JPH08316145A - Method for forming semiconductor thin film - Google Patents

Method for forming semiconductor thin film

Info

Publication number
JPH08316145A
JPH08316145A JP11416695A JP11416695A JPH08316145A JP H08316145 A JPH08316145 A JP H08316145A JP 11416695 A JP11416695 A JP 11416695A JP 11416695 A JP11416695 A JP 11416695A JP H08316145 A JPH08316145 A JP H08316145A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor
substrate
buffer layer
gase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11416695A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
健 鈴木
Toshiyuki Matsui
俊之 松井
Hirohide Yamaguchi
太秀 山口
Hiroshi Kimura
浩 木村
Hiroshi Kamijo
洋 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11416695A priority Critical patent/JPH08316145A/en
Publication of JPH08316145A publication Critical patent/JPH08316145A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the semiconductor thin film having the excellent crystalline property by hetero-epitaxial growth by forming thin a buffer layer, which comprises one kind or plural kinds of chalcogenide and comprises the compound having a layer crystal structure, on a substrate comprising the different kind of a semiconductor from a semiconductor constituting the thin film. CONSTITUTION: A molecular-beam epitaxy device is used, and metal Ga and Se are evaporated by a Knudsen cell. Then, a GaSe buffer layer 2 is formed on an Si substrate 1. This GaSe layer 2 has the layer crystal structure and comprises a plurality of unit layers 21. All three bonding parts of Se at the upper part and the lower part of each unit layer 21 are bonded to Ga atoms. Therefore, there is no dangling bond. There is no common bonding between the surface of the Si substrate 1 and the neighboring GaSe unit layer 21 and between the mutual unit layers 21 of GaSe. They are bonded with very weak van der Waals force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヘテロエピタキシャル
成長による半導体薄膜の成膜方法に用いる。
The present invention is used in a method for forming a semiconductor thin film by heteroepitaxial growth.

【0002】[0002]

【従来の技術】薄膜の成膜、特に半導体薄膜の成膜は、
デバイス製造技術の一つとして重要な位置を占めてい
る。例えば、GaAs薄膜は半導体レーザやHEMT
(高電子移動度トランジスタ) 等の素子に実用化されて
いるし、また、GaAs薄膜はバンドギャップが広い特
性を生かして短波長発光材料としての研究が盛んに行わ
れている。このような半導体薄膜の成膜における制約の
一つとして、薄膜を成長させる基板の自由度が低い点が
あげられる。前述のGaAsで実用化されている基板材
料は、GaAsの単結晶であるが、これはSi単結晶に
比べて同一面積で10倍程度のコスト高になってしま
う。半導体レーザやHEMTの場合は素子面積が非常に
小さいため、このコストはあまり影響しないが、高集積
化させLSI等を作製しようとした場合には大きな障害
となる。
2. Description of the Related Art Thin film formation, especially semiconductor thin film formation,
It has an important position as one of the device manufacturing technologies. For example, GaAs thin film is a semiconductor laser or HEMT.
It has been put to practical use in devices such as (high electron mobility transistors), and GaAs thin films have been extensively studied as short-wavelength light emitting materials by taking advantage of their wide bandgap characteristics. One of the restrictions in forming such a semiconductor thin film is that the degree of freedom of the substrate on which the thin film is grown is low. The substrate material that has been put to practical use for GaAs is GaAs single crystal, but this is about 10 times more expensive than the Si single crystal in the same area. In the case of semiconductor lasers and HEMTs, the element area is very small, so this cost has little effect, but it is a major obstacle when trying to fabricate highly integrated LSIs and the like.

【0003】この制約が何に起因するかというと、基板
材料と薄膜材料の間に強固な結合が生じ、この結合を通
して成膜中の薄膜が基板材料からの影響を強く受けるた
めと考えられる。従って、基板と同一材料結晶構造と格
子定数が近い材料の成膜は可能であるが、基板と薄膜が
相違する材料同士の場合の成膜では、結果として大きな
欠陥密度、表面荒れの発生、残留熱応力による基板の反
りといった諸問題が発生してしまう。
The reason for this restriction is considered to be that a strong bond is generated between the substrate material and the thin film material, and the thin film being formed is strongly influenced by the substrate material through this bond. Therefore, although it is possible to form a film with the same material as the substrate and a crystal structure and a lattice constant close to each other, the film formation when the substrate and the thin film are different materials results in a large defect density, generation of surface roughness, and residue. Various problems such as warpage of the substrate due to thermal stress occur.

【0004】これらの問題への対策として、薄膜材料の
アモルファス層をバッファ層とする方法が取られてい
る。例えばSiへのGaAsの成膜ではアモルファスの
GaAsをバッファ層として用いたり、また、サファイ
アへのGaNの成膜ではアモルファスのGaNをバッフ
ァ層として用いる。この方法ではアモルファス層を中間
に設けることで基板材料と薄膜材料の結合力を弱める働
きがある。
As a measure against these problems, a method of using an amorphous layer of a thin film material as a buffer layer has been adopted. For example, when GaAs is deposited on Si, amorphous GaAs is used as a buffer layer, and when GaN is deposited on sapphire, amorphous GaN is used as a buffer layer. In this method, the amorphous layer is provided in the middle to weaken the bonding force between the substrate material and the thin film material.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、アモル
ファス上に作製した薄膜は結晶性が悪く、結果として大
きな欠陥密度や表面荒れの問題を残してしまう欠点があ
った。このように相反する二つの課題が存在する。第一
は、基板材料と薄膜材料の結合を非常に弱くする点と、
第二は、その結合を弱めるためにバッファ層を用いる場
合は、薄膜材料/バッファ材料/基板材料の結晶性を高
くする点である。特に第二点目については、基板材料の
結晶方位性と薄膜材料の結晶方位性が合致するようなエ
ピタキシャル性を持つ必要がある。そのほかに、サファ
イアを基板として用いることは、この基板が絶縁性であ
るため、膜の下部から電極が取れない欠点があった。
However, the thin film formed on the amorphous film has poor crystallinity, and as a result, there is a drawback that a large defect density and surface roughness remain. Thus, there are two conflicting issues. The first is that the bond between the substrate material and the thin film material is very weak, and
Secondly, when a buffer layer is used to weaken the bond, the crystallinity of the thin film material / buffer material / substrate material is increased. In particular, regarding the second point, it is necessary to have an epitaxial property such that the crystal orientation of the substrate material matches the crystal orientation of the thin film material. In addition, the use of sapphire as a substrate has a drawback that the electrode cannot be removed from the lower part of the film because the substrate is insulating.

【0006】本発明の目的は、上述の二つの課題などを
同時に解決して広い範囲で選択可能な基板を用いてのヘ
テロエピタキシャル成長による結晶性良好な半導体薄膜
の成膜方法を提供することにある。
An object of the present invention is to solve the above two problems at the same time and to provide a method for forming a semiconductor thin film having good crystallinity by heteroepitaxial growth using a substrate which can be selected in a wide range. .

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の半導体薄膜の成膜方法は、原子が正四面
体配置を取る結晶構造をもつ半導体よりなる薄膜を、同
様に原子が正四面体配置を取る結晶構造をもつが、前記
薄膜を構成する半導体と異種の半導体よりなる基板上
に、カルコゲナイドの1種あるいは複数種よりなり、層
状結晶構造をもつ化合物よりなるバッファ層を介して形
成するものとする。バッファ層を形成する前に、基板の
表面のダングリングボンドを終端する処理を施すことが
有効である。薄膜あるいは基板を構成する半導体が、周
期表のIV族元素の1種あるいは複数種よりなっても、II
I 族元素の1種あるいは複数種およびV族元素の1種あ
るいは複数種よりなっても、周期表のII族元素の1種あ
るいは複数種およびVI族元素の1種あるいは複数種より
なってもよい。バッファ層を構成する1種あるいは複数
種のカルコゲナイドがGaとS、Se、Teのうちの元
素との化合物であることがよい。もしくはSn、Mo、
Ta、Nb、Hfのうちの元素とS、Se、Teのうち
の元素との化合物であることがよい。
In order to achieve the above object, a method for forming a semiconductor thin film according to the present invention is a method of forming a thin film of a semiconductor having a crystal structure in which atoms are arranged in a regular tetrahedron. Has a crystal structure having a regular tetrahedral arrangement, but a buffer layer made of a compound having a layered crystal structure made of one or more kinds of chalcogenide is formed on a substrate made of a semiconductor different from the semiconductor forming the thin film. Shall be formed through. Before forming the buffer layer, it is effective to perform a treatment for terminating the dangling bonds on the surface of the substrate. Even if the semiconductor constituting the thin film or the substrate is composed of one or more elements of Group IV elements of the periodic table, II
One or more of Group I elements and one or more of Group V elements, one or more of Group II elements of the Periodic Table and one or more of Group VI elements Good. One kind or plural kinds of chalcogenides forming the buffer layer may be a compound of Ga and an element of S, Se, and Te. Or Sn, Mo,
A compound of an element of Ta, Nb, and Hf and an element of S, Se, and Te is preferable.

【0008】[0008]

【作用】複数の単位層よりなる層状結晶構造をもつカル
コゲン元素化合物、すなわちカルコゲナイドは、単位層
間の方向には結合手を持たず、ファンデルワールス力の
みで結合している。ファンデルワールス力は非常に弱い
ため、薄膜および基板を構成する、同様に原子が正四面
体配置をとる結晶構造をもつ異種の半導体の原子間距離
にミスマッチであっても、基板材料と薄膜材料との結合
はこのカルコゲナイドよりなるバッファ層部分で完全に
断ち切られる。これによって第一の課題は解決される。
バッファ層のカルコゲナイドは横手方向には強い結合力
をもち、良好な結晶性をもっているため、積層される薄
膜材料の結晶方位性と薄膜材料の結晶方位性が合致する
ようにバッファ層によって補償される。これによって第
二の課題は解決される。バッファ層形成前に基板表面の
ダングリングボンドを終端しておくことは、基板表面と
それに隣接するバッファ層の単位層との間の結合もファ
ンデルワールス力によることになり、上記のバッファ層
の効果をより向上させる。バッファ層に用いられる層状
結晶構造をもつカルコゲナイドとしてはGaとS、S
e、Teのいずれかとの化合物、Sn、Mo、Ta、N
b、HfのいずれかとS、Se、Teのいずれかとの化
合物があげられる。
The chalcogen element compound having a layered crystal structure composed of a plurality of unit layers, that is, a chalcogenide, has no bond in the direction between the unit layers and is bonded only by the Van der Waals force. Since the van der Waals force is very weak, even if there is a mismatch in the interatomic distance between different semiconductors that compose the thin film and the substrate and also have a crystal structure in which the atoms have a tetrahedral arrangement, the substrate material and the thin film material The bond with and is completely cut off at the buffer layer portion made of this chalcogenide. This solves the first problem.
The chalcogenide of the buffer layer has a strong cohesive force in the lateral direction and has good crystallinity, so that it is compensated by the buffer layer so that the crystal orientation of the laminated thin film material matches that of the thin film material. . This solves the second problem. Terminating the dangling bond on the substrate surface before forming the buffer layer means that the bond between the substrate surface and the unit layer of the buffer layer adjacent to the substrate surface also depends on the Van der Waals force, and the above-mentioned buffer layer Improve the effect more. Ga, S, and S are chalcogenides having a layered crystal structure used for the buffer layer.
e, a compound with any of Te, Sn, Mo, Ta, N
Examples thereof include compounds of b or Hf and S, Se or Te.

【0009】[0009]

【実施例】以下、図を引用して本発明の実施例について
述べる。 実施例1:基板は (111) 面のシリコン (Si) 基板
で、この基板をHCl−H2 2−H2 O溶液中で煮沸
したのち、2%のHF溶液で処理した。この結果、図1
に示すように、Si基板1の表面の結合手は水素原子
(H) で終端された構造となっており、未接合手である
ダングリングボンドは存在しない。次に、分子線エピタ
キシー (MBE) 装置を用いて、金属GaおよびSeを
クヌーセンセルにて蒸発させ、Si基板1上にGaSe
バッファ層2を成膜した。このGaSe層2は、真横か
ら見れば図1、立体的に見れば図2のような層状結晶構
造で、複数の単位層21よりなり、各単位層21の上部
および下部のSeの3本の結合手はすべてGa原子と結
合しているのでダングリングボンドがない。図1に示さ
れるように、Si基板1の表面とそれに隣接するGaS
e単位層21との間、GaSeの各単位層21相互間に
は共有結合がなく、非常に弱いファンデルワールス力で
結合している。このGaSe層2の表面のSe原子間距
離は0.376nmで、Si基板1の (111) 表面のS
i原子間距離0.384nmと比べて2%程度のミスマッ
チがある。この比較的大きなミスマッチにもかかわら
ず、a軸が基板1のSiの〔111〕軸方向と揃ったG
aSeよりなるエピタキシャル性をもったバッファ層2
が得られたことを、高エネルギー電子線回析 (RHEE
D) 装置を用いて確認した。
Embodiments of the present invention will be described below with reference to the drawings. Example 1: The substrate of silicon (Si) substrate (111) surface, after the substrate was boiled in HCl-H 2 O 2 -H 2 O solution was treated with 2% HF solution. As a result,
As shown in, a bond on the surface of the Si substrate 1 is a hydrogen atom.
The structure is terminated with (H), and there is no dangling bond that is an unbonded hand. Next, using a molecular beam epitaxy (MBE) device, the metals Ga and Se are evaporated in a Knudsen cell, and GaSe is deposited on the Si substrate 1.
The buffer layer 2 was formed. The GaSe layer 2 has a layered crystal structure as shown in FIG. 1 when viewed directly from the side and as shown in FIG. 2 when viewed three-dimensionally, and is composed of a plurality of unit layers 21, and three Se layers are provided above and below each unit layer 21. Since all the bonds are bonded to Ga atoms, there is no dangling bond. As shown in FIG. 1, the surface of the Si substrate 1 and the adjacent GaS
There is no covalent bond between the e unit layer 21 and each of the GaSe unit layers 21, and they are bonded by a very weak Van der Waals force. The distance between Se atoms on the surface of this GaSe layer 2 is 0.376 nm, and the S on the (111) surface of the Si substrate 1 is S.
There is a mismatch of about 2% compared to the i-atomic distance of 0.384 nm. Despite this relatively large mismatch, G with the a-axis aligned with the [111] -axis direction of Si of the substrate 1
Epitaxial buffer layer 2 made of aSe
That high energy electron diffraction (RHEE
D) It confirmed using the apparatus.

【0010】このバッファ層2を約10nmの厚さに成
膜したのち、MBE装置のSe分子線をAs分子線と切
り替えて連続して図3に示すように厚さ1000nmの
GaAs薄膜3を成膜した。この結果、面内の〔11
1〕軸がバッファ層2のGaSeのa軸と平行なGaA
s (111) 配向膜3が得られた。GaAs層3のGa
原子間距離は0.399nmであって、バッファ層2のS
e原子間距離0.376nmに比べると6%もミスマッチ
があるにもかかわらず、エピタキシャルな膜が得られた
ことがわかった。結果として面内の結晶方向の揃ったG
aAs (111)/GeSe(0001)/Si(11
1)の積層が作製できた。最上部のGaAs薄膜3の表
面の面粗さを原子間力顕微鏡にて測定したところ、5n
m以内の凹凸に収まっており、また電気的特性からもデ
バイス応用に十分耐えうるものであることがわかった。
After the buffer layer 2 is formed to a thickness of about 10 nm, the Se molecular beam of the MBE device is switched to the As molecular beam to continuously form a GaAs thin film 3 having a thickness of 1000 nm as shown in FIG. Filmed As a result, the in-plane [11
1] GaA whose axis is parallel to the a-axis of GaSe in the buffer layer 2
The s (111) orientation film 3 was obtained. Ga of the GaAs layer 3
The interatomic distance is 0.399 nm, and S of the buffer layer 2
It was found that an epitaxial film was obtained even though there was a mismatch of 6% as compared with the e interatomic distance of 0.376 nm. As a result, G with in-plane crystallographic orientation
aAs (111) / GeSe (0001) / Si (11
The laminate of 1) could be produced. When the surface roughness of the uppermost GaAs thin film 3 was measured by an atomic force microscope, it was 5n.
It was found that the unevenness was within m, and the electrical characteristics were sufficient to withstand device application.

【0011】実施例2:Si基板の表面の結合手を終端
するためのHF処理を行わないで、他は実施例1と同様
にしてGaSeバッファ層、GaAs薄膜の積層を行っ
た。この場合も面内の結晶方向の揃ったGaAs (11
1) /GaSe (0001) /Si (111) 構造が得
られた。
Example 2 A GaSe buffer layer and a GaAs thin film were laminated in the same manner as in Example 1 except that the HF treatment for terminating the bond on the surface of the Si substrate was not performed. Also in this case, GaAs (11
1) / GaSe (0001) / Si (111) structure was obtained.

【0012】実施例3:(111) 面配向GaAs基板
を用い、この基板の表面にSe蒸気を噴射して表面のダ
ングリングボンドを終端したのち、実施例1、2と同様
にしてGaSeを約10nmの厚さに成膜した。これに
連続してSiを膜厚1000nmに蒸着を行ったとこ
ろ、GaAsの〔111軸〕、GaSeのa軸、Siの
〔111軸〕が平行のエピタキシャル膜が得られた。結
果として、面内の結晶方向の揃ったSi (111) /G
aSe (0001) /GaAs (111) 構造が作製で
きた。最上部のSi薄膜の表面の面粗さを原子間力顕微
鏡で測定したところ、2nm以内の凹凸に収まってお
り、また電気的特性からもデバイス応用に十分耐えうる
ものであることがわかった。
Example 3 A (111) -oriented GaAs substrate was used, Se vapor was jetted onto the surface of this substrate to terminate dangling bonds on the surface, and then GaSe was removed in the same manner as in Examples 1 and 2. A film was formed to a thickness of 10 nm. Subsequently, Si was vapor-deposited to a film thickness of 1000 nm, and an epitaxial film in which the [111 axis] of GaAs, the a axis of GaSe, and the [111 axis] of Si were parallel to each other was obtained. As a result, Si (111) / G with in-plane crystallographic orientation
The aSe (0001) / GaAs (111) structure was produced. The surface roughness of the surface of the uppermost Si thin film was measured by an atomic force microscope, and it was found that the surface roughness was within 2 nm and the electrical characteristics were sufficient for device application.

【0013】実施例4:Si (111) 基板をHCl−
2 2 −H2 O溶液で煮沸した後2%のHF溶液で処
理した基板を用いた。この面に実施例1ないし3と同様
にしてGaSeを約10nmの厚さに成膜し、連続し
て、Ga分子線とZn分子線を切り替えることでZnS
e膜をMBE装置で100nmの膜厚に成膜したとこ
ろ、ZnSeの〔111〕軸、GaSeのa軸、Siの
〔111〕軸が平行なエピタキシャル膜が得られた。結
果として、面内に結晶方向の揃ったZnSe (111)
/GaSe (0001) /Si (111) 構造が作製で
きた。最上部のZnSe膜の表面粗さを原子間力顕微鏡
で測定した結果、およそ6nm以内の凹凸に収まってお
り、また電気的な特性からもデバイス応用に十分耐えう
るものであることがわかった。
Example 4 A Si (111) substrate was treated with HCl--
A substrate that had been boiled with an H 2 O 2 —H 2 O solution and then treated with a 2% HF solution was used. On this surface, a film of GaSe having a thickness of about 10 nm was formed in the same manner as in Examples 1 to 3, and the Ga molecular beam and the Zn molecular beam were continuously switched to form ZnS.
When the e film was formed to a film thickness of 100 nm with an MBE apparatus, an epitaxial film in which the [111] axis of ZnSe, the a axis of GaSe, and the [111] axis of Si were parallel to each other was obtained. As a result, ZnSe (111) with crystallographic directions aligned in the plane
A / GaSe (0001) / Si (111) structure was produced. As a result of measuring the surface roughness of the uppermost ZnSe film by an atomic force microscope, it was found that the surface roughness was within 6 nm, and the electrical characteristics were sufficient for device application.

【0014】実施例5:Si (111) 基板をHCl−
2 2 −H2 O溶液で煮沸したのち、2%のHF溶液
で処理して用いた。この結合手を終端した表面に実施例
1ないし4と同様にしてGaSeを約10nmの厚さに
成膜し、Se分子線をNラジカル分子線に切り替えるこ
とで、同一MBE装置で連続して1000nmの厚さの
GaN膜を成膜した。これによって、GaN (000
1) /GaSe (0001) /Si(111) の配向性
をもつエピタキシャル膜が得られた。
Example 5: A Si (111) substrate was treated with HCl--
After boiling with H 2 O 2 -H 2 O solution was used after treated with 2% HF solution. GaSe was formed into a film having a thickness of about 10 nm on the surface terminating the bond in the same manner as in Examples 1 to 4, and the Se molecular beam was switched to the N radical molecular beam to continuously produce 1000 nm in the same MBE apparatus. A GaN film having a thickness of 1 was formed. This gives GaN (000
An epitaxial film having an orientation of 1) / GaSe (0001) / Si (111) was obtained.

【0015】RHEED分析の結果、最上部GaNのa
軸はGaSeのa軸から30°回転していることがわか
った。図4は、a軸が30°回転した場合のGaSeと
GaNの (0001) 面内の原子配置の位置関係を示し
ている。□はGaSeのSeの原子配置を上方からみた
もので、点線がGaSeのa軸である。●はGaNのG
a、もしくはNの原子であり、実線がGaNのa軸を示
している。この場合の格子定数のミスマッチはおよそ2
%だが、このような30°の回転が発生せずにGaNの
a軸とGaSeのa軸が平行であるとすると、格子定数
のミスマッチはおよそ18%にもなる。この原子配置が
発生する理由は、ファンデルワールス力で結合している
面が容易に回転するためと考えられる。さらに、最上部
のGaNの表面の面粗さを原子間力顕微鏡で測定した結
果、およそ10nm以内の凹凸に収まっており、また電
気的な特性からもデバイス応用に十分耐えうるものであ
ることがわかった。
As a result of RHEED analysis, a
It was found that the axis was rotated 30 ° from the GaSe a-axis. FIG. 4 shows the positional relationship of the arrangement of atoms in the (0001) plane of GaSe and GaN when the a-axis is rotated by 30 °. □ shows the atomic arrangement of Se of GaSe seen from above, and the dotted line is the a-axis of GaSe. ● is GaN G
It is an atom of a or N, and the solid line indicates the a-axis of GaN. The lattice constant mismatch in this case is about 2
However, if the a-axis of GaN and the a-axis of GaSe are parallel to each other without such rotation of 30 °, the mismatch of the lattice constant becomes about 18%. It is considered that the reason why this atomic arrangement occurs is that the surfaces bonded by Van der Waals force easily rotate. Furthermore, as a result of measuring the surface roughness of the uppermost GaN surface by an atomic force microscope, it was found that the surface roughness was within 10 nm, and the electrical characteristics were sufficient to withstand device application. all right.

【0016】従来、GaN成膜の基板には通常サファイ
アのc面が用いられているが、この基板が絶縁性である
ために、膜の下部から電極が取れない欠点があった。本
実施例のように半導体基板に成膜を行えばこの問題は解
決される。このことはデバイスプロセスの簡略化につな
がり、応用上のメリットが非常に大きい。 実施例6:基板には (111) 面のGaAsを用い、表
面にSe蒸気を噴射することで表面のダングリングボン
ドを終端し、実施例1ないし5と同様の方法で約10n
mの厚さのGaSe膜を成膜した。次に実施例5と同様
に、同一MBE装置でSe分子線をNラジカル分子線と
切り替えることで連続してGaN膜を成膜したところ、
GaN (0001) /GaSe (0001) /GaAs
(111) の配合性を持つエピタキシャル膜が得られ
た。RHEED分析の結果、この膜でも実施例5と同様
に最上部のGaN薄膜のa軸はバッファ層GaSeのa
軸から30°回転してミスマッチが減少していることが
わかった。
Conventionally, the c-face of sapphire is usually used as a substrate for GaN film formation, but there is a drawback that the electrode cannot be removed from the lower part of the film because this substrate is insulating. This problem can be solved by forming a film on a semiconductor substrate as in this embodiment. This leads to simplification of the device process, and has a great application advantage. Example 6: GaAs of (111) plane is used for the substrate, and Se vapor is jetted to the surface to terminate the dangling bond on the surface. In the same manner as in Examples 1 to 5, about 10 n is obtained.
A GaSe film having a thickness of m was formed. Next, in the same manner as in Example 5, a GaN film was continuously formed by switching the Se molecular beam with the N radical molecular beam in the same MBE apparatus.
GaN (0001) / GaSe (0001) / GaAs
An epitaxial film having a compoundability of (111) was obtained. As a result of RHEED analysis, in this film as well as in Example 5, the a-axis of the uppermost GaN thin film was a of the buffer layer GaSe.
It was found that the mismatch was reduced by rotating 30 ° from the axis.

【0017】以上の実施例のほかに、GaSeに限ら
ず、Se以外のカルコゲン元素S、Teを用いたガリウ
ム・カルコゲナイドによってバッファ層を形成しても、
上記実施例のヘテロエピタキシャル膜と同質の膜が得ら
れた。また、バッファ層にMoS2 を用い、上記実施例
1ないし6と同一の基板材料、上部薄膜材料の組み合わ
せで成膜したところ、やはり同質のヘテロエピタキシャ
ル膜が得られた。このMoS2 の構造を図5に示す。G
aSeと同様に各層の間はファンデルワールス力で弱く
結合しているので、同様の効果が得られたと考えられ
る。さらにMoSe2 に限らず、金属元素のSn、T
a、Nb、Hfと2原子のカルコゲン元素のS、Se、
Teとよりなる層状結晶構造をもつ金属カルコゲナイド
のいずれもバッファ層として適することがわかった。
In addition to the above examples, the buffer layer is not limited to GaSe but may be formed of gallium chalcogenide using chalcogen elements S and Te other than Se.
A film of the same quality as the heteroepitaxial film of the above example was obtained. When MoS 2 was used for the buffer layer and the same substrate material and upper thin film material combination as in Examples 1 to 6 were used to form a film, a heteroepitaxial film of the same quality was obtained. The structure of this MoS 2 is shown in FIG. G
Similar to aSe, the layers are weakly coupled by Van der Waals force, and it is considered that the same effect is obtained. Furthermore, not only MoSe 2 but also metallic elements such as Sn and T
a, Nb, Hf and S, Se of diatomic chalcogen element,
It was found that any of the metal chalcogenides having a layered crystal structure composed of Te is suitable as the buffer layer.

【0018】[0018]

【発明の効果】本発明によれば、層の横手方向には強い
結合力を持っているが、縦方向には非常に弱いファンデ
ルワールス力によって結合しているカルコゲナイドをバ
ッファ層の材料として用いることにより、薄膜の半導体
材料と基板の半導体材料の結合力を弱め、両材料の結晶
構造のミスマッチによる半導体薄膜の特性の劣化を防止
することができ、表面の凹凸も減少した。また、基板に
半導体材料を用いることができるため、基板に電極を形
成することによる薄膜の下部からの電流あるいは電圧の
取り出しが容易になった。
According to the present invention, chalcogenide, which has a strong binding force in the lateral direction of the layer, but is bound by a very weak van der Waals force in the longitudinal direction, is used as a material for the buffer layer. As a result, the bonding force between the semiconductor material of the thin film and the semiconductor material of the substrate was weakened, the deterioration of the characteristics of the semiconductor thin film due to the mismatch of the crystal structures of both materials could be prevented, and the surface irregularities were also reduced. In addition, since the semiconductor material can be used for the substrate, it becomes easy to extract the current or voltage from the lower portion of the thin film by forming the electrode on the substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1におけるSi基板上に堆積されたGa
Seバッファ層を模式的に示す側面図
1 is a Ga deposited on a Si substrate in Example 1. FIG.
Side view schematically showing the Se buffer layer

【図2】実施例1におけるGaSe単位層の結晶構造を
示す斜視図
2 is a perspective view showing a crystal structure of a GaSe unit layer in Example 1. FIG.

【図3】実施例1によるヘテロエピタキシャル膜構造の
断面図
FIG. 3 is a sectional view of a heteroepitaxial film structure according to Example 1.

【図4】実施例5におけるGaSeバッファ層上に堆積
されたGaN薄膜を模式的に示す断面図
FIG. 4 is a sectional view schematically showing a GaN thin film deposited on a GaSe buffer layer in Example 5.

【図5】本発明の別の実施例に用いられるMoS2 の結
晶構造を示す斜視図
FIG. 5 is a perspective view showing the crystal structure of MoS 2 used in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板 2 GaSeバッファ層 21 GaSe単位層 3 GaAs薄膜 1 Si substrate 2 GaSe buffer layer 21 GaSe unit layer 3 GaAs thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 浩 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 上條 洋 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Kimura 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. No. 1 inside Fuji Electric Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】原子が正四面体配置を取る結晶構造をもつ
半導体よりなる薄膜を、同様に原子が正四面体配置を取
る結晶構造をもつが、前記薄膜を構成する半導体と異種
の半導体よりなる基板上に、カルコゲナイドの1種ある
いは複数種よりなり、層状結晶構造をもつ化合物よりな
るバッファ層を介して形成することを特徴とする半導体
薄膜の成膜方法。
1. A thin film made of a semiconductor having a crystal structure in which atoms have a regular tetrahedral arrangement, and a semiconductor having a crystal structure in which atoms also have a regular tetrahedron arrangement, but different from the semiconductor forming the thin film. Forming a semiconductor thin film via a buffer layer made of a compound having one or more kinds of chalcogenide and having a layered crystal structure on the substrate.
【請求項2】バッファ層を形成する前に、基板の表面の
ダングリングボンドを終端する処理を施す請求項1記載
の半導体薄膜の成膜方法。
2. The method for forming a semiconductor thin film according to claim 1, wherein a treatment for terminating dangling bonds on the surface of the substrate is performed before forming the buffer layer.
【請求項3】薄膜あるいは基板を構成する半導体が、周
期表のIV族元素の1種あるいは複数種よりなる請求項1
あるいは2記載の半導体薄膜の成膜方法。
3. The semiconductor constituting the thin film or the substrate is made of one or more of Group IV elements of the periodic table.
Alternatively, the method for forming a semiconductor thin film according to the item 2.
【請求項4】薄膜あるいは基板を構成する半導体が、周
期表のIII 族元素の1種あるいは複数種およびV族元素
の1種あるいは複数種よりなる請求項1ないし3のいず
れかに記載の半導体薄膜の成膜方法。
4. The semiconductor according to claim 1, wherein the semiconductor constituting the thin film or the substrate comprises one or more kinds of Group III elements and one or more kinds of Group V elements of the periodic table. Thin film forming method.
【請求項5】薄膜あるいは基板を構成する半導体が、周
期表のII族元素の1種あるいは複数種およびVI族元素の
1種あるいは複数種よりなる請求項1ないし4のいずれ
かに記載の半導体薄膜の成膜方法。
5. The semiconductor according to claim 1, wherein the semiconductor constituting the thin film or the substrate comprises one or more kinds of Group II elements and one or more kinds of Group VI elements of the periodic table. Thin film forming method.
【請求項6】バッファ層を構成する1種あるいは複数種
のカルコゲナイドがガリウムと硫黄、セレン、テルルの
うちの元素との化合物である請求項1ないし5のいずれ
かに記載の半導体薄膜の成膜方法。
6. The film formation of a semiconductor thin film according to claim 1, wherein the chalcogenide or chalcogenides constituting the buffer layer is a compound of gallium and an element selected from sulfur, selenium and tellurium. Method.
【請求項7】バッファ層を構成する1種あるいは複数種
のカルコゲナイドが、すず、モリブデン、タリウム、ニ
オブ、ハフニウムのうちの元素と硫黄、セレン、テルル
のうちの元素との化合物である請求項6記載の半導体薄
膜の成膜方法。
7. The chalcogenide of one or more kinds which constitutes the buffer layer is a compound of an element selected from tin, molybdenum, thallium, niobium and hafnium and an element selected from sulfur, selenium and tellurium. A method for forming a semiconductor thin film as described above.
JP11416695A 1995-05-12 1995-05-12 Method for forming semiconductor thin film Pending JPH08316145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11416695A JPH08316145A (en) 1995-05-12 1995-05-12 Method for forming semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11416695A JPH08316145A (en) 1995-05-12 1995-05-12 Method for forming semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH08316145A true JPH08316145A (en) 1996-11-29

Family

ID=14630829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11416695A Pending JPH08316145A (en) 1995-05-12 1995-05-12 Method for forming semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH08316145A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176758A (en) * 1997-10-10 1999-07-02 Toyoda Gosei Co Ltd Semiconductor element
EP1246238A2 (en) * 2001-03-30 2002-10-02 Hewlett-Packard Company Method of fabricating a bonded substrate
EP1260481A2 (en) * 2001-05-21 2002-11-27 Hewlett-Packard Company Atomic resolution storage system
EP1261023A2 (en) * 2001-05-21 2002-11-27 Hewlett-Packard Company Atomic resolution storage system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176758A (en) * 1997-10-10 1999-07-02 Toyoda Gosei Co Ltd Semiconductor element
EP1246238A2 (en) * 2001-03-30 2002-10-02 Hewlett-Packard Company Method of fabricating a bonded substrate
EP1246238A3 (en) * 2001-03-30 2003-11-26 Hewlett-Packard Company Method of fabricating a bonded substrate
EP1260481A2 (en) * 2001-05-21 2002-11-27 Hewlett-Packard Company Atomic resolution storage system
EP1261023A2 (en) * 2001-05-21 2002-11-27 Hewlett-Packard Company Atomic resolution storage system
EP1260481A3 (en) * 2001-05-21 2003-12-03 Hewlett-Packard Company Atomic resolution storage system
EP1261023A3 (en) * 2001-05-21 2003-12-03 Hewlett-Packard Company Atomic resolution storage system

Similar Documents

Publication Publication Date Title
JP6956716B2 (en) Layer structure for RF filters processed with rare earth oxides and epitaxial aluminum nitride
JP5490271B2 (en) Semiconductor wafer
EP1595280B1 (en) Buffer structure for heteroepitaxy on a silicon substrate
WO2013035472A1 (en) Substrate for epitaxial growth, and crystal laminate structure
EP0551721A2 (en) Gallium nitride base semiconductor device and method of fabricating the same
US20070222034A1 (en) Graded index silicon geranium on lattice matched silicon geranium semiconductor alloy
JPH076951A (en) Arsenic passivation for epitaxial sticking of ternary chalcogen compound semiconductor film on silicon base body
US10340353B2 (en) Epitaxial metallic transition metal nitride layers for compound semiconductor devices
US5670800A (en) Semiconductor device and method for fabricating the same
TWI805620B (en) Metal electrode with tunable work functions
Stutius et al. Crystal orientation dependence of the electrical transport and lattice structure of zinc selenide films grown by metalorganic chemical vapor deposition
JPH08316145A (en) Method for forming semiconductor thin film
JPH11266006A (en) Laminated structure body and compound semiconductor device using the same
Kadow et al. Growth-temperature dependence of the microstructure of ErAs islands in GaAs
Dura et al. Epitaxial growth of Sb/GaSb structures: An example of V/III‐V heteroepitaxy
Oishi et al. Growth and characterization of CuGaS2 thin films on (100) Si by vacuum deposition with three sources
JP2004006562A (en) Thin-film element and its manufacturing method
JP3985288B2 (en) Semiconductor crystal growth method
Cho et al. Bi/Sb superlattices grown by molecular beam epitaxy
JP2003086508A (en) Compound semiconductor layer substrate, method of manufacturing the same, and device manufactured on the same substrate
Jain et al. Buffer-layer-controlled nickeline vs zinc-blende/wurtzite-type MnTe growths on c-plane Al 2 O 3 substrates
JPS63194340A (en) Manufacture of compound semiconductor crystal
JPH0234600A (en) Multilayer structure comprising crystal thin film and its preparation
JP2771635B2 (en) Ca lower 1-lower x Sr lower x F lower 2
JPS5973499A (en) Growth of compound semiconductor