08316559A true JPH08316559A (en) 1996-11-29

Family

ID=15231919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13886495A Pending JPH08316559A (en) 1995-05-15 1995-05-15 Laser wavelength stabilizing device

Country Status (1)

Country Link
JP (1) JPH08316559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200822A (en) * 2014-04-09 2015-11-12 三菱電機株式会社 Optical frequency controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200822A (en) * 2014-04-09 2015-11-12 三菱電機株式会社 Optical frequency controller

Similar Documents

Publication Publication Date Title
JP6404656B2 (en) Method and apparatus for tracking / rocking the free spectral range of a resonator and its application to a resonator fiber optic gyroscope
EP2960626B1 (en) Symmetric three-laser resonator fiber optic gyroscope
WO2015083242A1 (en) Light source apparatus and magnetic field measuring apparatus
JP5681455B2 (en) System and method for reducing laser phase noise in a resonator fiber optic gyroscope
US4745606A (en) Dual-wavelength laser apparatus
JP2006229229A (en) Tuning of laser
US11378401B2 (en) Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof
EP3875903B1 (en) Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system
JP2744728B2 (en) Gas concentration measuring method and its measuring device
JPH08316559A (en) Laser wavelength stabilizing device
JP6171256B2 (en) Laser frequency stabilization method and apparatus
KR100559185B1 (en) Method and apparatus for stabilizing laser frequency using electromagnetically induced transparency
JP3415461B2 (en) Resonant optical fiber gyro
JP2007328044A (en) Optical frequency measuring system, and method for determining frequency component of optical frequency comb
JPH05264446A (en) Gas detector
JP3810531B2 (en) Optical phase characteristic measuring apparatus and measuring method
JPH05272981A (en) Optical gyro
JPH026236B2 (en)
JP3880791B2 (en) High-precision optical frequency marker generation method and apparatus
RU2629704C1 (en) Method of measuring complex communication factors in ring resonators of laser gyroscopes
JPH06235641A (en) Optical fiber gyroscope
JPH067099B2 (en) Gas sensor using tunable etalon
JPH05327496A (en) Atomic oscillator
JPH0644656B2 (en) Frequency stabilized semiconductor laser device
JPH05272911A (en) Apparatus for measuring fluctuation of optical-path length