JPH08316373A - Resin sealed power module and production thereof - Google Patents

Resin sealed power module and production thereof

Info

Publication number
JPH08316373A
JPH08316373A JP11546795A JP11546795A JPH08316373A JP H08316373 A JPH08316373 A JP H08316373A JP 11546795 A JP11546795 A JP 11546795A JP 11546795 A JP11546795 A JP 11546795A JP H08316373 A JPH08316373 A JP H08316373A
Authority
JP
Japan
Prior art keywords
gel
case
stage
defoaming
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11546795A
Other languages
Japanese (ja)
Inventor
Kazuhiro Suzuki
和弘 鈴木
Kazuji Yamada
一二 山田
Tadao Kushima
忠雄 九嶋
Hideo Shimizu
英雄 清水
Hiroshi Suzuki
洋 鈴木
Shin Morishima
森島  慎
Ryuichi Saito
隆一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11546795A priority Critical patent/JPH08316373A/en
Publication of JPH08316373A publication Critical patent/JPH08316373A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

PURPOSE: To prevent contamination of the inner surface of case with scattering gel or adhesion of gel to the inner surface of upper package structure at the time of low pressure defoaming by minimizing the quantity of get to be defoamed in the first stage and filling second and subsequent stage gels thereon without defoaming. CONSTITUTION: In a power module where a semiconductor element 1 is contained by means of an enclosure case 7 being set on a metal substrate 3 and a cover case 6, silicon gel 8a is injected through an injection hole 10 of the cover case 6 into the package up to a level slightly higher than a bonding wire 4. The silicon gel 8a is subjected to defoaming and thermally set. It is then cooled down to the room temperature and a second stage gel 8b is injected onto the first stage gel 8a. The second stage gel 8b is not subjected to defoaming and thermally set under same conditions as the first stage get 8a. By such a method, contamination of the inner surface of case with scattering gel or adhesion of gel to the inner surface of upper package structure can be prevented at the time of low pressure defoaming.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は樹脂封止型パワーモジュ
ール装置並びにその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-sealed power module device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来のパワーモジュール装置の構成を、
一般的なIGBTモジュールの構成を例に取って説明す
る。図1は一般的なIGBTモジュールの断面図であ
る。図において、1はIGBTあるいはダイオードチッ
プ等のパワーチップであり、これらはセラミックス板2
の上に搭載され、このセラミックス板は金属基板3に接
合されている。セラミックス板2上からは、半田付け固
定された外部取り出し端子5が立ち上がっている。外部
取り出し端子5とパワーチップ1とは金属ワイヤ4によ
り電気的に接続されている。金属基板3にはポリフェニ
レンスルフィド(PPS)等の熱可塑性樹脂製外囲ケー
ス7が接着されている。6は同一樹脂製の蓋である。パ
ワーチップを搭載した基板上にはチップ保護のため弾性
率の非常に小さいシリコーンゲル8が充填されている。
さらにこの上には、端子固定とパッケージの機密を保持
するためにエポキシ樹脂組成物等の硬質樹脂9が充填さ
れている。
2. Description of the Related Art The configuration of a conventional power module device is
The configuration of a general IGBT module will be described as an example. FIG. 1 is a cross-sectional view of a general IGBT module. In the figure, 1 is a power chip such as an IGBT or a diode chip, and these are ceramic plates 2
And the ceramic plate is bonded to the metal substrate 3. An external lead-out terminal 5 fixed by soldering stands up from the ceramic plate 2. The external lead-out terminal 5 and the power chip 1 are electrically connected by the metal wire 4. An enclosure case 7 made of a thermoplastic resin such as polyphenylene sulfide (PPS) is adhered to the metal substrate 3. 6 is a lid made of the same resin. A silicon gel 8 having a very small elastic modulus is filled on the substrate on which the power chip is mounted for chip protection.
Furthermore, a hard resin 9 such as an epoxy resin composition is filled thereover in order to fix the terminals and keep the package airtight.

【0003】[0003]

【発明が解決しようとする課題】従来のパワーモジュー
ル装置では、耐湿寿命が短いと云う問題があった。この
主要因は、基板,外囲ケース,硬質樹脂で周囲を密封さ
れたシリコーンゲル中には、クラックやボイド等の構造
欠陥が発生し易く、これら構造欠陥部に水分が凝縮する
ことおよび/またはこれら欠陥部を伝って水分が容易に
パワーチップ上に到達することにある。従って、パワー
モジュールの耐湿性向上のためには、シリコーンゲル部
の構造欠陥発生を防止することが非常に有効である。
The conventional power module device has a problem that the moisture resistance life is short. The main reason for this is that structural defects such as cracks and voids are likely to occur in the substrate, the outer case, and the silicone gel whose periphery is sealed with hard resin, and moisture condenses at these structural defects and / or Moisture can easily reach the power chip through these defective portions. Therefore, in order to improve the moisture resistance of the power module, it is very effective to prevent the occurrence of structural defects in the silicone gel part.

【0004】周囲を拘束されたシリコーンゲル中に構造
欠陥が発生し易いのは、ゲルの大きな体積温度変化が阻
害されるためである。特に、ゲルの熱収縮時、周囲を拘
束されていると、ゲル表面の形状変化により体積減少分
を吸収することが不可能となり、ゲルバルク内に構造欠
陥を発生して体積減少せざるを得なくなる。これがゲル
中に構造欠陥が発生するメカニズムである。
The reason why structural defects tend to occur in the silicone gel whose periphery is bound is that the large volume temperature change of the gel is inhibited. In particular, when the periphery of the gel is constrained during thermal contraction of the gel, it becomes impossible to absorb the volume reduction due to the shape change of the gel surface, and the volume of the gel must be reduced due to structural defects in the gel bulk. . This is the mechanism by which structural defects occur in the gel.

【0005】ゲル部構造欠陥発生を防止する手法とし
て、ゲルへの拘束を低減することが有効である。この観
点からの手法として、ゲル上面を空間とした構造を、特
願平6−179890号明細書に開示している。この構造はゲ
ル部での構造欠陥発生防止に有効であるが、充填するゲ
ル量を厳しく管理する必要がある。充填ゲル量が多過ぎ
ると、ゲル上面が蓋内面に付着し、却ってゲルの拘束を
大きくするため、ゲル内部にボイド等の構造欠陥が発生
し易くなる。ゲル上面付着は、充填ゲル量が多過ぎる場
合のみならず、高信頼性が要求される場合には必須の工
程となる、ゲル注入後、硬化前のゲルの減圧脱泡処理の
際に、飛散したゲルがパッケージ上部内面に付着するこ
とによっても発生する。このゲル飛散の状態は、注入ゲ
ルの抱込みガス量や基板部の製作状態の微妙な差異によ
っても変化するため、ゲルの飛散状態を管理することは
通常非常に困難であった。
As a method for preventing the occurrence of structural defects in the gel part, it is effective to reduce the constraint on the gel. As a method from this point of view, a structure having a space on the upper surface of the gel is disclosed in Japanese Patent Application No. 6-179890. This structure is effective in preventing structural defects from occurring in the gel part, but the amount of gel to be filled must be strictly controlled. If the amount of the filled gel is too large, the upper surface of the gel adheres to the inner surface of the lid and rather restricts the gel, so that structural defects such as voids easily occur inside the gel. Adhesion on the top surface of the gel is an essential step not only when the amount of filled gel is too large, but also when high reliability is required. It is also generated when the formed gel adheres to the inner surface of the upper part of the package. Since the state of the gel scattering changes depending on the amount of the entrapped gas of the injected gel and the subtle difference in the manufacturing state of the substrate portion, it is usually very difficult to control the state of the gel scattering.

【0006】一方、ゲル上部に硬質樹脂を充填する従来
構造でも、ゲルに減圧脱泡処理を行う場合には、ケース
内面に飛散したゲルが硬質樹脂との接着を阻害し、この
部分から外部水分が浸入し、モジュールの耐湿性を低下
させるという弊害を生じる。本発明の目的は、ゲル充填
を複数回に分けることにより、ゲルがパッケージ上部内
面やケース内面に付着することを最小限に抑え、ゲル部
構造欠陥発生および/または硬質樹脂とケースとの接着
阻害を最小限に抑えた耐湿性に優れた樹脂封止型パワー
モジュール装置並びにその製法を提供することにある。
On the other hand, even in the conventional structure in which the hard resin is filled in the upper part of the gel, when the gel is subjected to the vacuum defoaming treatment, the gel scattered on the inner surface of the case hinders the adhesion with the hard resin, and external moisture is absorbed from this part. Will infiltrate, resulting in the adverse effect of reducing the moisture resistance of the module. An object of the present invention is to minimize the adhesion of the gel to the inner surface of the upper part of the package and the inner surface of the case by dividing the gel filling into a plurality of times, thereby causing a structural defect in the gel part and / or inhibiting the adhesion between the hard resin and the case. (EN) Provided are a resin-sealed type power module device excellent in moisture resistance in which the temperature is minimized and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】半導体素子を搭載した基
板上にシリコーンゲルを充填する主要な目的として、以
下のものを挙げることができる。
The main purposes of filling a silicone gel on a substrate on which a semiconductor element is mounted are as follows.

【0008】(1)半導体素子,金属製端子,基板上配
線パターン,ボンディングワイヤ等への外部浸入水分の
到達を阻止し、これら部材の腐食,到達浸入水分による
誤動作を防止する。
(1) The external infiltration moisture is prevented from reaching the semiconductor element, the metal terminal, the wiring pattern on the substrate, the bonding wire, etc., and the malfunction due to the corrosion of these members and the infiltration moisture reached is prevented.

【0009】(2)半導体素子,金属製端子,基板上配
線パターン,ボンディングワイヤ等高電圧印加部分の周
囲を均一に充填することにより、これら部分での放電を
阻止し、絶縁特性を保持する。
(2) By uniformly filling the periphery of the high voltage application portion such as the semiconductor element, the metal terminal, the wiring pattern on the substrate, and the bonding wire, the discharge at these portions is prevented and the insulation characteristics are maintained.

【0010】これら目的を達成するためには、充填ゲル
中、特に前記部材に接する近傍のゲル中から、ボイド等
の構造欠陥を排除する必要がある。ゲル中の構造欠陥部
分では、浸入水分が凝縮すると共に、放電し易いからで
ある。このため、各種高信頼性が要求される場合のゲル
充填工程では、基板上にゲルを注入した後、減圧下でゲ
ル中の抱込みガスや泡を除去する、減圧脱泡処理が必要
となる。
In order to achieve these objects, it is necessary to eliminate structural defects such as voids in the filled gel, particularly in the gel in the vicinity of the contact with the member. This is because, in the structural defect portion in the gel, infiltrated water is condensed and easily discharged. For this reason, in the gel filling process when various types of high reliability are required, a reduced pressure defoaming process is required to remove the entrapped gas and bubbles in the gel under reduced pressure after injecting the gel onto the substrate. .

【0011】しかし、この脱泡処理の際、ゲルが飛散す
るため、ケース内面にゲルが付着することになる。ゲル
の上部に硬質樹脂を充填する構造の場合には、飛散した
ゲルが硬質樹脂とケースとの接着を阻害するため、この
部分が外部水分の浸入経路となり、モジュールの耐湿性
を低下させてしまう。一方、ゲル部構造欠陥発生防止に
有効な、ゲルの拘束低減を狙った、ゲル上部を空間とし
た構造の場合には、パッケージ上部内面に飛散付着した
ゲルのため、ゲル上部がパッケージ上部内面に付着する
場合がある。この場合には、ゲルが上方へ引っ張られて
ゲルへの拘束力が働くため、ゲル内部に構造欠陥が発生
し易くなる。従って、外囲ケース内面上部や蓋状ケース
内面に飛散するゲルを最小限に抑えることができる、ゲ
ル充填手法を確立することが是非共必要となる。本発明
では、この手法として、ゲルを複数回に分けて充填する
ことが非常に有効であることを見出した。
However, during the defoaming process, the gel is scattered, so that the gel adheres to the inner surface of the case. In the case of a structure in which the hard resin is filled in the upper part of the gel, the scattered gel hinders the adhesion between the hard resin and the case, and this part becomes the entry path for external moisture, which reduces the moisture resistance of the module. . On the other hand, in the case of a structure where the space above the gel is aimed at reducing the restraint of the gel, which is effective in preventing the occurrence of structural defects in the gel part, the gel is scattered and adhered to the inner surface of the package top, so It may adhere. In this case, the gel is pulled upward to exert a restraining force on the gel, so that structural defects easily occur inside the gel. Therefore, it is absolutely necessary to establish a gel filling method that can minimize the amount of gel scattered on the inner surface of the outer case and the inner surface of the lid case. In the present invention, as this method, it was found that it is very effective to fill the gel in a plurality of times.

【0012】ゲル充填を複数回に分けて行うことの効果
を次に説明する。上記ゲル充填の目的から、抱込みガス
や泡を除去することが必要な箇所は、チップ,基板近傍
及びボンディングワイヤ周囲である。このため、ボンデ
ィングワイヤが隠れる高さまで充填されているゲルにつ
いて減圧脱泡を行えば充分である。一方、減圧脱泡時の
ゲル飛散が上記弊害をもたらすため、この処理を行うゲ
ルの量(あるいは厚さ)は可能な限り小さくする必要があ
る。これらのことを考慮すると、減圧脱泡するゲルは最
大限ボンディングワイヤが隠れる高さまでとし、場合に
よりこれよりも減圧脱泡するゲルを減らすことが妥当で
ある。ボンディングワイヤが隠れる高さは通常10mm程
度以下であることから、第1段目のゲルの注入をこの範
囲で行えばよい。ゲル注入後、減圧脱泡処理を行ってか
ら、加熱硬化する。この後、硬化した第1段目ゲルの上
に第2段目のゲルを注入する。この場合の注入量は、ゲ
ルの上方に空間を隔ててパッケージ構造物が有る場合に
は、第1段目及び第2段目ゲルを含めた全ゲル層が、加
熱硬化時の最高温度で膨張する際に構造物内面に付着し
ない量以下に抑える必要がある。ゲルの体積膨張率は、
通常900ppm/℃程度である。一般的な条件であるゲ
ル硬化時の最高温度が150℃の場合には、ゲル熱膨張
量は、室温時の体積の11%程度となる。従って、通常
の直方体箱型のパッケージ空間にゲルを注入する場合、
全ゲル層の厚さが11%程度増加してもパッケージ構造
物内面にゲル上部が付着しない量となるように、第2段
目ゲルの注入量を管理する必要がある。さらに、第2段
目ゲルの注入後は、減圧脱泡を行わずに、加熱硬化すれ
ばよい。上記理由から減圧脱泡の効果は第1段目ゲルに
ついて行えば充分であり、第2段目ゲルについてこの処
理を行うと、飛散ゲルがケース内面や上方パッケージ構
造物内面に付着したり、場合によっては第1段目の硬化
ゲル内にボイドが発生する等の弊害を生じるからであ
る。
The effect of performing the gel filling in a plurality of times will be described below. For the purpose of filling the gel, it is necessary to remove the entrapped gas and bubbles in the vicinity of the chip, the substrate, and the bonding wire. For this reason, it is sufficient to perform decompression defoaming on the gel filled up to the height at which the bonding wire is hidden. On the other hand, since the scattering of gel during defoaming under reduced pressure causes the above-mentioned adverse effect, the amount (or thickness) of gel to be subjected to this treatment needs to be made as small as possible. Considering these facts, it is appropriate to reduce the pressure-defoaming gel to the maximum height at which the bonding wire is hidden, and possibly reduce the pressure-defoaming gel more than this. Since the height at which the bonding wire is hidden is usually about 10 mm or less, the gel injection in the first step may be performed within this range. After injecting the gel, a vacuum defoaming process is performed and then heat curing is performed. Then, the second-stage gel is poured on the cured first-stage gel. The injection amount in this case is such that, when there is a package structure with a space above the gel, the entire gel layer including the first-stage gel and the second-stage gel expands at the maximum temperature during heat curing. In doing so, it is necessary to keep the amount below the amount that does not adhere to the inner surface of the structure. The volume expansion coefficient of the gel is
It is usually about 900 ppm / ° C. When the maximum temperature during gel hardening, which is a general condition, is 150 ° C., the gel thermal expansion amount is about 11% of the volume at room temperature. Therefore, when injecting gel into a normal rectangular box-shaped package space,
It is necessary to control the injection amount of the second-stage gel so that the gel upper portion does not adhere to the inner surface of the package structure even if the thickness of all gel layers increases by about 11%. Further, after the injection of the second-stage gel, heat curing may be performed without defoaming under reduced pressure. For the above reasons, the effect of vacuum defoaming is sufficient if it is performed on the first-stage gel, and if this treatment is performed on the second-stage gel, the scattered gel may adhere to the inner surface of the case or the inner surface of the upper package structure, or This is because, depending on the situation, adverse effects such as generation of voids in the first-stage cured gel may occur.

【0013】このように、減圧脱泡を加える第1段目ゲ
ル量を必要最小量に抑え、このゲルを充填,硬化後、減
圧脱泡をせずに第2段目ゲルを充填するという、ゲル充
填を複数回で行うことにより、減圧脱泡時の飛散ゲルに
よる、ケース内面汚染やゲル上方のパッケージ構造物内
面へのゲル付着を防止することが可能となる。この結
果、ゲル上に硬質樹脂を充填する場合には、外部水分浸
入経路となる、硬質樹脂とケースとの接着阻害を抑える
ことができ、ゲル拘束低減に非常に有効なゲル上空間構
造の場合には、ゲル上面付着がもたらすゲル内構造欠陥
発生を防止することができる。この結果、モジュールの
耐湿性が大きく向上することになる。
As described above, the amount of the first-stage gel to which vacuum defoaming is applied is suppressed to a required minimum amount, and after the gel is filled and cured, the second-stage gel is filled without vacuum defoaming. By performing the gel filling a plurality of times, it is possible to prevent the contamination of the inner surface of the case and the attachment of the gel to the inner surface of the package structure above the gel due to the scattered gel during defoaming under reduced pressure. As a result, in the case of filling the hard resin on the gel, it is possible to suppress the inhibition of adhesion between the hard resin and the case, which becomes the external moisture infiltration route, and in the case of the gel upper space structure which is very effective in reducing the gel constraint. In addition, it is possible to prevent the occurrence of structural defects in the gel caused by the adhesion on the upper surface of the gel. As a result, the moisture resistance of the module is greatly improved.

【0014】[0014]

【作用】本発明によれば、樹脂封止型パワーモジュール
装置で、耐湿性低下要因となる、硬質樹脂とケースとの
接着性阻害、あるいはゲル内部のボイド等構造欠陥発生
を防止することができるため、パワーモジュール装置の
耐湿信頼性を大幅に向上することができる。
According to the present invention, in the resin-sealed power module device, it is possible to prevent the occurrence of structural defects such as voids inside the gel, which hinders the adhesion between the hard resin and the case, which causes a decrease in moisture resistance. Therefore, the humidity resistance reliability of the power module device can be significantly improved.

【0015】[0015]

【実施例】次に本発明を実施例によって具体的に説明す
る。本実施例によるモジュール装置の模式断面図を図2
に示す。
EXAMPLES Next, the present invention will be specifically described by way of examples. FIG. 2 is a schematic cross-sectional view of the module device according to this embodiment.
Shown in

【0016】1,2,3を順次半田付けすることによ
り、半導体チップを搭載した基板を作製した。次に、樹
脂注入孔10を有する蓋状ケース6に固定された金属端
子5を、基板上の所定の金属製配線パターン上に、クリ
ーム半田により接合した。次に、蓋状ケース6の周囲に
設けられた溝状構造部分に、溝の深さの半分程度まで、
無水酸硬化型脂環式エポキシ樹脂9aを注入した。その
後、外囲ケース7を、上からかぶせるようにして、基板
上に取り付けた。この際、ケースと基板、双方の接触部
分にシリコーン系接着剤を予め塗布した。セット後、1
50℃/4時間の加熱で、エポキシ樹脂及びシリコーン
系接着剤双方を硬化した。こうして、蓋状ケース周囲と
外囲ケースとのシール及び外囲ケースと基板との接着を
行った。この後、蓋状ケースシール部の溝部にさらにエ
ポキシ樹脂と同じ樹脂9bを充填し、この部分のシール
性及び強度を補強した。
By soldering 1, 2 and 3 in order, a substrate having a semiconductor chip mounted thereon was manufactured. Next, the metal terminal 5 fixed to the lid-shaped case 6 having the resin injection hole 10 was bonded onto a predetermined metal wiring pattern on the substrate by cream solder. Next, in the groove-shaped structure portion provided around the lid-shaped case 6, up to about half the groove depth,
An acid-curable alicyclic epoxy resin 9a was injected. Then, the outer case 7 was mounted on the substrate so as to cover it from above. At this time, a silicone-based adhesive was previously applied to the contacting portions of both the case and the substrate. After set, 1
Both the epoxy resin and the silicone-based adhesive were cured by heating at 50 ° C. for 4 hours. In this way, the periphery of the lid-like case and the outer case were sealed, and the outer case and the substrate were bonded. Then, the groove portion of the lid-like case seal portion was further filled with the same resin 9b as the epoxy resin to reinforce the sealing property and strength of this portion.

【0017】次に、蓋状ケース6の樹脂注入孔10か
ら、パッケージ内部にシリコーンゲル8aをボンディン
グワイヤ4の高さよりやや高い位置まで注入した(ゲル
厚さ6mm)。そして、減圧度1torrで30分間の脱泡処
理を行った。その後、80℃/3時間,150℃/2時
間の加熱で硬化した。室温に冷却後、第1段目のゲル8
a上に、第2段目のゲル8bを注入した。ここでは、基
板と蓋状ケース内面最下端との距離が16mmのパッケー
ジを用いた。150℃でゲルが11%程度膨張すること
を見込み、第2段目ゲルの注入量は、第1段目と第2段
目のゲルの厚さがトータルで14mmとなるように設定し
た。第2段目ゲル注入後は減圧脱泡せずに、第1段目ゲ
ルと同条件で硬化した。室温に冷却後、蓋状ケースの樹
脂注入孔10にシリコーンゴム製のキャップ11を嵌合
した。
Next, silicone gel 8a was injected into the package from the resin injection hole 10 of the lid-like case 6 to a position slightly higher than the height of the bonding wire 4 (gel thickness 6 mm). Then, defoaming treatment was performed for 30 minutes at a reduced pressure of 1 torr. Then, it was cured by heating at 80 ° C./3 hours and 150 ° C./2 hours. After cooling to room temperature, the first stage gel 8
The second stage gel 8b was injected on top of a. Here, a package in which the distance between the substrate and the innermost lower end of the lid-like case is 16 mm is used. Assuming that the gel expands by about 11% at 150 ° C., the injection amount of the second stage gel was set so that the total thickness of the first stage gel and the second stage gel would be 14 mm. After injecting the second-stage gel, it was cured under the same conditions as the first-stage gel without defoaming under reduced pressure. After cooling to room temperature, a cap 11 made of silicone rubber was fitted into the resin injection hole 10 of the lid-shaped case.

【0018】この手法で組み立てたモジュールを分解し
て、ゲルの状態を観察したところ、ゲル上面が蓋状ケー
ス内面に付着した箇所は無く、ゲル内部にボイド等の構
造欠陥発生も全く無かった。
As a result of disassembling the module assembled by this method and observing the state of the gel, there was no place where the upper surface of the gel adhered to the inner surface of the lid-like case, and there was no occurrence of structural defects such as voids inside the gel.

【0019】ここで作製したモジュール6台について、
高温高湿バイアス試験を実施した。モジュールに定格電
圧(ここでは2kV)の8割のバイアス電圧を印加しな
がら、85℃/85%RHの雰囲気に放置した。所定の
時間毎に取り出し、室温での漏洩電流,電圧特性を測定
した。初期の値に比較し、10%以上の変動が有る場合
を不良とした。その結果、評価モジュール全数が、10
00時間後も正常であった。
Regarding the six modules produced here,
A high temperature and high humidity bias test was performed. The module was left in an atmosphere of 85 ° C./85% RH while applying a bias voltage of 80% of the rated voltage (here, 2 kV). It was taken out at predetermined time intervals and the leakage current and voltage characteristics at room temperature were measured. The case where there was a variation of 10% or more as compared with the initial value was regarded as defective. As a result, the total number of evaluation modules is 10
It was normal after 00 hours.

【0020】(比較例)ゲル充填方法以外は、実施例と
同様にしてモジュールを作製した。ここでは、パッケー
ジ内部に充填するゲル量は実施例と同量であるが、実施
例のように2回に分けず、1回で全量を注入した。この
後、実施例と同一条件で、減圧脱泡及び加熱硬化を行っ
た。
(Comparative Example) A module was prepared in the same manner as in the Example except for the gel filling method. Here, the amount of gel filled in the package is the same as in the example, but the total amount was injected once instead of dividing into two as in the example. Then, defoaming under reduced pressure and heat curing were performed under the same conditions as in the example.

【0021】ここで作製したモジュールを分解して、ゲ
ル状態を観察した所、外囲ケースの近くのゲル上面は全
箇所で蓋状ケース内面に付着しており、さらに付着部直
下付近のゲルバルク内やチップ近傍の領域にボイド状の
構造欠陥が発生しているものが多かった。さらに、ここ
で作製したモジュール6台について、実施例と同じ、高
温高湿バイアス試験を実施した。その結果、1000時
間後に3台の不良が発生した。
When the gel state was observed by disassembling the module produced here, the upper surface of the gel near the outer case adhered to the inner surface of the lid-like case at all points, and further inside the gel bulk immediately below the adhered part. In many cases, void-like structural defects occurred in the area near the chip. Furthermore, the same high-temperature and high-humidity bias test as in the example was carried out on the six modules produced here. As a result, three defects occurred after 1000 hours.

【0022】[0022]

【発明の効果】本発明の樹脂封止型パワーモジュール装
置では、減圧脱泡する第1段目ゲル量を必要最小限と
し、第1段目ゲル充填後、この上に減圧脱泡せずに第2
段目以降のゲルを充填するようにしたので、減圧脱泡時
に飛散するゲルによる、ケース内面汚染やゲル上方のパ
ッケージ構造物内面へのゲル付着を防止することが可能
となる。この結果、外部水分の浸入箇所となる硬質樹脂
とケースとの接着性阻害、あるいは外部水分の凝縮箇所
となるゲル内部のボイド等構造欠陥発生を抑えることが
可能となり、パワーモジュール装置の耐湿信頼性を大幅
に向上することができる。
In the resin-sealed power module device of the present invention, the amount of the first-stage gel to be degassed under reduced pressure is set to a necessary minimum, and after the first-stage gel is filled, degassing without degassing is performed on the gel. Second
Since the gel after the step is filled, it is possible to prevent the contamination of the inner surface of the case and the attachment of the gel to the inner surface of the package structure above the gel due to the gel that scatters during defoaming under reduced pressure. As a result, it becomes possible to prevent the adhesion between the hard resin and the case, which is the place where the external moisture penetrates, or to suppress the occurrence of structural defects such as voids inside the gel, which is the place where the external moisture condenses. Can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来例の断面図。FIG. 1 is a sectional view of a conventional example.

【図2】本発明の実施例の断面図。FIG. 2 is a sectional view of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…樹脂注入孔、11…シリコーンゴムキャップ。 10 ... Resin injection hole, 11 ... Silicone rubber cap.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 英雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 鈴木 洋 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 森島 慎 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 斎藤 隆一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Shimizu Inventor Hideo Shiba, 1-1 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. (72) Inventor Hiroshi Suzuki 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Shin Morishima 7-1, 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. (72) Inventor Ryuichi Saito Hitachi Mita, Ibaraki Prefecture 7-1-1, Machi, Hitachi Co., Ltd. Hitachi Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体素子と外部へ電気的に接続する外部
取り出し端子が取り付けられた絶縁基板が金属基板上に
取り付けられており、前記金属基板上に設けられた外囲
ケースと蓋状ケースとにより前記半導体素子が収納され
たパワーモジュール装置において、前記半導体素子を搭
載した前記金属基板上に複数層のシリコーンゲルが充填
されていることを特徴とする樹脂封止型パワーモジュー
ル装置。
1. An insulating substrate having a semiconductor element and an external lead-out terminal electrically connected to the outside is attached on a metal substrate, and an outer case and a lid-like case are provided on the metal substrate. According to the power module device in which the semiconductor element is accommodated, a plurality of layers of silicone gel are filled on the metal substrate on which the semiconductor element is mounted, the resin-sealed power module device.
【請求項2】請求項1において、前記金属基板上には2
層のシリコーンゲルが充填され、前記金属基板直上の第
1層目のシリコーンゲル層の厚さが10mm以下である樹
脂封止型パワーモジュール装置。
2. The metal substrate according to claim 1, wherein 2 is formed on the metal substrate.
A resin-sealed power module device in which a layer of silicone gel is filled, and the thickness of the first silicone gel layer directly above the metal substrate is 10 mm or less.
【請求項3】請求項1または2において、シリコーンゲ
ル最上層の上に、シリコーン樹脂あるいはエポキシ樹脂
が充填されている樹脂封止型パワーモジュール装置。
3. A resin-encapsulated power module device according to claim 1, wherein the silicone gel uppermost layer is filled with a silicone resin or an epoxy resin.
【請求項4】半導体素子を搭載する基板に外囲ケースを
取り付け、前記基板上に厚さ10mm以下のシリコーンゲ
ルを充填した後、前記シリコーンゲルの上にさらにシリ
コーンゲルを充填することを特徴とする樹脂封止型パワ
ーモジュール装置の製造方法。
4. An outer case is attached to a substrate on which a semiconductor element is mounted, a silicone gel having a thickness of 10 mm or less is filled on the substrate, and the silicone gel is further filled on the silicone gel. Method for manufacturing a resin-sealed power module device.
JP11546795A 1995-05-15 1995-05-15 Resin sealed power module and production thereof Pending JPH08316373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11546795A JPH08316373A (en) 1995-05-15 1995-05-15 Resin sealed power module and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11546795A JPH08316373A (en) 1995-05-15 1995-05-15 Resin sealed power module and production thereof

Publications (1)

Publication Number Publication Date
JPH08316373A true JPH08316373A (en) 1996-11-29

Family

ID=14663268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11546795A Pending JPH08316373A (en) 1995-05-15 1995-05-15 Resin sealed power module and production thereof

Country Status (1)

Country Link
JP (1) JPH08316373A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234993A (en) * 1999-02-16 2000-08-29 Mitsubishi Electric Corp Defect inspection method of power semiconductor device
KR100403129B1 (en) * 2000-03-03 2003-10-30 주식회사 케이이씨 electronic semiconductor module
CN116321883A (en) * 2023-05-17 2023-06-23 之江实验室 High-water-tightness high-power device heat dissipation device applied to deep sea
CN117438379A (en) * 2023-12-15 2024-01-23 北京七星华创微电子有限责任公司 Substrate packaging structure and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234993A (en) * 1999-02-16 2000-08-29 Mitsubishi Electric Corp Defect inspection method of power semiconductor device
KR100403129B1 (en) * 2000-03-03 2003-10-30 주식회사 케이이씨 electronic semiconductor module
CN116321883A (en) * 2023-05-17 2023-06-23 之江实验室 High-water-tightness high-power device heat dissipation device applied to deep sea
CN116321883B (en) * 2023-05-17 2023-08-18 之江实验室 High-water-tightness high-power device heat dissipation device applied to deep sea
CN117438379A (en) * 2023-12-15 2024-01-23 北京七星华创微电子有限责任公司 Substrate packaging structure and manufacturing method thereof
CN117438379B (en) * 2023-12-15 2024-03-19 北京七星华创微电子有限责任公司 Substrate packaging structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7723162B2 (en) Method for producing shock and tamper resistant microelectronic devices
US7745916B2 (en) Module comprising polymer-containing electrical connecting element
US5568684A (en) Method of encapsulating an electronic device
EP0124624B1 (en) Semiconductor device
JP6797951B2 (en) Power semiconductor module device and its manufacturing method
EP3460837A1 (en) A housing for a power semiconductor module, a power semiconductor module and a method for producing the same
JPH08316357A (en) Resin sealed power module
JPH08316373A (en) Resin sealed power module and production thereof
JPS6140137B2 (en)
JPH0864759A (en) Resin sealed type power module device and manufacture thereof
JPS63239826A (en) Semiconductor device
JPH0730015A (en) Semiconductor module and manufacture thereof
JP6167535B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5987297B2 (en) Method for manufacturing power semiconductor device
JPS6077446A (en) Sealed semiconductor device
JP3005162B2 (en) Semiconductor device
JPH09237869A (en) Resin-encapsulated power module device and manufacture thereof
JP3168859B2 (en) Resin sealing method for CCD module
JPH08148645A (en) Resin-sealed semiconductor device
JP3456257B2 (en) Electronic device package
JP3384259B2 (en) Resin encapsulated semiconductor device
JPH09191064A (en) Resin sealed power module device and manufacture thereof
CN116435201B (en) Plastic packaging method and device packaging structure
JPH07273247A (en) Semiconductor device and its manufacture
JP2633285B2 (en) In-vehicle hybrid integrated circuit device