JPH08316533A - Thermoelectric conversion performance evaluation method and device - Google Patents

Thermoelectric conversion performance evaluation method and device

Info

Publication number
JPH08316533A
JPH08316533A JP7146886A JP14688695A JPH08316533A JP H08316533 A JPH08316533 A JP H08316533A JP 7146886 A JP7146886 A JP 7146886A JP 14688695 A JP14688695 A JP 14688695A JP H08316533 A JPH08316533 A JP H08316533A
Authority
JP
Japan
Prior art keywords
thermoelectric
heat
thermoelectric conversion
thermoelectric element
performance evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7146886A
Other languages
Japanese (ja)
Other versions
JP2832334B2 (en
Inventor
Takayuki Sudo
孝幸 須藤
Ritsutou Chin
立東 陳
Katsuhito Kizara
且人 木皿
Tatsuo Kumagai
達夫 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP7146886A priority Critical patent/JP2832334B2/en
Publication of JPH08316533A publication Critical patent/JPH08316533A/en
Application granted granted Critical
Publication of JP2832334B2 publication Critical patent/JP2832334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To provide a thermoelectric element performance evaluation method and a device, wherein a one-dimensional heat flow condition can be realized so as to accurately evaluate the performance of a thermoelectric element of gradient structure under a condition of large temperature difference. CONSTITUTION: A thermoelectric element arranged between a primary heat source 2 and a cooling source to measure a thermoelectromotive force or the like is surrounded with a heat shield 7, and an auxiliary heat source 3 is provided to heat the outside of the heat shield 7 from across so as to make the temperature distribution of the heat shield 7 nearly equal to a temperature distribution induced in the thermoelectric element due to a temperature difference between the primary heat source 2 and the cooling source. A temperature distribution around the thermoelectric element is set nearly equal to that of the element, whereby the thermoelectric element is kept under a condition of one-dimensional heat flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電変換技術において
用いられる熱電変換素子の性能を評価するための装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating the performance of thermoelectric conversion elements used in thermoelectric conversion technology.

【0002】[0002]

【従来の技術】従来、熱電変換素子(以下、単に熱電素
子という)を利用した熱電冷却や、熱電発電が提案され
ている。熱電変換技術において、前記熱電冷却及び熱電
発電の変換効率を向上させるためには、なるべく高温熱
源を利用し温度差を大きくとるのが有利である。しかし
ながら、従来の熱電変換技術に利用されている均質な材
料からなる熱電材料は、その熱電性能が温度に依存し、
特定の温度範囲に変換効率のピークを持つため、全温度
領域に亘って、変換効率を向上させることには限界があ
る。
2. Description of the Related Art Heretofore, thermoelectric cooling and thermoelectric power generation using thermoelectric conversion elements (hereinafter simply referred to as thermoelectric elements) have been proposed. In the thermoelectric conversion technology, in order to improve the conversion efficiency of the thermoelectric cooling and the thermoelectric power generation, it is advantageous to use a high temperature heat source as much as possible and take a large temperature difference. However, the thermoelectric material consisting of a homogeneous material used in conventional thermoelectric conversion technology, its thermoelectric performance depends on the temperature,
Since the conversion efficiency has a peak in a specific temperature range, there is a limit to improving the conversion efficiency over the entire temperature range.

【0003】そこで、近年、熱電素子内部のキャリア濃
度を、熱電素子の一端側から他端側に向かって変化さ
せ、最大の熱電変換効率が得られるように、キャリア濃
度を最適傾斜分布させたキャリア濃度傾斜熱電素子の開
発や、各温度領域において、最も高い性能指数を持つ複
数の熱電素子材料を傾斜構造によって複合化し、低温か
ら高温までの広い温度領域に亘って、高い熱電変換効率
が得られる傾斜構造複合熱電素子の開発が進められてい
る。
Therefore, in recent years, the carrier concentration inside the thermoelectric element is changed from one end side to the other end side of the thermoelectric element so that the carrier concentration is optimally inclined and distributed so that the maximum thermoelectric conversion efficiency can be obtained. Development of concentration-gradient thermoelectric elements and compounding of multiple thermoelectric element materials with the highest figure of merit in each temperature region with a graded structure to obtain high thermoelectric conversion efficiency over a wide temperature range from low temperature to high temperature Development of a gradient composite thermoelectric element is underway.

【0004】熱電材料の熱電変換特性を評価する場合、
主に熱電材料の電気抵抗(σ)、熱起電力(α)、及び
熱伝導率(κ)の値を測定して、Z=σα2/κで定義
される熱電変換性能指数(Z)を求めて性能の評価が行
われている。従来の均質材料では、図3に示すように、
電気抵抗、熱起電力、及び熱伝導率が、ともに温度の関
数であるため、特定の温度においてその性能のピークが
あり、各温度においての評価を行うことができる。
When evaluating the thermoelectric conversion characteristics of thermoelectric materials,
The values of the electrical resistance (σ), thermoelectromotive force (α), and thermal conductivity (κ) of the thermoelectric material are mainly measured to obtain the thermoelectric conversion performance index (Z) defined by Z = σα 2 / κ. Performance is being sought after. With the conventional homogeneous material, as shown in FIG.
Since the electric resistance, the thermoelectromotive force, and the thermal conductivity are all functions of temperature, there is a peak of the performance at a specific temperature, and the evaluation at each temperature can be performed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
た、キャリア濃度傾斜熱電素子や、傾斜構造複合熱電素
子においては、材料内部の異なる部分は異なる温度関数
を持っているため、図4に破線a、b、cで示すよう
に、各部分の最大特性を示す最適の温度分布と、材料の
両端に最適の温度差を加えた条件でのみ、最大の熱電変
換性能が得られる。従って、このような熱電材料及びこ
れらの材料で形成された熱電素子においては、各温度に
おいて前記各値を測定して熱電変換性能指数Zを評価す
る従来の性能評価方法は適用することは出来ない。
However, in the above-mentioned carrier concentration gradient thermoelectric element and gradient structure composite thermoelectric element described above, different portions inside the material have different temperature functions, so that the broken line a, As shown by b and c, the maximum thermoelectric conversion performance can be obtained only under the condition that the optimum temperature distribution showing the maximum characteristics of each part and the optimum temperature difference at both ends of the material are added. Therefore, in such thermoelectric materials and thermoelectric elements formed of these materials, the conventional performance evaluation method of measuring the above-mentioned values at each temperature and evaluating the thermoelectric conversion performance index Z cannot be applied. .

【0006】それ故、前記のような傾斜構造を有する熱
電材料及び熱電素子では、最適設計温度差と温度分布と
を加えた条件で、熱電素子の基本的性能を評価する必要
がある。そこで本発明は、次のような原理に基づいて、
一定の温度差及び温度分布の条件の下で、熱電変換効率
と平均性能指数を評価する方法を採用した。
Therefore, in the thermoelectric material and the thermoelectric element having the above-mentioned gradient structure, it is necessary to evaluate the basic performance of the thermoelectric element under the condition that the optimum design temperature difference and the temperature distribution are added. Therefore, the present invention is based on the following principle.
The method of evaluating thermoelectric conversion efficiency and average figure of merit under the conditions of constant temperature difference and temperature distribution was adopted.

【0007】即ち、熱電変換効率を評価するパラメータ
としては、最大電気出力(Pmax)時、すなわち内部抵抗
(Rm)と外部抵抗(Ro)が等しい(m=Rm/Ro=1)と
きの熱電変換効率(η)を用いる。いま、図5に示すP
-N型熱電素子において、熱電変換効率(η)は次式で
表すことができる。 η=Pmax/Qin (1) ここで、 Pmax=Vm2/4Rm (2) ただし、Vmは開放端電圧、Rmは熱電素子の内部抵抗、
Qinは熱電素子へ流入する熱量である。なお、図5にお
いて、Qoutは熱電素子から流出する熱量であり、素子
から周囲環境への熱損失がなければQinとQoutは同じ
値を示す。さらに、変換効率(η)と平均熱電変換性能
指数(Z)との関係から、平均熱電変換性能指数を求め
ることができる。従って、電気伝動率、熱流束、熱起電
力が同時に測定できれば、熱電素子の変換効率及び平均
性能指数の評価ができる。
That is, as a parameter for evaluating the thermoelectric conversion efficiency, the maximum electric output (Pmax), that is, the internal resistance is used.
The thermoelectric conversion efficiency (η) when (Rm) and the external resistance (Ro) are equal (m = Rm / Ro = 1) is used. Now, P shown in FIG.
In the N-type thermoelectric element, the thermoelectric conversion efficiency (η) can be expressed by the following equation. η = Pmax / Qin (1) where Pmax = Vm 2 / 4Rm (2) where Vm is the open circuit voltage, Rm is the internal resistance of the thermoelectric element,
Qin is the amount of heat flowing into the thermoelectric element. In FIG. 5, Qout is the amount of heat flowing out from the thermoelectric element, and Qin and Qout have the same value if there is no heat loss from the element to the surrounding environment. Further, the average thermoelectric conversion performance index can be obtained from the relationship between the conversion efficiency (η) and the average thermoelectric conversion performance index (Z). Therefore, if the electric conductivity, heat flux, and thermoelectromotive force can be measured at the same time, the conversion efficiency of the thermoelectric element and the average performance index can be evaluated.

【0008】しかし、前述したような傾斜構造複合熱電
材料や素子の実際に使用される温度は、一般的に室温か
ら高温までの数100℃〜1000℃程度の温度落差が
要求される。このような高温度落差の条件下では、測定
試料と周囲環境との間や、測定試料の高温部と低温部と
の間に大きな温度差が存在しているため、測定試料から
周囲環境への熱損失が大きく、熱電素子の高温部側から
低温部側への一次元的な熱流環境が得られなかった。そ
のため、正確な熱流の測定が困難であり、熱電素子や熱
電材料の正確な性能評価が困難であった。
However, the temperature actually used for the above-mentioned graded composite thermoelectric material and element is generally required to have a temperature drop of several 100 ° C. to 1000 ° C. from room temperature to high temperature. Under such a high temperature drop condition, a large temperature difference exists between the measurement sample and the ambient environment, and between the high temperature part and the low temperature part of the measurement sample. The heat loss was large, and a one-dimensional heat flow environment from the high temperature side to the low temperature side of the thermoelectric element could not be obtained. Therefore, it is difficult to accurately measure the heat flow, and it is difficult to accurately evaluate the thermoelectric element and the thermoelectric material.

【0009】そこで、本発明は、従来の方法では困難で
あった傾斜構造を有する熱電変換材料や熱電素子の性能
を正確に評価できる方法を得ようとするもので、より具
体的には、高温度落差の条件下において一次元的熱流条
件を作り出し、傾斜構造熱電変換素子及び変換材料の実
使用温度条件下で、正確な性能評価を行うことのできる
熱電変換素子性能評価方法及び装置を提供することを目
的とする。
Therefore, the present invention seeks to obtain a method capable of accurately evaluating the performance of a thermoelectric conversion material or thermoelectric element having a graded structure, which was difficult with the conventional method. (EN) A thermoelectric conversion element performance evaluation method and apparatus capable of producing a one-dimensional heat flow condition under a temperature drop condition and performing accurate performance evaluation under actual use temperature conditions of a graded structure thermoelectric conversion element and conversion material. The purpose is to

【0010】[0010]

【課題を解決するための手段】前記目的のために、本発
明の熱電変換性能評価方法は、熱電素子の一端と他端と
の間に高温度落差を生じさせる条件下で前記熱電素子の
熱電変換効率と平均性能指数を評価する熱電性能評価方
法において、熱電素子の周囲の温度分布を熱電素子の温
度分布と略等しく保持することにより、熱電素子に一次
元的熱流条件を維持させるようにしたものである。
To achieve the above object, the thermoelectric conversion performance evaluation method of the present invention provides a thermoelectric conversion method for a thermoelectric element under the condition that a high temperature drop occurs between one end and the other end of the thermoelectric element. In the thermoelectric performance evaluation method for evaluating the conversion efficiency and the average figure of merit, the temperature distribution around the thermoelectric element is kept substantially equal to the temperature distribution of the thermoelectric element so that the thermoelectric element can maintain the one-dimensional heat flow condition. It is a thing.

【0011】また、本発明の熱電性能評価装置は、主熱
源と冷却源との間に配置して、熱起電力等の測定を行う
熱電素子の周囲を、断熱シールドによって包囲するとと
もに、前記断熱シールドの温度分布が、前記主熱源と冷
却部との熱落差によって前記熱電素子に生じる温度分布
と略等しくなるように、前記断熱シールドの外側を側方
から加熱する補助熱源を設けたものである。そして、前
記熱電性能評価装置において、前記熱電素子と断熱シー
ルドとの間に、低熱放射率及び低熱伝導率を有する充填
材を充填すると、熱伝達を防ぐことができ望ましい。
Further, the thermoelectric performance evaluation apparatus of the present invention is arranged between the main heat source and the cooling source, and surrounds the periphery of the thermoelectric element for measuring thermoelectromotive force with a heat insulating shield, and An auxiliary heat source for heating the outside of the heat shield from the side is provided so that the temperature distribution of the shield becomes substantially equal to the temperature distribution generated in the thermoelectric element due to the heat drop between the main heat source and the cooling unit. . Then, in the thermoelectric performance evaluation apparatus, it is preferable to fill a filler having a low thermal emissivity and a low thermal conductivity between the thermoelectric element and the heat insulating shield, because heat transfer can be prevented.

【0012】[0012]

【作用】本発明の熱電変換性能評価方法においては、熱
電性能を評価するために、測定を行う熱電素子の両端に
高温度落差を生じさせる条件下で、前記熱電素子の周囲
の環境の温度分布を、熱電素子の温度分布と略等しく保
持する。その結果、熱電素子を高温側から低温側へ通過
する熱流は、熱電素子の性能評価を行うために熱流の測
定に必要な一次元熱流条件が維持される。
In the thermoelectric conversion performance evaluation method of the present invention, in order to evaluate the thermoelectric performance, the temperature distribution of the environment around the thermoelectric element under the condition that a high temperature drop occurs at both ends of the thermoelectric element to be measured. Is kept substantially equal to the temperature distribution of the thermoelectric element. As a result, the heat flow passing through the thermoelectric element from the high temperature side to the low temperature side maintains the one-dimensional heat flow condition necessary for measuring the heat flow in order to evaluate the performance of the thermoelectric element.

【0013】また、本発明の熱電性能評価装置によれ
ば、補助熱源で断熱シールドの外側を側方から加熱する
ことによって、断熱シールドに熱電素子の温度分布と同
様な温度分布を形成することで、傾斜構造をもつ複合熱
電素子の測定時に要求される一次元的な熱流条件が高精
度に実現される。
Further, according to the thermoelectric performance evaluation apparatus of the present invention, the auxiliary heat source heats the outside of the heat shield from the side to form a temperature distribution similar to that of the thermoelectric element on the heat shield. The one-dimensional heat flow condition required for the measurement of the composite thermoelectric element having the inclined structure can be realized with high accuracy.

【0014】さらに、本発明の熱電性能評価装置におい
て、熱電素子と断熱シールドとの間に、低熱放射率及び
低熱伝導率を有する充填材を充填した場合には、熱電素
子の高温側から低温側に向かう放射熱による熱の移動
が、前記充填剤によって抑制され、一次元的な熱流条件
がさらに高い精度で維持される。
Furthermore, in the thermoelectric performance evaluation apparatus of the present invention, when a filler having a low thermal emissivity and a low thermal conductivity is filled between the thermoelectric element and the heat insulating shield, the thermoelectric element from the high temperature side to the low temperature side. The heat transfer due to the radiant heat toward the is suppressed by the filler, and the one-dimensional heat flow condition is maintained with higher accuracy.

【0015】[0015]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は、熱電性能評価装置の断面図であって、
熱電性能評価装置1の測定部は、円筒石英ガラスの真空
のチャンバ2内部に設置されている。上部には赤外線ラ
ンプで構成された主熱源3が配置されており、主熱源3
から放射される熱は、主熱源3の上方に設けられている
集光ミラーで反射されて、下方に指向して放射されるよ
うになっている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a thermoelectric performance evaluation device,
The measuring unit of the thermoelectric performance evaluation apparatus 1 is installed inside a vacuum chamber 2 of cylindrical quartz glass. A main heat source 3 composed of an infrared lamp is arranged at the upper part.
The heat radiated from is reflected by a condenser mirror provided above the main heat source 3 and directed downward and radiated.

【0016】一方下方には、上部熱流計5、試料6、及
び下部熱流計7の順序で、一列に配置されている。試料
6は、性能を評価するための熱電素子で、円筒状に形成
されており、P−N電極が設けられている。また、上部
熱流計5と下部熱流計7は、それぞれの端面が、試料6
の端面と適合した円筒状に形成されており、インコネル
と銅を用いて製作されている。
On the other hand, on the lower side, the upper heat flow meter 5, the sample 6, and the lower heat flow meter 7 are arranged in a line in this order. Sample 6 is a thermoelectric element for evaluating the performance, is formed in a cylindrical shape, and is provided with a P-N electrode. Further, the upper heat flow meter 5 and the lower heat flow meter 7 have the end surfaces of the sample 6
It is formed in a cylindrical shape that matches the end face of the, and is made using Inconel and copper.

【0017】また試料6は、上部熱流計5と下部熱流計
7の間に挟まれて、冷却ブロック11の上にばね9で引
っ張られた3本のアルミナ棒10によって、約3kgfの
力で固定されている。また、冷却源となる冷却ブロック
11の内部には、冷却水13が循環しており、冷却ブロ
ック11を冷却している。
The sample 6 is sandwiched between the upper heat flow meter 5 and the lower heat flow meter 7 and fixed by a force of about 3 kgf by the three alumina rods 10 pulled by the spring 9 on the cooling block 11. Has been done. Further, cooling water 13 circulates inside the cooling block 11 serving as a cooling source to cool the cooling block 11.

【0018】試料6の周囲は、断熱シールド8によって
包囲されており、前記断熱シールド8の外側には、複数
の補助熱源4が配置されている。それぞれの補助熱源4
は、主熱源3と同様に、赤外線ランプによって構成され
ており、高さを調整できる反射板によって、断熱シール
ド8の外側を加熱するようになっている。そして、前記
補助熱源4の放熱量と反射板の高さとを、それぞれ外部
から制御できるように構成されている。そして、前記補
助熱源4によって、断熱シールド8の軸方向温度分布
を、主熱源3と冷却ブロック11との温度落差により生
じる試料6の軸方向の温度分布に一致させるように制御
できるようになっている。
The circumference of the sample 6 is surrounded by a heat insulating shield 8, and a plurality of auxiliary heat sources 4 are arranged outside the heat insulating shield 8. Each auxiliary heat source 4
Like the main heat source 3, is constituted by an infrared lamp, and the outside of the heat shield 8 is heated by a reflector whose height can be adjusted. The heat radiation amount of the auxiliary heat source 4 and the height of the reflection plate can be controlled externally. Then, the auxiliary heat source 4 can be controlled so that the axial temperature distribution of the heat insulating shield 8 matches the axial temperature distribution of the sample 6 caused by the temperature difference between the main heat source 3 and the cooling block 11. There is.

【0019】また、上部熱流計5、試料6及び下部熱流
計7のそれぞれと、断熱シールド8との間には、主熱源
2側から冷却ブロック11側へ輻射による熱伝達を防ぐ
ために、低熱放射率及び低熱伝導率を有する充填材とし
て、アルミナバブラー12を充填した。
In addition, in order to prevent heat transfer from the main heat source 2 side to the cooling block 11 side by radiation between each of the upper heat flow meter 5, the sample 6 and the lower heat flow meter 7 and the heat insulating shield 8, low heat radiation is performed. A bubbler 12 was filled as a filler having a low thermal conductivity and a low thermal conductivity.

【0020】図2は、図1に示した熱電性能評価装置1
の試料6周囲の構造を示している模式図である。同図に
示すように、上部熱流計4と下部熱流計7には、それぞ
れ熱電対15が取り付けられ、熱電対端子盤14(図
1)へ接続されている。前記熱電対端子盤14からは熱
電対用補償導線により、図示していない熱電性能評価装
置1外部に設置されている測定機器に結線される。
FIG. 2 is a thermoelectric performance evaluation device 1 shown in FIG.
It is a schematic diagram which shows the structure of the sample 6 surrounding. As shown in the figure, a thermocouple 15 is attached to each of the upper heat flow meter 4 and the lower heat flow meter 7 and is connected to the thermocouple terminal board 14 (FIG. 1). The thermocouple terminal board 14 is connected to a measuring device (not shown) installed outside the thermoelectric performance evaluation apparatus 1 by a thermocouple compensating lead wire.

【0021】また、図2に示すように、上部熱流計5と
試料6との間にはニッケル箔16が、また試料6と下部
熱流計7との間には銀箔17が、それぞれ介在されてい
る。同図においては、これらの部材は、説明上分離して
描かれているが、実際には、各部材同士相互に密着され
ており、高温の主熱源3から、図1に示すように冷却水
13によって冷却されている低温の冷却ブロック11側
へ、熱流Qが生じるように構成されている。また、試料
6を包囲している断熱シールド8の任意の位置に熱電対
を取り付け、断熱シールド8の温度分布が測定できるよ
うになっている。
Further, as shown in FIG. 2, a nickel foil 16 is interposed between the upper heat flow meter 5 and the sample 6, and a silver foil 17 is interposed between the sample 6 and the lower heat flow meter 7. There is. In the figure, these members are drawn separately for the sake of description, but in reality, the members are in close contact with each other, and from the main heat source 3 of high temperature, as shown in FIG. A heat flow Q is generated toward the low temperature cooling block 11 side cooled by 13. Further, a thermocouple is attached to an arbitrary position of the heat insulating shield 8 surrounding the sample 6 so that the temperature distribution of the heat insulating shield 8 can be measured.

【0022】本実施例では、評価する熱電素子の形状は
円柱状P−N電極付き素子を基本としているが、矩形状
素子の場合は上下の熱流計の形状を変更することにより
容易に対応できる。そして、試料6の高温部の最高温度
を1500Kで、試料6両端の温度差を約800Kに設
定して、試料6の温度分布、電気伝導率、熱流速、熱起
電力(開放端電圧)等の測定を行うようにした。その
際、断熱シールド8の軸方向の温度分布を、試料6と上
部熱流計5、下部熱流計7それぞれの温度分布と同じに
なるように制御し、さらに、主熱源3側から、冷却ブロ
ック11側への放射熱による熱伝達を防止するために、
直径1mm〜2.8mmのアルミナバブラー12を使用し
た。
In this embodiment, the shape of the thermoelectric element to be evaluated is basically a columnar element with a P-N electrode, but a rectangular element can be easily dealt with by changing the shape of the upper and lower heat flow meters. . Then, the maximum temperature of the high temperature part of the sample 6 is set to 1500K and the temperature difference between both ends of the sample 6 is set to about 800K, and the temperature distribution of sample 6, electrical conductivity, heat flow velocity, thermoelectromotive force (open end voltage), etc. Was measured. At that time, the temperature distribution in the axial direction of the heat insulating shield 8 is controlled to be the same as the temperature distributions of the sample 6, the upper heat flow meter 5 and the lower heat flow meter 7, respectively, and further, from the main heat source 3 side, the cooling block 11 is provided. In order to prevent heat transfer due to radiant heat to the side,
An alumina bubbler 12 having a diameter of 1 mm to 2.8 mm was used.

【0023】そして、ゼーベック熱起電力及び各熱電対
15からの出力は、33チャンネルマルチプレクサアン
プ及びA/D変換器を介して、コンピュータに取り込ん
でデータ処理を行なうようにした。さらに、試料の内部
抵抗を測定する際は、ゼーベック熱起電力の影響を除去
するために、コンピュータ制御によるパルス電流を用
い、正負電流時の電圧値の平均値により、内部抵抗を求
めるようにした。
Then, the Seebeck thermoelectromotive force and the output from each thermocouple 15 are taken into a computer through a 33-channel multiplexer amplifier and A / D converter for data processing. Furthermore, when measuring the internal resistance of the sample, in order to remove the influence of Seebeck thermoelectromotive force, a pulse current controlled by a computer was used, and the internal resistance was determined by the average value of the voltage values at positive and negative currents. .

【0024】実験例 以上のように構成された装置を用いて、試料5に、寸法
が直径15mm、長さ16mmのFeSi2P-Nジャンクシ
ョン素子を採用して、次の測定を行ってその性能評価を
行った。熱電性能評価装置1が設置されているチャンバ
内を真空状態にし、主熱源3及び補助熱源4によって昇
温を行い、上部熱流計5及び断熱シールド8の温度が所
定の温度になるように制御する。そして、熱平衡状態に
達した後、試料6の温度分布、ゼーベック起電力及び電
気抵抗の測定を行なった。また、熱流束の大きさを、熱
流計の両端の温度差により求めた。
Experimental Example Using the apparatus configured as described above, an FeSi2P-N junction element having a diameter of 15 mm and a length of 16 mm was adopted as the sample 5, and the following measurement was performed to evaluate its performance. went. The chamber in which the thermoelectric performance evaluation apparatus 1 is installed is evacuated, the temperature is raised by the main heat source 3 and the auxiliary heat source 4, and the temperatures of the upper heat flow meter 5 and the heat insulating shield 8 are controlled to a predetermined temperature. . After reaching the thermal equilibrium state, the temperature distribution, Seebeck electromotive force, and electric resistance of Sample 6 were measured. Further, the magnitude of the heat flux was obtained from the temperature difference between both ends of the heat flow meter.

【0025】その結果、素子の高温部と低温部の温度
は、それぞれ1076Kと442Kであり、634Kの
温度落差が得られた。また、前記素子のゼーベック起電
力と内部抵抗(比抵抗)は、それぞれ270mVと0.4
7Ωcmであった。
As a result, the temperatures of the high temperature portion and the low temperature portion of the device were 1076K and 442K, respectively, and a temperature drop of 634K was obtained. The Seebeck electromotive force and internal resistance (specific resistance) of the device are 270 mV and 0.4, respectively.
It was 7 Ωcm.

【0026】さらに、本発明装置のような高温落差条件
では、一次元的な熱流パターンを実現するのが大変重要
であるので、本実施例装置の熱流パターンを確認・校正
するために、ステンレス鋼(SUS304)よりなる標
準試料を用いて熱流校正実験を行った。その結果、上部
熱流計5の温度を1190Kに設定した場合、前記標準
試料の上部と下部の温度は、それぞれ898Kと787
Kとなり、上部熱流計5と標準試料に通過する熱流束の
大きさは、それぞれ21.6W/cm2と20.9W/cm2
であり、3%の減衰があった。この結果は、本実施例装
置では、良好な一次元熱流パターンが得られることを示
しており、本発明による熱電変換性能評価方法及び装置
の有効性が確認された。
Further, since it is very important to realize a one-dimensional heat flow pattern under the high temperature drop condition as in the device of the present invention, in order to confirm and calibrate the heat flow pattern of the device of this embodiment, stainless steel is used. A heat flow calibration experiment was performed using a standard sample made of (SUS304). As a result, when the temperature of the upper heat flow meter 5 was set to 1190K, the upper and lower temperatures of the standard sample were 898K and 787, respectively.
K, and the magnitude of the heat flux through the upper heat flow meter 5 and the standard sample, respectively 21.6W / cm 2 and 20.9W / cm 2
And there was a 3% attenuation. This result indicates that a good one-dimensional heat flow pattern can be obtained in the device of this example, and the effectiveness of the thermoelectric conversion performance evaluation method and device according to the present invention was confirmed.

【0027】[0027]

【発明の効果】以上に説明したように、本発明の熱電性
能評価方法によれば、測定する熱電素子の周囲に、熱電
素子の温度分布と同様な温度分布を形成するようにして
いるため、熱電素子の側面からの周囲の環境との間での
熱の出入りが防止でき、熱電素子の内部に、一次元的な
熱流条件を実現することができる。その結果、傾斜構造
をもつ複合熱電素子に対して、実使用温度条件の下での
熱電変換性能を高い精度で評価することが可能となる。
As described above, according to the thermoelectric performance evaluation method of the present invention, since the temperature distribution similar to the temperature distribution of the thermoelectric element is formed around the thermoelectric element to be measured, It is possible to prevent heat from entering and exiting from the side surface of the thermoelectric element with respect to the surrounding environment, and to realize a one-dimensional heat flow condition inside the thermoelectric element. As a result, it becomes possible to evaluate the thermoelectric conversion performance under the actual use temperature condition with high accuracy for the composite thermoelectric element having the inclined structure.

【0028】また、本発明の熱電性能評価装置によれ
ば、補助熱源で断熱シールドの外側を側方から加熱する
ことによって、断熱シールドに測定する熱電素子の温度
分布と同様な温度分布を容易に形成することができ、傾
斜構造をもつ複合熱電素子の測定時に要求される一次元
的な熱流条件を高精度に実現することができる。
Further, according to the thermoelectric performance evaluation apparatus of the present invention, the temperature distribution similar to the temperature distribution of the thermoelectric element measured on the heat insulation shield can be easily obtained by heating the outside of the heat insulation shield from the side by the auxiliary heat source. The one-dimensional heat flow condition required for the measurement of the composite thermoelectric element having the inclined structure can be realized with high accuracy.

【0029】さらに、本発明の熱電性能評価装置におい
て、熱電素子と断熱シールドとの間に、低熱放射率及び
低熱伝導率を有する充填材を充填した場合には、熱電素
子の高温側から低温側に向かう放射熱による熱の移動を
減少させることができ、一次元的な熱流条件をさらに高
い精度で維持することができる。
Further, in the thermoelectric performance evaluation apparatus of the present invention, when a filler having a low thermal emissivity and a low thermal conductivity is filled between the thermoelectric element and the heat insulating shield, the thermoelectric element from the high temperature side to the low temperature side. It is possible to reduce the heat transfer due to the radiant heat toward, and to maintain the one-dimensional heat flow condition with higher accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱電性能評価装置の一実施例を示す断
面図である。
FIG. 1 is a sectional view showing an embodiment of a thermoelectric performance evaluation device of the present invention.

【図2】本発明の熱電性能評価装置の試料の周囲の構造
を示す概略図である。
FIG. 2 is a schematic view showing a structure around a sample of the thermoelectric performance evaluation apparatus of the present invention.

【図3】従来の熱電素子の温度と性能指数との関係を示
す図である。
FIG. 3 is a diagram showing the relationship between the temperature and the figure of merit of a conventional thermoelectric element.

【図4】(a)は傾斜構造複合熱電素子の異なる材料部
分を示す模式図であり、(b)は該傾斜構造複合熱電素
子の温度と性能指数の関係を示す図である。
FIG. 4 (a) is a schematic view showing different material parts of the gradient structure composite thermoelectric element, and FIG. 4 (b) is a diagram showing a relationship between temperature and performance index of the gradient structure composite thermoelectric element.

【図5】P-N型熱電素子の概略図である。FIG. 5 is a schematic view of a PN type thermoelectric element.

【符号の説明】[Explanation of symbols]

1 熱電性能評価装置 2 真空チャンバ 3 主熱源 4 補助熱源 5 上部熱流計 6 試料 7 下部熱流計 8 断熱シールド 9 ばね 10 アルミナ棒 11 冷却水ブロック 12 アルミナバブ
ラー 13 冷却水 14 熱電対端子盤 15 熱電対 16 ニッケル箔 17 銀箔
1 Thermoelectric Performance Evaluation Device 2 Vacuum Chamber 3 Main Heat Source 4 Auxiliary Heat Source 5 Upper Heat Flow Meter 6 Sample 7 Lower Heat Flow Meter 8 Insulation Shield 9 Spring 10 Alumina Rod 11 Cooling Water Block 12 Alumina Bubbler 13 Cooling Water 14 Thermocouple Terminal Board 15 Thermocouple 16 Nickel foil 17 Silver foil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊谷 達夫 宮城県柴田郡柴田町大字上名生字東船岡63 番地4号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Kumagai, Shibata Town, Shibata District, Miyagi Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱電変換素子の一端と他端との間に高温
度落差を生じさせる条件下で前記熱電変換素子の熱電変
換効率と平均性能指数を評価する熱電変換性能評価方法
において、熱電変換素子の周囲の温度分布を熱電変換素
子の温度分布と略等しく保持することにより、熱電変換
素子に一次元熱流条件を維持させるようにしたことを特
徴とする熱電性能評価方法。
1. A thermoelectric conversion performance evaluation method for evaluating a thermoelectric conversion efficiency and an average performance index of a thermoelectric conversion element under the condition of causing a high temperature drop between one end and the other end of the thermoelectric conversion element. A thermoelectric performance evaluation method, characterized in that the temperature distribution around the element is kept substantially equal to the temperature distribution of the thermoelectric conversion element so that the thermoelectric conversion element is maintained under a one-dimensional heat flow condition.
【請求項2】 主熱源と冷却源との間に配置して、熱起
電力等の測定を行う熱電変換素子の周囲を、断熱シール
ドによって包囲するとともに、前記断熱シールドの温度
分布が、前記主熱源と冷却部との熱落差によって前記熱
電変換素子に生じる温度分布と略等しくなるように、前
記断熱シールドの外側を側方から加熱する補助熱源を設
けたことを特徴とする熱電性能評価装置。
2. A thermoelectric conversion element that is arranged between a main heat source and a cooling source and measures thermoelectromotive force is surrounded by a heat insulating shield, and the temperature distribution of the heat insulating shield is the main A thermoelectric performance evaluation device comprising: an auxiliary heat source that heats the outside of the heat shield from the side so that the temperature distribution generated in the thermoelectric conversion element due to the heat drop between the heat source and the cooling unit becomes substantially equal.
【請求項3】 前記熱電変換素子と断熱シールドとの間
に、低熱放射率及び低熱伝導率を有する充填材を充填し
たことを特徴とする請求項2記載の熱電性能評価装置。
3. The thermoelectric performance evaluation device according to claim 2, wherein a filler having a low thermal emissivity and a low thermal conductivity is filled between the thermoelectric conversion element and the heat insulating shield.
JP7146886A 1995-05-23 1995-05-23 Thermoelectric conversion performance evaluation method and apparatus Expired - Lifetime JP2832334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7146886A JP2832334B2 (en) 1995-05-23 1995-05-23 Thermoelectric conversion performance evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7146886A JP2832334B2 (en) 1995-05-23 1995-05-23 Thermoelectric conversion performance evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JPH08316533A true JPH08316533A (en) 1996-11-29
JP2832334B2 JP2832334B2 (en) 1998-12-09

Family

ID=15417807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7146886A Expired - Lifetime JP2832334B2 (en) 1995-05-23 1995-05-23 Thermoelectric conversion performance evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP2832334B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003872A (en) * 2002-03-26 2004-01-08 National Institute Of Advanced Industrial & Technology Evaluating method of thermoelectric transducing material
WO2011101900A1 (en) * 2010-02-17 2011-08-25 アルバック理工株式会社 Apparatus and method for evaluating thermoelectric conversion element
KR101102414B1 (en) * 2010-05-28 2012-01-05 한국표준과학연구원 Thermoelectric device characteristics measuring apparatus and measuring method of the same
KR101276659B1 (en) * 2011-09-09 2013-06-19 한국표준과학연구원 Method for evaluating a thermoelectric figure-of-merit of thermoelectric device
JP2013214642A (en) * 2012-04-03 2013-10-17 Ulvac-Riko Inc Thermoelectric material measurement device
WO2015188317A1 (en) * 2014-06-10 2015-12-17 中国华能集团清洁能源技术研究院有限公司 Testing system and method for thermoelectric module
CN105203940A (en) * 2015-09-28 2015-12-30 中国科学院上海硅酸盐研究所 System and method for evaluating reliability of thermoelectric element
JP2018200207A (en) * 2017-05-26 2018-12-20 株式会社リガク Thermal analyzer
JP2020057633A (en) * 2018-09-28 2020-04-09 日立金属株式会社 Thermoelectric conversion module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003872A (en) * 2002-03-26 2004-01-08 National Institute Of Advanced Industrial & Technology Evaluating method of thermoelectric transducing material
WO2011101900A1 (en) * 2010-02-17 2011-08-25 アルバック理工株式会社 Apparatus and method for evaluating thermoelectric conversion element
JP5511941B2 (en) * 2010-02-17 2014-06-04 アルバック理工株式会社 Thermoelectric conversion element evaluation apparatus and evaluation method
KR101102414B1 (en) * 2010-05-28 2012-01-05 한국표준과학연구원 Thermoelectric device characteristics measuring apparatus and measuring method of the same
KR101276659B1 (en) * 2011-09-09 2013-06-19 한국표준과학연구원 Method for evaluating a thermoelectric figure-of-merit of thermoelectric device
JP2013214642A (en) * 2012-04-03 2013-10-17 Ulvac-Riko Inc Thermoelectric material measurement device
WO2015188317A1 (en) * 2014-06-10 2015-12-17 中国华能集团清洁能源技术研究院有限公司 Testing system and method for thermoelectric module
CN105203940A (en) * 2015-09-28 2015-12-30 中国科学院上海硅酸盐研究所 System and method for evaluating reliability of thermoelectric element
JP2018200207A (en) * 2017-05-26 2018-12-20 株式会社リガク Thermal analyzer
JP2020057633A (en) * 2018-09-28 2020-04-09 日立金属株式会社 Thermoelectric conversion module

Also Published As

Publication number Publication date
JP2832334B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
Muto et al. Thermoelectric properties and efficiency measurements under large temperature differences
US2677772A (en) Neutron thermometer
US3232113A (en) Thermal parameter indicator
Ziolkowski et al. Heat flow measurement as a key to standardization of thermoelectric generator module metrology: A comparison of reference and absolute techniques
Roh et al. Harman measurements for thermoelectric materials and modules under non-adiabatic conditions
KR20150007686A (en) Thermoelectric property measurement system
JP2832334B2 (en) Thermoelectric conversion performance evaluation method and apparatus
GB2179202A (en) Equipment and method for calibration of a temperature sensing device
Wilkins et al. Multijunction thermal convertor. An accurate dc/ac transfer instrument
US4440716A (en) In-situ calibration of local power measuring devices for nuclear reactors
US1553789A (en) Radiation pyrometer
CN109282911A (en) High precision measuring temperature probe and high precision measuring temperature instrument
US1407147A (en) A corpora
Ziolkowski et al. Interlaboratory Testing for High‐Temperature Power Generation Characteristics of a Ni‐Based Alloy Thermoelectric Module
Takazawa et al. Efficiency measurement of thermoelectric modules operating in the temperature difference of up to 550K
Edler et al. Reference material for Seebeck coefficients
Fujiki et al. Development on measurement method for Thomson coefficient of thin film
Panthi et al. Empirical test of the Kelvin relation in a Bi2Te3 thermopile
Patel et al. Automated instrumentation for the determination of the high-temperature thermoelectric figure-of-merit
JPH023311B2 (en)
JP2004165233A (en) Seebeck coefficient measuring device
Wood et al. Pyrometry
Woodbury et al. Z-meters
RU2633405C1 (en) Device for measuring thermal conductivity
SU1012167A1 (en) Microcalorimeter for measuring ionization radiation flux

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980825

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term