JPH08316162A - Semiconductor producing apparatus - Google Patents

Semiconductor producing apparatus

Info

Publication number
JPH08316162A
JPH08316162A JP11426995A JP11426995A JPH08316162A JP H08316162 A JPH08316162 A JP H08316162A JP 11426995 A JP11426995 A JP 11426995A JP 11426995 A JP11426995 A JP 11426995A JP H08316162 A JPH08316162 A JP H08316162A
Authority
JP
Japan
Prior art keywords
chamber
reaction chamber
semiconductor wafer
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11426995A
Other languages
Japanese (ja)
Inventor
Yutaka Kaneko
金子  豊
Yuzuru Oji
譲 大路
Masahiro Ushiyama
雅弘 牛山
Masabumi Kanetomo
正文 金友
Masaru Matsushima
勝 松島
Tadao Ino
忠雄 伊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11426995A priority Critical patent/JPH08316162A/en
Publication of JPH08316162A publication Critical patent/JPH08316162A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce high-performance semiconductor elements the quality of which is less dispersed, by making uniform the flow of a gas in a reaction chamber of a semiconductor producing apparatus, high-vacuum quick exhaustion and cleaning thereof. CONSTITUTION: A semiconductor producing apparatus comprises a double- structured reactor having a vacuum chamber 1 and reaction chamber 2 disposed therein, an entrance system 6 to feed a reactive gas into the chamber 2 contacted with the surface of a semiconductor wafer 5 isolated from the chamber 1, an entrance system 7 to feed an inert gas into the chamber with which the back side of the wafer 5 contacts, a semiconductor wafer heater disposed outside the chamber 2 and means for individually evacuating the chambers 1 and 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は不純物拡散装置,CVD
装置などの半導体製造装置に関する。
The present invention relates to an impurity diffusion device, CVD
The present invention relates to a semiconductor manufacturing device such as a device.

【0002】[0002]

【従来の技術】従来の半導体製造装置は、特開平4−349
623 号公報に記載されているように、2重構造の反応室
に一つの排気口を備え、反応チャンバ外にスイープガス
を流し、反応チャンバ内で反応ガスを流し半導体ウエハ
が載置されたサセプタを加熱,回転することにより半導
体ウエハの表面に薄膜を成長させていた。
2. Description of the Related Art A conventional semiconductor manufacturing apparatus is disclosed in Japanese Patent Laid-Open No. 4-349.
As described in Japanese Patent No. 623, a reaction chamber having a double structure is provided with one exhaust port, a sweep gas is caused to flow outside the reaction chamber, the reaction gas is caused to flow inside the reaction chamber, and a susceptor on which a semiconductor wafer is placed. A thin film was grown on the surface of the semiconductor wafer by heating and rotating.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、真空
チャンバと反応チャンバの排気口が排気下流側で一緒に
なっており、スイープガスの流れや圧力によってはスイ
ープガスが反応チャンバ内にまわり込んだり、反応ガス
の流れに悪影響を与えたりして、反応ガスの流れが不均
一になり、膜厚分布が悪化するという問題がある。これ
を防ぐために、反応チャンバの排気口の構造を複雑にし
たり、反応チャンバのウエハ位置から排気口までの距離
を十分長くすると、反応チャンバが高価になり、装置の
大型化につながるばかりでなく、ますますガスの高真空
高速排気ができなくなる。
In the above-mentioned prior art, the exhaust ports of the vacuum chamber and the reaction chamber are combined on the downstream side of the exhaust gas, and the sweep gas enters the reaction chamber depending on the flow and pressure of the sweep gas. However, there is a problem in that the flow of the reaction gas is adversely affected, the flow of the reaction gas becomes non-uniform, and the film thickness distribution deteriorates. In order to prevent this, if the structure of the exhaust port of the reaction chamber is complicated, or if the distance from the wafer position of the reaction chamber to the exhaust port is sufficiently long, the reaction chamber becomes expensive and not only leads to the enlargement of the apparatus, but also Increasingly, high-vacuum, high-speed exhaust of gas becomes impossible.

【0004】また、ヒータによってサセプタが加熱され
ることにより放出ガスが発生したり、サセプタに堆積し
た膜が剥がれ半導体ウエハに付着したり、回転駆動部か
らパーティクルが発生したりして、半導体ウエハの汚
染、ひいては半導体素子の歩留りの低下につながる。
Further, when the susceptor is heated by the heater, released gas is generated, a film deposited on the susceptor is peeled off and adhered to the semiconductor wafer, and particles are generated from the rotation driving unit, so that the semiconductor wafer Contamination may lead to a reduction in the yield of semiconductor devices.

【0005】本発明の目的は、真空チャンバと反応チャ
ンバを個々に排気し、反応チャンバ内にはウエハのみを
有し、ウエハ加熱装置は反応チャンバ外に設けることに
より、反応ガスの均一な流れを確保し膜厚を均一化さ
せ、半導体ウエハの汚染を少なくし膜質を向上させ、半
導体素子の性能を高め、かつ性能のばらつきを抑えるこ
とにある。
An object of the present invention is to evacuate the vacuum chamber and the reaction chamber individually, to have only the wafer in the reaction chamber, and to dispose the wafer heating device outside the reaction chamber to ensure a uniform flow of the reaction gas. It is to secure and uniformize the film thickness, reduce the contamination of the semiconductor wafer, improve the film quality, enhance the performance of the semiconductor element, and suppress the variation in the performance.

【0006】また、反応チャンバの構造を簡単かつ安価
なものにし、反応チャンバのウエハ位置から排気口まで
の距離を短くして、装置を小型化することにある。
Another object is to make the structure of the reaction chamber simple and inexpensive, shorten the distance from the wafer position of the reaction chamber to the exhaust port, and downsize the apparatus.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体製造装置では、図1に示すように、
ステンレスからなる真空チャンバ1内に石英からなる反
応チャンバ2を備えた2重構造の反応室を設け、真空チ
ャンバ1と反応チャンバ2は半導体ウエハ5により隔て
られ、半導体ウエハ5の表面が接する反応チャンバ2に
反応ガスを供給する導入系6と、半導体ウエハの裏面が
接する反応チャンバ2外に不活性ガスを供給する導入系
7と、反応チャンバ2外に設けたSiC焼結体をヒータ
に使用したSiCヒータ、または端子部を除いてボロン
ナイトライドコートが施されたグラファイトヒータなど
の抵抗加熱ヒータ10と、半導体ウエハ5の放射温度を
測定する放射温度計または熱電対などの測温素子11
と、放射温度計11または熱電対などの測温素子に基づ
き抵抗加熱ヒータ10出力を制御するための電源装置1
4と、反応チャンバ2と真空チャンバ1を個々に真空排
気する手段8,9を設けた。
In order to achieve the above object, the semiconductor manufacturing apparatus of the present invention, as shown in FIG.
A reaction chamber having a double structure including a reaction chamber 2 made of quartz is provided in a vacuum chamber 1 made of stainless steel, and the vacuum chamber 1 and the reaction chamber 2 are separated by a semiconductor wafer 5, and the surface of the semiconductor wafer 5 is in contact with the reaction chamber. Introducing system 6 for supplying a reaction gas to 2; introducing system 7 for supplying an inert gas to the outside of reaction chamber 2 in contact with the back surface of the semiconductor wafer; and a SiC sintered body provided outside reaction chamber 2 were used for the heater. A resistance heater 10 such as a SiC heater or a graphite heater coated with boron nitride except the terminal portion, and a temperature measuring element 11 such as a radiation thermometer or a thermocouple for measuring the radiation temperature of the semiconductor wafer 5.
And a power supply device 1 for controlling the output of the resistance heater 10 based on a radiation thermometer 11 or a temperature measuring element such as a thermocouple.
4 and means 8 and 9 for evacuating the reaction chamber 2 and the vacuum chamber 1 individually.

【0008】また、図3に示すように、真空チャンバ1
外に反射ミラーを備えたランプハウス21を設けた。
Further, as shown in FIG. 3, the vacuum chamber 1
A lamp house 21 provided with a reflection mirror was provided outside.

【0009】或いはまた図5に示すように反応チャンバ
2外に抵抗加熱ヒータ10と、真空チャンバ1外に金コ
ートを施した反射ミラーを備えたランプ加熱装置15を
設けた。
Alternatively, as shown in FIG. 5, a resistance heater 10 is provided outside the reaction chamber 2, and a lamp heating device 15 having a reflecting mirror coated with gold is provided outside the vacuum chamber 1.

【0010】[0010]

【作用】本発明によれば、真空チャンバと反応チャンバ
を個々に真空排気することにより、反応ガスの流れがス
イープガスの影響を受けないので、均一な流れが維持で
き、均一な膜厚が得られる。また、ガス排気が容易かつ
高速に行われるので、処理速度が向上する。さらに、反
応チャンバが簡単な構造となり安価になり、反応チャン
バのウエハ位置から排気口までの距離を短くできるので
装置が小型化できる。
According to the present invention, by evacuating the vacuum chamber and the reaction chamber individually, the flow of the reaction gas is not affected by the sweep gas, so that a uniform flow can be maintained and a uniform film thickness can be obtained. To be Further, the gas can be exhausted easily and at high speed, so that the processing speed can be improved. Further, the reaction chamber has a simple structure and is inexpensive, and the distance from the wafer position in the reaction chamber to the exhaust port can be shortened, so that the apparatus can be downsized.

【0011】或いはまた、反応チャンバ外に半導体ウエ
ハ加熱装置を設けることにより、半導体ウエハの汚染が
なくなる。それにより、半導体素子の性能の性能を高
め、かつ、歩留りを向上させることができる。
Alternatively, by providing a semiconductor wafer heating device outside the reaction chamber, contamination of the semiconductor wafer is eliminated. As a result, the performance of the semiconductor element can be improved and the yield can be improved.

【0012】[0012]

【実施例】図1は本発明の一実施例である、半導体製造
装置の構成図である。図2は図1の線A−Aに示される
視界から見た図1の半導体製造装置の断面図である。1
は水冷されたステンレスからなる真空チャンバである。
真空チャンバ1内には、石英からなる反応チャンバ2が
収納されている。真空チャンバ1と反応チャンバ2はO
リング3,4によってシールされている。真空チャンバ
1と反応チャンバ2は半導体ウエハ5によって隔てられ
ている。反応チャンバ2内には反応ガスを導入するため
の反応ガス導入系6がある。真空チャンバ1内は不活性
ガスを導入するための不活性ガス導入系7がある。反応
チャンバ2は排気系8により排気できる構造になってお
り、真空チャンバ1は排気系9により排気できる構造に
なっている。10はSiC焼結体をヒータに使用したS
iCヒータであり、半導体ウエハ5の加熱源である。1
1は放射温度計であり、真空チャンバ1とOリング12
によってシールされている温度測定用窓13を通して、
半導体ウエハ5裏面の温度をモニタして、SiCヒータ
10の入力電力を制御する電源14と共にウエハ加熱装
置を構成している。
1 is a block diagram of a semiconductor manufacturing apparatus according to an embodiment of the present invention. 2 is a cross-sectional view of the semiconductor manufacturing apparatus of FIG. 1 as seen from the view shown by the line AA in FIG. 1
Is a vacuum chamber made of water-cooled stainless steel.
A reaction chamber 2 made of quartz is housed in the vacuum chamber 1. The vacuum chamber 1 and the reaction chamber 2 are O
Sealed by rings 3 and 4. The vacuum chamber 1 and the reaction chamber 2 are separated by a semiconductor wafer 5. In the reaction chamber 2, there is a reaction gas introduction system 6 for introducing a reaction gas. In the vacuum chamber 1, there is an inert gas introduction system 7 for introducing an inert gas. The reaction chamber 2 has a structure that can be exhausted by an exhaust system 8, and the vacuum chamber 1 has a structure that can be exhausted by an exhaust system 9. 10 is S using a SiC sintered body as a heater
The iC heater is a heating source for the semiconductor wafer 5. 1
1 is a radiation thermometer, which is a vacuum chamber 1 and an O-ring 12
Through the temperature measuring window 13 sealed by
A wafer heating device is configured with a power supply 14 that monitors the temperature of the back surface of the semiconductor wafer 5 and controls the input power of the SiC heater 10.

【0013】半導体ウエハ5を反応チャンバ2上の所定
位置に搬送し、予め真空チャンバ1および反応チャンバ
2を個々の排気系8,9により10-7Paに真空排気す
る。半導体ウエハ5表面の清浄化のため、反応ガス導入
系6によりキャリアガス水素(H2)を20SLM導入
し、半導体ウエハ5を1000℃で1分間加熱を行う。
この際、不活性ガス導入系7により窒素(N2)ガスを導
入し、真空チャンバ1と反応チャンバ2の圧力差をなく
す。その後、同じく反応ガス導入系6により、モノシラ
ン(SiH4),ジシラン(Si26),ジボラン(B2
6),ホスフィン(PH3)などのいずれかまたはそれ
らの組合せからなるガスを、10SCCM導入し、ヒータ1
0により、半導体ウエハ5の急速加熱を行い不純物拡散
を行う。その後、反応ガスの供給を停止し、反応ガス導
入系6により水素パージを行い、半導体ウエハ5を冷却
する。水素の供給を停止し、排気系8により急速排気を
行い、半導体ウエハ5を取り出す。
The semiconductor wafer 5 is transferred to a predetermined position on the reaction chamber 2, and the vacuum chamber 1 and the reaction chamber 2 are previously evacuated to 10 -7 Pa by the individual exhaust systems 8 and 9. For cleaning the semiconductor wafer 5 surface, the reaction of a carrier gas hydrogen (H 2) was introduced 20SLM by the gas introduction system 6, the semiconductor wafer 5 for heating for 1 minute at 1000 ° C..
At this time, nitrogen (N 2 ) gas is introduced by the inert gas introduction system 7 to eliminate the pressure difference between the vacuum chamber 1 and the reaction chamber 2. Thereafter, the reaction gas introducing system 6 is also used to carry out monosilane (SiH 4 ), disilane (Si 2 H 6 ), diborane (B 2 ).
H 6 ), phosphine (PH 3 ), or the like, or a gas composed of a combination thereof is introduced into the heater 1 at 10 SCCM.
By 0, the semiconductor wafer 5 is rapidly heated to diffuse impurities. After that, the supply of the reaction gas is stopped, the hydrogen purge is performed by the reaction gas introduction system 6, and the semiconductor wafer 5 is cooled. The supply of hydrogen is stopped and the exhaust system 8 performs rapid exhaust to take out the semiconductor wafer 5.

【0014】このようにして、真空チャンバ1と反応チ
ャンバ2を個々に真空排気することにより、反応ガスの
流れがスイープガスの影響を受けないので、均一な流れ
を維持でき、均一な膜厚を得ることができる。また、反
応チャンバ2の半導体ウエハ5から排気口までの距離を
短くできるので、装置が小型化できる、と同時に、反応
チャンバ2が簡単な構造となり安価になる。或いはま
た、SiCヒータ10を反応チャンバ2外に設けること
により、半導体ウエハ5の汚染が少なく性能の高い半導
体素子を製造することができる。
By individually evacuating the vacuum chamber 1 and the reaction chamber 2 in this manner, the flow of the reaction gas is not affected by the sweep gas, so that a uniform flow can be maintained and a uniform film thickness can be obtained. Obtainable. Moreover, since the distance from the semiconductor wafer 5 of the reaction chamber 2 to the exhaust port can be shortened, the apparatus can be downsized, and at the same time, the reaction chamber 2 has a simple structure and is inexpensive. Alternatively, by providing the SiC heater 10 outside the reaction chamber 2, it is possible to manufacture a semiconductor element with less contamination of the semiconductor wafer 5 and high performance.

【0015】図3は本発明の半導体製造装置の他の実施
例を示す説明図であり、図4は図3の線B−Bに示され
る視界から見た半導体製造装置の断面図である。21は
アルミニウムが蒸着された反射ミラーを備えたランプハ
ウスであり、真空チャンバ1とOリング16によってシ
ールされている紫外線透過用窓17を通してウエハ5を
加熱するもので、本体は水冷されている。ランプハウス
21には長形の加熱用ランプ20が取り付けられてい
る。19はウエハ5の温度をモニタして、ランプ20の
個々のランプの入力電力を各々制御する電源である。
FIG. 3 is an explanatory view showing another embodiment of the semiconductor manufacturing apparatus of the present invention, and FIG. 4 is a cross-sectional view of the semiconductor manufacturing apparatus as seen from the view indicated by line BB in FIG. Reference numeral 21 denotes a lamp house having a reflection mirror on which aluminum is vapor-deposited, which heats the wafer 5 through the ultraviolet ray transmitting window 17 sealed by the vacuum chamber 1 and the O-ring 16, and the main body is water-cooled. A long heating lamp 20 is attached to the lamp house 21. A power source 19 monitors the temperature of the wafer 5 and controls the input power of each lamp of the lamp 20.

【0016】本装置では、例えば、反応ガスとしてモノ
シランガスと笑気ガスを用い、ウエハ温度を150℃と
し、低圧水銀ランプ20からの紫外線185nmにより
半導体ウエハ上にシリコン酸化膜を形成する場合に用い
られる。
In this apparatus, for example, a monosilane gas and a laughing gas are used as a reaction gas, the wafer temperature is set to 150 ° C., and a silicon oxide film is formed on a semiconductor wafer by ultraviolet rays 185 nm from a low pressure mercury lamp 20. .

【0017】このようにして、真空チャンバ1と反応チ
ャンバ2を個々に真空排気することにより、半導体ウエ
ハ5の裏面や紫外線透過窓17には膜の堆積は起こらな
い。従って、放射温度計11により正確な温度計測が可
能となり、半導体素子の性能のばらつきを抑えることが
でき、紫外線透過窓17を透過する紫外線を減少させ
ず、効率良く半導体素子を製造することができる。
In this way, by vacuum-evacuating the vacuum chamber 1 and the reaction chamber 2 individually, no film is deposited on the back surface of the semiconductor wafer 5 or the ultraviolet transmission window 17. Therefore, the radiation thermometer 11 can accurately measure the temperature, the variation in the performance of the semiconductor element can be suppressed, and the ultraviolet ray transmitted through the ultraviolet ray transmission window 17 is not reduced, so that the semiconductor element can be efficiently manufactured. .

【0018】図5は本発明の半導体製造装置の他の実施
例を示す説明図であり、図6は図5の線C−Cに示され
る視界から見た図5の半導体製造装置の断面図である。
図5,図6には示されていないが、高温部,低温部には
膜が付きやすいので、真空チャンバ1をシースヒータに
より加熱し(ホットウォール型)、熱平衡により反応チ
ャンバ2を加熱し150℃に保ってある。オペレータが
触れる部分は断熱材が巻いてある。15は金コートを施
したアルミ合金製の反射ミラーを備えたランプ加熱装置
であり、真空チャンバ1とOリング16によってシール
されている赤外線透過用窓17を通してウエハ5の高温
加熱源で、本体は水冷されている。この装置15には長
形の加熱用ランプ18が取り付けられている。19はウ
エハ5の温度をモニタして、SiCヒータ10の入力電
力と、ランプ18の個々のランプの入力電力を各々制御
する電源である。
FIG. 5 is an explanatory view showing another embodiment of the semiconductor manufacturing apparatus of the present invention, and FIG. 6 is a sectional view of the semiconductor manufacturing apparatus of FIG. 5 seen from the view shown by line C--C in FIG. Is.
Although not shown in FIGS. 5 and 6, since a film is easily attached to the high temperature portion and the low temperature portion, the vacuum chamber 1 is heated by a sheath heater (hot wall type) and the reaction chamber 2 is heated by thermal equilibrium to 150 ° C. It is kept at The part touched by the operator is wrapped with heat insulating material. Reference numeral 15 denotes a lamp heating device equipped with a gold-coated aluminum alloy reflection mirror, which is a high-temperature heating source for the wafer 5 through the infrared chamber window 17 sealed by the vacuum chamber 1 and the O-ring 16, and the main body is It is water cooled. A long heating lamp 18 is attached to the device 15. Reference numeral 19 is a power source that monitors the temperature of the wafer 5 and controls the input power of the SiC heater 10 and the input power of each lamp of the lamp 18.

【0019】半導体ウエハ5を反応室の真空チャンバ1
内の反応チャンバ2の所定の位置に搬送し、予め反応チ
ャンバ2および真空チャンバ1を個々の排気系8,9に
より10-7Paに真空排気した後、不活性ガス(N2)を
真空チャンバ1に供給し、半導体ウエハ5をヒータ10
で加熱、温度600℃にして、反応ガス(SiH4,N2
O)を供給し、CVDにより絶縁膜(SiO2)を形成
する。膜形成後、不活性ガス,反応ガスの供給を止め、
急速排気を行う。次に、反応ガスの組成を変えると同時
に加熱ランプ18で高速(毎秒200℃)高温(110
0℃)熱処理(アニール)を行う。このCVDと高速高
温熱処理を繰返し、処理ごとに反応ガスの組成を変化さ
せることにより、積層膜を形成する。その後半導体ウエ
ハ5を冷却させ反応室からロードロック室に戻して、超
薄膜の積層絶縁膜の形成処理は終了する。
The semiconductor wafer 5 is placed in the vacuum chamber 1 of the reaction chamber.
Of the reaction chamber 2 and the vacuum chamber 1 are previously evacuated to 10 −7 Pa by the respective exhaust systems 8 and 9, and then an inert gas (N 2 ) is evacuated to the vacuum chamber. 1 to supply the semiconductor wafer 5 to the heater 10
Heating to 600 ° C. and reacting gas (SiH 4 , N 2
O) is supplied, and an insulating film (SiO 2 ) is formed by CVD. After the film formation, stop the supply of inert gas and reaction gas,
Perform quick exhaust. Next, the composition of the reaction gas is changed, and at the same time, the heating lamp 18 is used for high speed (200 ° C./sec)
Heat treatment (annealing) is performed. This CVD and high-speed high-temperature heat treatment are repeated, and the composition of the reaction gas is changed for each treatment to form a laminated film. Thereafter, the semiconductor wafer 5 is cooled and returned from the reaction chamber to the load lock chamber, and the process of forming the ultra-thin laminated insulating film is completed.

【0020】このようにして、真空チャンバ1と反応チ
ャンバ2を個々に真空排気することにより、反応チャン
バ2内を高真空高速排気でき反応ガスの組成を簡単に変
えることができる。従って、高スループットで高品質の
積層膜を形成することができる。また、反応室に、半導
体ウエハ5をCVD時に加熱する抵抗加熱ヒータ10
と、アニール時に加熱するランプ加熱装置15を設けた
ことにより、CVDおよびアニールの二つの熱処理を高
速,高精度にできる。
By individually evacuating the vacuum chamber 1 and the reaction chamber 2 in this way, the inside of the reaction chamber 2 can be evacuated at high vacuum and high speed, and the composition of the reaction gas can be easily changed. Therefore, a high-quality laminated film can be formed with high throughput. Further, a resistance heater 10 for heating the semiconductor wafer 5 at the time of CVD is provided in the reaction chamber.
By providing the lamp heating device 15 for heating during annealing, two heat treatments of CVD and annealing can be performed at high speed and with high accuracy.

【0021】[0021]

【発明の効果】本発明の不純物拡散装置,CVD装置な
どの半導体製造装置は、真空チャンバと反応チャンバを
個々に真空排気することにより、反応ガスの均一な流れ
を維持できるので、均一な膜厚を得ることができる。ま
た、装置の小型化,ガスの高真空高速排気が可能とな
り、処理速度が向上できる。或いはまた、半導体ウエハ
の温度制御を正確に行い、半導体素子の性能のばらつき
を抑えることができると共にランプ加熱の効率が低下す
るのを防止できる。
The semiconductor manufacturing apparatus such as the impurity diffusion apparatus and the CVD apparatus according to the present invention can maintain the uniform flow of the reaction gas by individually evacuating the vacuum chamber and the reaction chamber. Can be obtained. Further, the apparatus can be downsized and the gas can be evacuated at high vacuum and high speed, and the processing speed can be improved. Alternatively, it is possible to accurately control the temperature of the semiconductor wafer, suppress variations in the performance of the semiconductor element, and prevent the efficiency of lamp heating from decreasing.

【0022】さらに、ウエハ加熱装置を反応チャンバ外
に設けることにより、ウエハ汚染が少なく、性能の高い
半導体素子を歩留り良く製造することができる。
Further, by disposing the wafer heating device outside the reaction chamber, it is possible to manufacture a semiconductor element having a high performance with less contamination of the wafer with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例を示す不純物拡散装置,CVD装置な
どの半導体製造装置の説明図。
FIG. 1 is an explanatory diagram of a semiconductor manufacturing apparatus such as an impurity diffusion apparatus and a CVD apparatus showing an embodiment.

【図2】図1の線A−Aに示される視界から見た半導体
製造装置の断面図。
FIG. 2 is a cross-sectional view of the semiconductor manufacturing apparatus viewed from the view shown by line AA in FIG.

【図3】本発明の第二の実施例を示す半導体製造装置の
説明図。
FIG. 3 is an explanatory view of a semiconductor manufacturing apparatus showing a second embodiment of the present invention.

【図4】図3の線B−Bに示される視界から見た半導体
製造装置の断面図。
FIG. 4 is a cross-sectional view of the semiconductor manufacturing apparatus as viewed from the view shown by line BB in FIG.

【図5】本発明の第三の実施例を示す半導体製造装置の
説明図。
FIG. 5 is an explanatory view of a semiconductor manufacturing apparatus showing a third embodiment of the present invention.

【図6】図5の線C−Cに示される視界から見た半導体
製造装置の断面図。
6 is a cross-sectional view of the semiconductor manufacturing apparatus as viewed from the view shown by the line C-C in FIG.

【符号の説明】[Explanation of symbols]

1…真空チャンバ、2…反応チャンバ、3,4,12…
Oリング、5…半導体ウエハ、6…ガス導入系、7…不
活性ガス導入系、8,9…排気系、10…ヒータ、11
…放射温度計、13…温度測定用窓、14…電源。
1 ... Vacuum chamber, 2 ... Reaction chamber, 3, 4, 12 ...
O-ring, 5 ... Semiconductor wafer, 6 ... Gas introduction system, 7 ... Inert gas introduction system, 8, 9 ... Exhaust system, 10 ... Heater, 11
... Radiation thermometer, 13 ... Temperature measurement window, 14 ... Power supply.

フロントページの続き (72)発明者 金友 正文 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 松島 勝 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 伊野 忠雄 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Masafumi Kaneto 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Masaru Matsushima 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Co., Ltd. In-house (72) Inventor Tadao Ino 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ステンレスからなる真空チャンバと、上記
真空チャンバ内に石英からなる反応チャンバを備えた2
重構造の反応室と、上記真空チャンバと上記反応チャン
バは半導体ウエハにより隔てられ、上記半導体ウエハの
表面が接する上記反応チャンバ内に反応ガスを供給する
手段と、上記半導体ウエハの裏面が接する上記反応チャ
ンバ外に不活性ガスを供給する手段と、上記反応チャン
バ外に設けた上記半導体ウエハ加熱装置と、上記真空チ
ャンバと上記反応チャンバを個々に真空排気する手段と
を含むことを特徴とする半導体製造装置。
1. A vacuum chamber made of stainless steel, and a reaction chamber made of quartz in the vacuum chamber.
A reaction chamber having a heavy structure, the vacuum chamber and the reaction chamber are separated by a semiconductor wafer, and means for supplying a reaction gas into the reaction chamber in contact with the front surface of the semiconductor wafer and the reaction in contact with the back surface of the semiconductor wafer. Semiconductor manufacturing comprising: means for supplying an inert gas to the outside of the chamber; the semiconductor wafer heating device provided outside the reaction chamber; and means for individually evacuating the vacuum chamber and the reaction chamber. apparatus.
【請求項2】請求項1において、上記半導体ウエハ加熱
装置に、上記半導体ウエハの裏面を上記反応チャンバ外
に設けた抵抗加熱ヒータで加熱する手段と温度を計測す
る手段と、上記半導体ウエハの表面を上記真空チャンバ
外に設けたランプで加熱する手段とを用いる半導体製造
装置。
2. The semiconductor wafer heating device according to claim 1, wherein the back surface of the semiconductor wafer is heated by a resistance heater provided outside the reaction chamber, the temperature is measured, and the front surface of the semiconductor wafer is heated. And a means for heating with a lamp provided outside the vacuum chamber.
JP11426995A 1995-05-12 1995-05-12 Semiconductor producing apparatus Pending JPH08316162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11426995A JPH08316162A (en) 1995-05-12 1995-05-12 Semiconductor producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11426995A JPH08316162A (en) 1995-05-12 1995-05-12 Semiconductor producing apparatus

Publications (1)

Publication Number Publication Date
JPH08316162A true JPH08316162A (en) 1996-11-29

Family

ID=14633589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11426995A Pending JPH08316162A (en) 1995-05-12 1995-05-12 Semiconductor producing apparatus

Country Status (1)

Country Link
JP (1) JPH08316162A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222372A (en) * 2005-02-14 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> Oxidizing furnace system
JP2007258633A (en) * 2006-03-27 2007-10-04 Taiyo Nippon Sanso Corp Vapor phase epitaxial growth device
JP2008047588A (en) * 2006-08-11 2008-02-28 Matsushita Electric Ind Co Ltd Substrate processing apparatus and substrate processing method
JP2013110325A (en) * 2011-11-22 2013-06-06 Taiyo Nippon Sanso Corp Purge method for vapor phase epitaxy apparatus and vapor phase epitaxy apparatus
CN109075056A (en) * 2016-04-05 2018-12-21 硅电子股份公司 The gaseous corrosion method of semiconductor wafer for trace metal analysis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222372A (en) * 2005-02-14 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> Oxidizing furnace system
JP4510661B2 (en) * 2005-02-14 2010-07-28 日本電信電話株式会社 Oxidation furnace equipment
JP2007258633A (en) * 2006-03-27 2007-10-04 Taiyo Nippon Sanso Corp Vapor phase epitaxial growth device
JP2008047588A (en) * 2006-08-11 2008-02-28 Matsushita Electric Ind Co Ltd Substrate processing apparatus and substrate processing method
JP2013110325A (en) * 2011-11-22 2013-06-06 Taiyo Nippon Sanso Corp Purge method for vapor phase epitaxy apparatus and vapor phase epitaxy apparatus
CN109075056A (en) * 2016-04-05 2018-12-21 硅电子股份公司 The gaseous corrosion method of semiconductor wafer for trace metal analysis

Similar Documents

Publication Publication Date Title
US20220307139A1 (en) Reactor system and method to reduce residue buildup during a film deposition process
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
TWI687966B (en) Method of processing substrate and vacuum processing system and apparatus
US6232580B1 (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
US5932286A (en) Deposition of silicon nitride thin films
US4796562A (en) Rapid thermal cvd apparatus
JPH0639357B2 (en) Method for growing element semiconductor single crystal thin film
JPH0475328A (en) Method and apparatus for treatment of semiconductor
JPS6340314A (en) Manufacture of thin film by catalytic cvd method and device therefor
JP2000150399A (en) Method and device for cvd reaction for manufacturing epitaxial-grown semiconductor wafer
US6051823A (en) Method and apparatus to compensate for non-uniform film growth during chemical vapor deposition
JPH08316162A (en) Semiconductor producing apparatus
US6780464B2 (en) Thermal gradient enhanced CVD deposition at low pressure
JP2000109366A (en) Light non-transmittive high purity silicon carbide material, light shieldable material for semiconductor treating device, and semiconductor treating device
JPH02271627A (en) Atmospheric pressure cvd device
JPH0930893A (en) Vapor growth device
JP2555209B2 (en) Thin film manufacturing method
Lassig et al. Kinetics of rapid thermal oxidation of silicon
WO1985002417A1 (en) Method and apparatus for chemical vapor deposition
JP4451508B2 (en) Vapor growth method
JP3611780B2 (en) Semiconductor manufacturing equipment
JP3084395B2 (en) Semiconductor thin film deposition method
JP3376951B2 (en) Semiconductor manufacturing equipment
JPH07176498A (en) Reaction furnace with reaction gas preheater
JPS60165714A (en) Vapor growth method and apparatus thereof