JPH08316540A - Thin film forming method and device - Google Patents

Thin film forming method and device

Info

Publication number
JPH08316540A
JPH08316540A JP7117045A JP11704595A JPH08316540A JP H08316540 A JPH08316540 A JP H08316540A JP 7117045 A JP7117045 A JP 7117045A JP 11704595 A JP11704595 A JP 11704595A JP H08316540 A JPH08316540 A JP H08316540A
Authority
JP
Japan
Prior art keywords
thin film
substrate
oxygen
superexcited
excited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7117045A
Other languages
Japanese (ja)
Inventor
Tomohide Takami
知秀 高見
Shozo Ino
正三 井野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7117045A priority Critical patent/JPH08316540A/en
Publication of JPH08316540A publication Critical patent/JPH08316540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE: To enhance the surface of a substrate or the like in probability of oxidative reaction by a method wherein an oxide film is formed on the surface of the substrate or the like by irradiating the surface of the substrate or the like with an excited oxygen atomic beam in a vacuum chamber. CONSTITUTION: Superexcited oxygen atoms are defined as excited atoms which are excited up to a higher energy state of different orbits. A superexcited oxygen atom forming device 1 is equipped with a vacuum chamber to serve as a source of superexcited oxygen atom beam, helium gas and oxygen molecules are mixed together, and a discharge is made to occur in the mixed gas to generate superexcited oxygen atoms. Superexcited oxygens atoms are spouted out from a nozzle as a beam. A superexcited oxygen atom beam is introduced into an oxide thin film forming device 2 through a differential exhaust device 3 to irradiate the surface of a substrate 6 for oxidation to enable oxidative reaction to take place. The surface of the substrate 6 approximates to 1 on probability of oxidative reaction, so that no residual oxygen gas is present around the surface of the substrate 6. By this setup, an adverse effect caused by residual gas of oxygen or nitrogen monoxide is eliminated, so that an oxide thin film of high quality can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板等の表面に酸化薄
膜を作製する薄膜作製法及び薄膜作製装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming method and a thin film forming apparatus for forming an oxide thin film on the surface of a substrate or the like.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】酸化物
の超伝導薄膜や半導体薄膜等の薄膜を基板(試料)等の
表面に作製する場合、従来は、酸素分子、オゾン、二酸
化窒素等を用いた表面酸化膜作製法が採用されている。
さらにその他の表面酸化膜作製法として、励起酸素原子
(O* )を用いる方法もある。
2. Description of the Related Art When a thin film such as an oxide superconducting thin film or a semiconductor thin film is formed on the surface of a substrate (sample) or the like, conventionally, oxygen molecules, ozone, nitrogen dioxide, etc. are used. The surface oxide film manufacturing method used is adopted.
Further, as another method for forming a surface oxide film, there is a method using excited oxygen atoms (O * ).

【0003】しかし、前者の酸素分子、オゾン、二酸化
窒素等を用いた表面酸化膜作製法では、表面における酸
化反応の際に酸素や一酸化窒素等の残留ガスが発生する
ため、高真空中において良質な酸化膜を作製する時に問
題となっている。また、後者の励起酸素原子(O* )を
用いる表面酸化膜作製法では、残留ガスの問題は依然と
して存在して、酸素の背圧が10-5Torr以上の条件
下で行われているのが現状である。
However, in the former method for producing a surface oxide film using oxygen molecules, ozone, nitrogen dioxide, etc., residual gas such as oxygen and nitric oxide is generated during the oxidation reaction on the surface, so that in a high vacuum. This is a problem when forming a good quality oxide film. Further, in the latter method of forming a surface oxide film using excited oxygen atoms (O * ), the problem of residual gas still exists, and the back pressure of oxygen is 10 −5 Torr or more. The current situation.

【0004】本発明は、上記の課題を解決するものであ
って、高真空中において良質な酸化膜を作製することが
できる薄膜作製方法及び薄膜作製装置を提供することを
目的とするものである。
The present invention is intended to solve the above problems, and an object thereof is to provide a thin film forming method and a thin film forming apparatus capable of forming a good quality oxide film in a high vacuum. .

【0005】[0005]

【課題を解決するための手段】そのために本発明の薄膜
作製法は、超励起酸素原子(O**)ビームを基板等の表
面に照射して基板等の表面に酸化薄膜を作製することを
特徴とするものであり、薄膜作製装置は、(1)真空槽
で構成され超励起酸素原子(O**)を生成しノズルから
噴出してビームにする超励起酸素原子(O**)作製装置
と、(2)真空槽で構成され超励起酸素原子(O**)の
ビームを基板等に照射してその表面に酸化薄膜を作製す
る酸化薄膜作製装置と、(3)酸化薄膜作製装置に超励
起酸素原子(O**)作製装置を接続して超励起酸素原子
(O**)のビームを導入する差動排気系とを備えたこと
を特徴とするものである。
Therefore, in the thin film forming method of the present invention, a surface of a substrate or the like is irradiated with a superexcited oxygen atom (O ** ) beam to form an oxide thin film on the surface of the substrate or the like. which is characterized, thin-film producing apparatus (1) consists of a vacuum chamber ultra excited oxygen atoms to beam ejected from a nozzle to produce a super-excited oxygen atoms (O **) (O **) Preparation An apparatus, (2) an oxide thin film production apparatus comprising a vacuum chamber for irradiating a substrate or the like with a beam of super-excited oxygen atoms (O ** ) to produce an oxide thin film on its surface, and (3) an oxide thin film production apparatus And a differential pumping system for introducing a beam of super-excited oxygen atoms (O ** ) by connecting a device for producing super-excited oxygen atoms (O ** ).

【0006】[0006]

【作用】本発明の薄膜作製方法及び薄膜作製装置では、
真空槽で構成され超励起酸素原子(O**)を生成しノズ
ルから噴出してビームにする超励起酸素原子(O**)作
製装置と、真空槽で構成され超励起酸素原子(O**)の
ビームを基板等に照射してその表面に酸化薄膜を作製す
る酸化薄膜作製装置と、該酸化薄膜作製装置に超励起酸
素原子(O**)作製装置を接続して超励起酸素原子(O
**)のビームを導入する差動排気系とを備え、O**ビー
ムを基板等の表面に照射して基板等の表面に酸化薄膜を
作製するので、超励起酸素分子(O**)の真空中におけ
る基板等の表面への照射により、基板等の表面との酸化
反応の確率がほぼ1になり、残留酸素ガスの放出が少な
く、超高真空中での酸化が実現できる。
In the thin film manufacturing method and thin film manufacturing apparatus of the present invention,
Is a super-excited oxygen atoms (O **) super excited oxygen atoms to the generated beam ejected from nozzle (O **) preparing apparatus consists of a vacuum chamber, consists of a vacuum chamber ultra excited oxygen atom (O * * ) A substrate or the like is irradiated with a beam to produce an oxide thin film on its surface, and a super-excited oxygen atom (O ** ) production device is connected to the oxide thin film production device to form a super-excited oxygen atom. (O
Since the surface of the substrate or the like is irradiated with the O ** beam to form an oxide thin film on the surface of the substrate or the like, a superexcited oxygen molecule (O ** ) is produced. By irradiating the surface of the substrate or the like in a vacuum, the probability of the oxidation reaction with the surface of the substrate or the like becomes approximately 1, the residual oxygen gas is less released, and the oxidation in the ultra-high vacuum can be realized.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明に係る薄膜作製装置の1実施例を
示す図であり、1は超励起酸素原子(O**)作製装置、
2は酸化薄膜作製装置、3は差動排気系、4と5は高真
空排気ポンプ、6は基板等を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a thin film production apparatus according to the present invention, in which 1 is a superexcited oxygen atom (O ** ) production apparatus,
2 is an oxide thin film forming apparatus, 3 is a differential exhaust system, 4 and 5 are high vacuum exhaust pumps, and 6 is a substrate or the like.

【0008】図1において、超励起酸素原子(O**)作
製装置1は、真空槽で構成された超励起酸素原子
(O**)のビーム源であり、ヘリウムガスと酸素分子を
混合して放電させてO**を生成させ、ノズルから噴出し
てビームにするものである。超励起酸素原子(O**)作
製装置1は、高真空排気ポンプ4により真空に排気さ
れ、そのチャンバの圧力は、動作時には10-3Torr
程度になっている。酸化薄膜作製装置2は、同じく真空
槽で構成され超励起酸素原子(O**)のビームを基板等
6に照射してその表面に酸化薄膜を作製するものであ
る。酸化薄膜作製装置2は、高真空排気ポンプ5により
真空に排気され、チャンバには、作製薄膜表面の結晶構
造や組成を調べる装置等が付随している。超励起酸素原
子(O**)作製装置1と高真空に保たれた酸化薄膜作製
装置2とは、差動排気系3により接続され、酸化薄膜作
製装置2に超励起酸素原子(O**)作製装置1からO**
ビームが導入されるようになっている。
In FIG. 1, a super-excited oxygen atom (O ** ) producing apparatus 1 is a beam source of super-excited oxygen atom (O ** ) composed of a vacuum chamber and mixes helium gas and oxygen molecules. And discharge to generate O ** , which is ejected from the nozzle to form a beam. The super excited oxygen atom (O ** ) producing apparatus 1 is evacuated to a vacuum by a high vacuum evacuation pump 4, and the chamber pressure is 10 −3 Torr during operation.
It has become a degree. The oxide thin film production apparatus 2 is also composed of a vacuum chamber and irradiates the substrate 6 or the like with a beam of superexcited oxygen atoms (O ** ) to produce an oxide thin film on the surface thereof. The oxide thin film production apparatus 2 is evacuated to a vacuum by a high vacuum exhaust pump 5, and the chamber is accompanied by an apparatus for examining the crystal structure and composition of the surface of the produced thin film. The super-excited oxygen atom (O ** ) production apparatus 1 and the oxide thin film production apparatus 2 kept in a high vacuum are connected by a differential evacuation system 3, and the oxide thin film production apparatus 2 is connected to the super-excited oxygen atom (O **). ) From production device 1 to O **
Beams are being introduced.

【0009】次に、上記構成による装置の動作・作用に
ついて説明する。まず、超励起酸素原子(O**)作製装
置1から、例えば平行平板電極及び速度選別器を用いて
荷電粒子や他の原子分子を取り除き、超励起酸素原子
(O**)ビームを発生させて酸化薄膜作製装置2に導入
し、酸化させたい基板(試料)等6の表面に照射して反
応を起こさせる。超励起酸素原子(O**)は、励起酸素
原子(O* )よりも高いエネルギー状態にあり酸素原子
イオン(O+ )に近い化学的性質を持っていると同時に
非常に不安定な核種であるため、準安定状態の酸素ラジ
カルよりも強力な酸化力を持つ。したがって、超励起酸
素原子(O**)ビームを基板等6の表面に照射した場合
の酸化反応確率は1に近く、残留酸素ガスは原理的には
存在しない。すなわち、酸化反応の際に余剰の原子・分
子が出ず、従来用いられてきたオゾン、二酸化窒素等の
分子性ガスのように、酸素や一酸化窒素等の残留ガスに
よる悪影響がなくなるので、高真空中での酸化膜の作製
が可能となる。よって、結晶性および組成において良質
の酸化薄膜、良い結晶性やストイキオメトリーを持った
酸化膜が得られる。得られた酸化膜は、例えば反射高速
電子線回折、X線分光等の表面構造組成分析装置を用い
て評価する。
Next, the operation and action of the apparatus having the above configuration will be described. First, charged particles and other atomic molecules are removed from the superexcited oxygen atom (O ** ) production apparatus 1 using, for example, a parallel plate electrode and a velocity selector to generate a superexcited oxygen atom (O ** ) beam. Then, the surface of a substrate (sample) 6 or the like to be oxidized is irradiated to cause a reaction. The superexcited oxygen atom (O ** ) is a nuclide that is in an energy state higher than that of the excited oxygen atom (O * ) and has a chemical property close to that of an oxygen atom ion (O + ) and at the same time is a very unstable nuclide. Therefore, it has a stronger oxidizing power than the oxygen radical in the metastable state. Therefore, when the surface of the substrate 6 or the like is irradiated with the super-excited oxygen atom (O ** ) beam, the probability of oxidation reaction is close to 1, and residual oxygen gas does not exist in principle. In other words, excess atoms and molecules are not generated during the oxidation reaction, and unlike the conventionally used molecular gases such as ozone and nitrogen dioxide, the adverse effects of residual gas such as oxygen and nitric oxide are eliminated, so high It is possible to produce an oxide film in vacuum. Therefore, an oxide thin film having good crystallinity and composition and an oxide film having good crystallinity and stoichiometry can be obtained. The obtained oxide film is evaluated using a surface structure composition analyzer such as reflection high-energy electron diffraction or X-ray spectroscopy.

【0010】さらに酸化薄膜の生成反応、過程について
詳述する。超励起酸素原子(O**)はヘリウムと酸素を
混合したガスをグロー放電させることで、以下に示した
励起種生成反応および励起移動反応により生成すること
ができる。
Further, the formation reaction and process of the oxide thin film will be described in detail. The hyperexcited oxygen atom (O ** ) can be generated by the following excited species generation reaction and excitation transfer reaction by glow discharge of a gas in which helium and oxygen are mixed.

【0011】He+e- →He* +e- He* +O2 →He+2O** こうして生成した超励起酸素原子(O**)をノズルから
噴出してビームとするが、ここで副次的に生成した荷電
粒子(イオン・電子)および他の励起種・原子・分子
は、それぞれ平行平板電極および速度選別器を用いて除
去する。超励起酸素原子(O**)ビーム源を直接超高真
空チャンバに接続すると、蒸着及び測定を行うチャンバ
を高真空状態に保つことは不可能であるため、差動排気
系を用いて接続する。これにより励起原子生成チャンバ
の動作時の圧力が約10-3Torrであるにもかかわら
ず、酸化薄膜生成のチャンバを高真空に保った状態で表
面酸化を行うことが可能となる。
He + e → He * + e He * + O 2 → He + 2O ** The super-excited oxygen atoms (O ** ) thus generated are ejected from the nozzle to form a beam. Particles (ions / electrons) and other excited species / atoms / molecules are removed using a parallel plate electrode and a velocity selector, respectively. If a super-excited oxygen atom (O ** ) beam source is directly connected to the ultra-high vacuum chamber, it is impossible to maintain the high-vacuum state of the chamber for vapor deposition and measurement. . As a result, it becomes possible to perform surface oxidation in a state where the chamber for forming an oxide thin film is kept in a high vacuum, even though the pressure during operation of the excited atom generation chamber is about 10 −3 Torr.

【0012】次に、超励起酸素原子(O**)について、
従来より用いられている励起酸素原子(O* )との違
い、作製方法、利点等を詳述する。まず、励起酸素原子
(O* )とは、基底状態になる酸素原子(分光学的に
は、O( 32 )と表記される)を、同じ軌道であるが
より高いエネルギー状態(軌道は同じでスピンが逆向き
の高いエネルギー状態)に励起された、励起酸素原子の
ことである。具体的には、O* 1D)等がその例とし
て挙げられる(Y.Matsumi et al., The Journal of Che
mical Fhysics, vol.100, pp.315-324(1994))。これに
対して、超励起酸素原子(O**)とは、異なった軌道の
更に高いエネルギー状態に励起された、励起酸素原子の
ことであり、例えばO** 5S)、O** 5P)、O**
3D)、O** 3F)等が挙げられる(T.Mori et a
l., The Journal of Chemical Physics, vol.99, pp.82
58-8266(1992)、A.V.Smith et al., Physical Review
B, vol.45, pp.4688-4696(1992))。この超励起酸素原子
(O**)は0.001〜10秒程度の寿命を持つ。
Next, regarding the superexcited oxygen atom (O ** ),
The difference from the conventionally used excited oxygen atom (O * ), the manufacturing method, and the advantages will be described in detail. First, an excited oxygen atom (O * ) is an oxygen atom in a ground state (spectrographically referred to as O ( 3 P 2 )) that has the same orbit but a higher energy state (orbit is The same is the excited oxygen atom in which the spins are excited to opposite high energy states). Specific examples thereof include O * ( 1 D) (Y. Matsumi et al., The Journal of Che.
mical Fhysics, vol.100, pp.315-324 (1994)). In contrast, the super-excited oxygen atoms (O **), which is excited to a higher energy state different orbits is that of excited oxygen atoms, for example O ** (5 S), O ** ( 5 P), O **
(3 D), O ** ( 3 F) , and the like (T.Mori et a
l., The Journal of Chemical Physics, vol.99, pp.82
58-8266 (1992), AVSmith et al., Physical Review
B, vol.45, pp.4688-4696 (1992)). This superexcited oxygen atom (O ** ) has a life of about 0.001 to 10 seconds.

【0013】励起酸素原子(O* ,O**)ビームの生成
法は、電子衝突による励起(J.A.Silver et al., Revie
w of Science Instruments, vol.53, pp.1714-1718(198
2))等、従来用いられている方法があるが、超励起酸素
原子(O**)ビームのみを選択的に生成するには、光
照射による励起(レーザによる光励起の例としては、A.
V.Smith et al., Physical Review B, vol.45, pp.4688
-4696(1992) 、シンクロトロン放射光による光励起の例
としては、A.A.Cafolla et al., The Journalof Physic
s, vol.22, pp.L273-278(1989) 等)、希ガス準安定
励起原子と酸素分子との衝突に伴う励起移動反応を用い
たもの(T.Mori et al., The Journal of Chemical Phy
sics, vol.99, pp.8258-8266(1992)等がある。この中
で、の生成法は、高真空チャンバ内で希ガスと酸素分
子の混合ガスをプラズマ放電させれば作製できるので、
大がかりで高価な装置を必要としない利点がある。
The method for producing an excited oxygen atom (O * , O ** ) beam is as follows: Excitation by electron collision (JASilver et al., Revie
w of Science Instruments, vol.53, pp.1714-1718 (198
2)) and the like, which are conventionally used, in order to selectively generate only a super-excited oxygen atom (O ** ) beam, excitation by light irradiation (as an example of photo-excitation by laser, see A.
V. Smith et al., Physical Review B, vol.45, pp.4688
-4696 (1992), as an example of photoexcitation by synchrotron radiation, see AACafolla et al., The Journal of Physic.
s, vol.22, pp.L273-278 (1989)), using an excitation transfer reaction associated with collision of a rare gas metastable excited atom with an oxygen molecule (T.Mori et al., The Journal of Chemical Phy
sics, vol.99, pp.8258-8266 (1992), etc. Among these, the production method of can be produced by plasma-discharging a mixed gas of a rare gas and oxygen molecules in a high vacuum chamber.
It has the advantage of not requiring large-scale and expensive equipment.

【0014】図2は従来の酸化薄膜作製法と本発明によ
る酸化薄膜作製法との違いを説明するための図である。
超励起酸素原子(O**)と励起酸素原子(O* )の酸化
反応確率はどちらもほぼ1に近く、他の原子分子
(O3 、NO、O+ 、O- 等)と比べて非常に高い。し
かし、O* ビームを作製するときには、O2 、O3 分子
が必然的に共存するので、基板等の表面へ照射した時の
表面酸化反応確率が1より小さくなってしまう。また、
どちらのビームを生成する場合でも、その生成源におい
てはO2 ガスが存在する。O* ビームの場合には、 O* +O2 →O3 という反応により、O* ビームを作製してもビーム中に
オゾンガス(O3 )が必然的に含まれてしまうので、O
* とO3 の混合ビームを照射することになる。このオゾ
ンガスを含んだO* ビームを基板等の表面例えばCuに
照射すると、 O3 +Cu→CuO+O2 ↑ という反応により酸素分子が生成され、これが表面の完
全な酸化反応を阻害してしまう。このため、O* ビーム
を用いて表面を完全に酸化反応させるには、ビームを過
供給させなければならず、結果として約10-7Torr
以上の酸素の背圧条件での反応となる。この背圧では、
基板等の表面が1秒以下で覆われてしまう程度の真空に
相当し、目的とする組成の酸化薄膜を作製することは難
しい。
FIG. 2 is a diagram for explaining the difference between the conventional oxide thin film forming method and the oxide thin film forming method according to the present invention.
The oxidation reaction probabilities of the super-excited oxygen atom (O ** ) and the excited oxygen atom (O * ) are both close to 1, which is much higher than those of other atomic molecules (O 3 , NO, O + , O −, etc.). Very expensive. However, when an O * beam is produced, O 2 and O 3 molecules inevitably coexist, so that the surface oxidation reaction probability when irradiated on the surface of a substrate or the like becomes less than 1. Also,
In producing either beam, O 2 gas is present at the source. O * in the case of the beam by the reaction of O * + O 2 → O 3 , since O * ozone gas into the even beam to produce a beam (O 3) will be included in the inevitable, O
A mixed beam of * and O 3 will be emitted. When the surface of a substrate or the like, such as Cu, is irradiated with this O * beam containing ozone gas, oxygen molecules are generated by the reaction of O 3 + Cu → CuO + O 2 ↑, which impedes the complete oxidation reaction of the surface. Therefore, in order to completely oxidize the surface using the O * beam, the beam must be over-supplied, resulting in about 10 −7 Torr.
The reaction is performed under the above oxygen back pressure conditions. With this back pressure,
It corresponds to a vacuum such that the surface of the substrate or the like is covered in 1 second or less, and it is difficult to produce an oxide thin film having a desired composition.

【0015】これに対してO**ビームを用いた場合に
は、生成源において含まれているO2ガスは、次に示す
反応により解離するかまたは励起状態になる(T.Mori e
t al.,The Journal of Chemical Physics, vol.97, pp.
9094-9098(1992)) 。
On the other hand, when the O ** beam is used, the O 2 gas contained in the production source is dissociated or becomes excited by the following reaction (T. Morie).
t al., The Journal of Chemical Physics, vol.97, pp.
9094-9098 (1992)).

【0016】O**+O2 →3O***+O2 →O* +O2 * (triplet excited) このため、O**ビームの場合には、O2 やO3 が含まれ
ないので、このビームを基板等の表面に照射した場合に
は、O2 等の残留ガスが生成されることはない。したが
って、表面を完全に酸化させるためには、それに必要な
酸素原子の量に対応するO**ビームを照射すれば十分と
なる。この結果O**ビームを表面酸化に用いれば、少な
くとも約10-7Torr以下の高真空中、さらには10
-9Torr程度の超高真空中での酸化膜作製が可能とな
り、O* ビームを用いる場合よりも目的とする組成の薄
膜の作製が可能である。
O ** + O 2 → 3O * O ** + O 2 → O * + O 2 * (triplet excited) Therefore, in the case of the O ** beam, O 2 and O 3 are not included. When the surface of the substrate or the like is irradiated with the beam, residual gas such as O 2 is not generated. Therefore, in order to completely oxidize the surface, it suffices to irradiate with an O ** beam corresponding to the amount of oxygen atoms required for it. As a result, if the O ** beam is used for surface oxidation, it can be used in a high vacuum of at least about 10 -7 Torr or even 10
An oxide film can be formed in an ultra-high vacuum of about -9 Torr, and a thin film having a desired composition can be formed as compared with the case of using an O * beam.

【0017】要するに、従来の酸化薄膜作製法では、図
2(a)に示すように残留ガスが発生するため、高品質
の結晶性や組成をもった酸化薄膜の作製が困難である
が、本発明による酸化薄膜作製法では、図2(b)に示
すように残留酸素が発生しないため、高品質の結晶性や
組成をもった酸化薄膜を作製することができる。
In short, according to the conventional method for producing an oxide thin film, it is difficult to produce an oxide thin film having high quality crystallinity and composition because residual gas is generated as shown in FIG. 2 (a). In the method for producing an oxide thin film according to the present invention, since residual oxygen is not generated as shown in FIG. 2B, it is possible to produce an oxide thin film having high quality crystallinity and composition.

【0018】本発明は、以上のようなO**ビームを用い
て酸化薄膜を作製することの有効性の指摘を初めて行っ
たものであり、新しい酸化薄膜作製法の発見である。本
発明は、O**ビームに関連した研究を行い、これに関す
る分光学的及び化学反応的な深い経験と知識を持って、
* ビームを用いる従来の酸化薄膜作製において副産物
として必然的に生じてしまうO2 、O3 等の残留ガスの
生成原因を深く追求して初めて得られたものである。ま
た、超励起酸素原子(O**)自身は既知のものである
が、これを固体表面に照射した研究の例はなく、勿論酸
化薄膜作製に利用した研究例もない。
The present invention was made for the first time to point out the effectiveness of forming an oxide thin film using the O ** beam as described above, and is the discovery of a new oxide thin film forming method. The present invention conducts research related to the O ** beam, and has deep experience and knowledge in spectroscopic and chemical reactions related to the O ** beam,
It was obtained only after a deep pursuit of the cause of generation of residual gases such as O 2 and O 3 , which are inevitably produced as byproducts in the conventional oxide thin film production using the O * beam. Further, although the super-excited oxygen atom (O ** ) itself is a known one, there is no example of a study of irradiating the surface of a solid with this, and of course no example of a study utilized for forming an oxide thin film.

【0019】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば本発
明は、酸化膜作製装置として説明したが、超伝導薄膜作
製装置や半導体表面酸化膜作製装置として用いることが
できることは勿論である。
The present invention is not limited to the above embodiment, but various modifications can be made. For example, the present invention has been described as an oxide film forming apparatus, but it is needless to say that it can be used as a superconducting thin film forming apparatus or a semiconductor surface oxide film forming apparatus.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
によれば、真空槽で構成された超励起酸素原子(O**
作製装置により超励起酸素原子(O**)を生成しノズル
から噴出してビームにし、真空槽で構成された酸化薄膜
作製装置に差動排気系で接続して超励起酸素原子
(O**)ビームを導入することによって、酸化薄膜作製
装置で超励起酸素原子(O**)のビームを基板等に照射
してその表面に酸化薄膜を作製するので、基板等の表面
との酸化反応の確率がほぼ1になり、残留酸素ガスの放
出が少なく、超高真空中での酸化が実現できる。したが
って、高品質の結晶性とストイキオメトリー(正規組
成)を持った良質な酸化物の超伝導薄膜や半導体薄膜の
作製が容易になり、基礎研究や酸化物の超伝導薄膜や、
半導体薄膜の作製が容易になり、基礎研究やエレクトロ
ニクス産業への幅広い応用が展開できる。
As is apparent from the above description, according to the present invention, superexcited oxygen atoms (O ** ) formed in a vacuum chamber are used.
A super-excited oxygen atom (O ** ) is generated by a manufacturing apparatus, ejected from a nozzle to form a beam, and is connected to a thin oxide film manufacturing apparatus composed of a vacuum chamber by a differential exhaust system to generate a super-excited oxygen atom (O **). ) By introducing a beam, a substrate or the like is irradiated with a beam of super-excited oxygen atoms (O ** ) in an oxide thin film production apparatus to form an oxide thin film on the surface thereof, so that the oxidation reaction with the surface of the substrate or the like The probability is almost 1, the release of residual oxygen gas is small, and the oxidation in ultra-high vacuum can be realized. Therefore, it becomes easy to produce high-quality oxide superconducting thin films and semiconductor thin films with high-quality crystallinity and stoichiometry (normal composition), and basic research and oxide superconducting thin films,
It facilitates the production of semiconductor thin films and can be applied to a wide range of applications in basic research and the electronics industry.

【0021】励起酸素原子(O* )は、表面酸化膜作製
においてこれまでによく用いられているが、そのビーム
自身の純度を上げようとしても、ビーム中には副次生成
ガスが必然的に含まれてしまう。そこで、表面を完全に
酸化させるためには、ビームを大量に照射しなければな
らず、また、O2 、O3 等の残留ガス中で完全な表面酸
化反応を行うことが不可能であった。これに対して超励
起酸素原子(O**)ビームを用いて酸化膜を作製する本
発明は、背圧が10-7Torr以下の高真空中、さらに
は超高真空中での酸化膜作製を可能にした点において画
期的な発明であり、従来の方法では得難い良質な組成を
持つ酸化薄膜の作製を可能とした発明である。
Excited oxygen atoms (O * ) have been often used in the preparation of surface oxide films, but even if an attempt is made to increase the purity of the beam itself, a by-product gas is inevitably contained in the beam. Will be included. Therefore, in order to completely oxidize the surface, it is necessary to irradiate a large amount of beam, and it is impossible to perform a complete surface oxidation reaction in a residual gas such as O 2 or O 3 . . On the other hand, according to the present invention in which an oxide film is formed using a super-excited oxygen atom (O ** ) beam, the oxide film is formed in a high vacuum with a back pressure of 10 −7 Torr or less, and further in an ultrahigh vacuum. This is an epoch-making invention in that it makes it possible to produce an oxide thin film having a high-quality composition that is difficult to obtain by the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る薄膜作製装置の1実施例を示す
図である。
FIG. 1 is a diagram showing one embodiment of a thin film forming apparatus according to the present invention.

【図2】 従来の酸化薄膜作製法と本発明による酸化薄
膜作製法との違いを説明するための図である。
FIG. 2 is a diagram for explaining a difference between a conventional oxide thin film producing method and an oxide thin film producing method according to the present invention.

【符号の説明】[Explanation of symbols]

1…超励起酸素原子(O**)作製装置、2…酸化薄膜作
製装置、3…差動排気系、4と5…高真空排気ポンプ、
6…基板等
DESCRIPTION OF SYMBOLS 1 ... Super excited oxygen atom (O ** ) production apparatus, 2 ... Oxide thin film production apparatus, 3 ... Differential exhaust system, 4 and 5 ... High vacuum exhaust pump,
6 ... Board, etc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超励起酸素原子(O**)ビームを基板等
の表面に照射して基板等の表面に酸化薄膜を作製するこ
とを特徴とする薄膜作製法。
1. A thin film forming method, which comprises irradiating a surface of a substrate or the like with a superexcited oxygen atom (O ** ) beam to form an oxide thin film on the surface of the substrate or the like.
【請求項2】 真空槽で構成され超励起酸素原子
(O**)を生成してノズルから噴出してビームにする超
励起酸素原子(O**)作製装置と、真空槽で構成され超
励起酸素原子(O**)のビームを基板等に照射してその
表面に酸化薄膜を作製する酸化薄膜作製装置と、該酸化
薄膜作製装置に超励起酸素原子(O**)作製装置を接続
して超励起酸素原子(O**)のビームを導入する差動排
気系とを備えたことを特徴とする薄膜作製装置。
2. A super-excited oxygen atom (O ** ) producing apparatus which is composed of a vacuum chamber and which generates super-excited oxygen atoms (O ** ) and is ejected from a nozzle to form a beam. An oxide thin film producing apparatus for irradiating a substrate or the like with a beam of excited oxygen atoms (O ** ) to produce an oxide thin film, and a super excited oxygen atom (O ** ) producing apparatus connected to the oxide thin film producing apparatus. And a differential pumping system for introducing a beam of super-excited oxygen atoms (O ** ).
JP7117045A 1995-05-16 1995-05-16 Thin film forming method and device Pending JPH08316540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7117045A JPH08316540A (en) 1995-05-16 1995-05-16 Thin film forming method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7117045A JPH08316540A (en) 1995-05-16 1995-05-16 Thin film forming method and device

Publications (1)

Publication Number Publication Date
JPH08316540A true JPH08316540A (en) 1996-11-29

Family

ID=14702070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7117045A Pending JPH08316540A (en) 1995-05-16 1995-05-16 Thin film forming method and device

Country Status (1)

Country Link
JP (1) JPH08316540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503242A (en) * 2006-09-11 2010-01-28 サーノフ コーポレーション Method and apparatus for reducing smear of back-illuminated imaging sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503242A (en) * 2006-09-11 2010-01-28 サーノフ コーポレーション Method and apparatus for reducing smear of back-illuminated imaging sensor

Similar Documents

Publication Publication Date Title
EP0714119B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
US8507879B2 (en) Oxidative cleaning method and apparatus for electron microscopes using UV excitation in an oxygen radical source
Irion et al. Secondary ion fourier transform mass spectrometry: a new approach towards the study of metal cluster ion chemistry
KR100979192B1 (en) Surface treating method for substrate
JPH08316540A (en) Thin film forming method and device
JPS6113634A (en) Plasma processor
Siegbahn Electron spectroscopy and molecular structure
EP0562848A2 (en) Surface treating method
JP2002083803A (en) Dry processing device such as etching device and ashing device
Benndorf et al. Photoelectron spectroscopic investigations and exoelectron emission of CVD diamond surfaces modified with oxygen and potassium
WO1996017803A1 (en) Method of evolving negatively charged oxygen atoms and equipment therefor
EP0400651A2 (en) Method of modification on surface of solid sample
JPH0513319A (en) Pattern formation
JPH07169743A (en) Surface treating method
Ogawa et al. Low‐temperature synchrotron‐radiation‐excited etching of silicon dioxide with sulfur hexafluoride adsorption
JPS5852827A (en) Dry etching and device thereof
JP2600243B2 (en) High purity metal deposition method
JP2522050B2 (en) Atomic layer dry etching method
Lu A study of the materials chemistry of monolayer oxides on compound semiconductors
Yu et al. Effects of low-energy electron and ion irradiation on CO/Cu (100): In-situ production and coadsorbate-induced adsorption of CO above room temperature
JP2985321B2 (en) Mask pattern forming method
JP2709058B2 (en) Optical dry etching apparatus and method
Ertl Electron spectroscopy of surfaces by de-excitation of metastable noble gas atoms
Barber et al. An investigation of the Ni/N2O system by secondary ion mass spectrometry
JPH06291095A (en) Pattern forming method