JPH08315999A - Neutral atomic beam focusing device - Google Patents

Neutral atomic beam focusing device

Info

Publication number
JPH08315999A
JPH08315999A JP7145476A JP14547695A JPH08315999A JP H08315999 A JPH08315999 A JP H08315999A JP 7145476 A JP7145476 A JP 7145476A JP 14547695 A JP14547695 A JP 14547695A JP H08315999 A JPH08315999 A JP H08315999A
Authority
JP
Japan
Prior art keywords
standing wave
neutral
atomic beam
frequency
neutral atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7145476A
Other languages
Japanese (ja)
Inventor
Masashi Okada
政志 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7145476A priority Critical patent/JPH08315999A/en
Publication of JPH08315999A publication Critical patent/JPH08315999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE: To provide a device for focusing a neutral atomic beam by use of a standing wave formed by laser beam in which the bottom spreading of the focused neutral atomic beam is minimized. CONSTITUTION: A standing wave 3 is formed in the direction orthogonal to a neutral atomic beam 4 by a laser beam 1 having a frequency smaller than the resonance frequency of the neutral atomic beam 4 to focus the neutral atomic beam 4 in this orthogonal direction. In such a neutral atomic beam focusing device, an opening plate 6 is arranged in a position just before the position where the neutral atomic beam 4 is incident to the standing wave 3, and an opening 7 having a width smaller than the space between the adjacent nodes N, N of the standing wave 3 is formed in the opening plate 6 so that the center is situated in the position of the loop W of the standing wave 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超微細加工を可能にす
る中性原子線集束装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a neutral atom beam focusing apparatus that enables ultrafine processing.

【0002】[0002]

【従来の技術】中性原子は、イオンや電子とは異なって
電荷を持たないので、電磁力の作用を受けにくく、電磁
力を使って中性原子線を集束することはできない。その
ため、従来、中性原子線を集束する方法として、レーザ
ー光で定在波を形成し、その定在波に原子線を通過させ
て、レーザー光の及ぼす力を使って集束する技術が開発
されている。例として、Science, Vol.262, pp.877-880
がある。これは図4に示すように、レーザー光1を鏡2
でレーザー光1の進行方向とは逆方向に反射して定在波
3を形成し、その定在波3に対して垂直に原子線4を通
過させて基板5上に集束させるものである。この方法で
幅65nmの微細パターンが形成されている。
2. Description of the Related Art Neutral atoms, unlike ions and electrons, do not have an electric charge, and are therefore less susceptible to the action of electromagnetic force, and the neutral atom beam cannot be focused using electromagnetic force. Therefore, conventionally, as a method of focusing a neutral atomic beam, a technique has been developed in which a standing wave is formed by a laser beam, the atomic beam is passed through the standing wave, and the force is applied by the laser beam. ing. As an example, Science, Vol.262, pp.877-880
There is. As shown in FIG. 4, the laser light 1 is reflected by the mirror 2
Then, the laser beam 1 is reflected in a direction opposite to the traveling direction to form a standing wave 3, and an atomic beam 4 is passed perpendicularly to the standing wave 3 to be focused on the substrate 5. A fine pattern having a width of 65 nm is formed by this method.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来技術
は、図5に定在波中の原子の軌道8を示すように、定在
波3の腹Wの近傍に入射した原子線4は腹Wの位置に集
束するものの、定在波3の節Nの近傍に入射した原子線
4は腹Wの位置には集束しないという問題点がある。こ
の結果、基板5上での原子の分布は図6に示すように裾
の広がったものになってしまい、より微細なパターンを
形成することができない。本発明は、レーザー光によっ
て形成された定在波を使って中性原子線を集束する装置
において、前記のような裾の広がりが少ない集束装置を
提供することを目的とする。
However, in the above conventional technique, as shown in FIG. 5 showing the orbits 8 of atoms in the standing wave, the atomic beam 4 incident near the antinode W of the standing wave 3 is antinode. Although focused at the position of W, there is a problem that the atomic beam 4 incident near the node N of the standing wave 3 is not focused at the position of the antinode W. As a result, the distribution of atoms on the substrate 5 has a widened skirt as shown in FIG. 6, and a finer pattern cannot be formed. It is an object of the present invention to provide a device for focusing a neutral atomic beam using a standing wave formed by a laser beam, which has a small spread of the skirt as described above.

【0004】[0004]

【課題を解決するための手段】本発明は上記目的を達成
するためになされたものであり、すなわち、中性原子線
の共鳴周波数よりも低い周波数を有するレーザー光によ
って、中性原子線と直交する方向に定在波を形成して、
該直交する方向に中性原子線を集束する中性原子線集束
装置において、中性原子線が定在波に入射する直前の位
置に開口板を配置し、該開口板に、定在波の隣接する節
どうしの間隔よりも短い幅を有する開口を、定在波の腹
の位置に中心が位置するように形成したことを特徴とす
る中性原子線集束装置である。本発明はまた、中性原子
線の共鳴周波数よりも高い周波数を有するレーザー光に
よって、中性原子線と直交する方向に定在波を形成し
て、該直交する方向に中性原子線を集束する中性原子線
集束装置において、中性原子線が定在波に入射する直前
の位置に開口板を配置し、該開口板に、定在波の隣接す
る節どうしの間隔よりも短い幅を有する開口を、定在波
の節の位置に中心が位置するように形成したことを特徴
とする中性原子線集束装置である。
The present invention has been made in order to achieve the above-mentioned object, that is, a laser beam having a frequency lower than the resonance frequency of the neutral atomic beam is used to make it orthogonal to the neutral atomic beam. Form a standing wave in the direction
In a neutral atom beam focusing device for focusing a neutral atom beam in the orthogonal direction, an aperture plate is arranged at a position immediately before the neutral atom beam enters the standing wave, and the standing wave of the standing wave is placed on the aperture plate. The neutral atom beam focusing device is characterized in that an opening having a width shorter than a space between adjacent nodes is formed so that a center thereof is located at an antinode of a standing wave. The present invention also forms a standing wave in a direction orthogonal to the neutral atom beam by laser light having a frequency higher than the resonance frequency of the neutral atom beam, and focuses the neutral atom beam in the orthogonal direction. In the neutral atomic beam focusing device, the aperture plate is arranged at a position immediately before the neutral atomic beam enters the standing wave, and the aperture plate has a width shorter than the interval between adjacent nodes of the standing wave. The neutral atom beam focusing device is characterized in that the opening is formed so that the center is located at the position of the node of the standing wave.

【0005】[0005]

【作用】レーザー光として、中性原子線の共鳴周波数よ
りも低い周波数のものを用いた集束装置では、定在波の
腹の近傍に入射した原子線は腹の位置に集束するもの
の、定在波の節の近傍に入射した原子線は腹の位置には
集束せず、定在波の節に入射した原子線は集束作用を全
く受けない。しかるに本発明では、定在波の腹の近傍に
入射しようとする原子線のみを入射させ、定在波の節の
近傍に入射しようとする原子線はカットするように開口
を配置しているから、定在波の腹の位置に原子線を精度
良く集束させることができる。他方、レーザー光とし
て、中性原子線の共鳴周波数よりも高い周波数のものを
用いた集束装置では、定在波の節の近傍に入射した原子
線は節の位置に集束するものの、定在波の腹の近傍に入
射した原子線は節の位置には集束せず、定在波の腹に入
射した原子線は集束作用を全く受けない。しかるに本発
明では、定在波の節の近傍に入射しようとする原子線の
みを入射させ、定在波の腹の近傍に入射しようとする原
子線はカットするように開口を配置しているから、定在
波の節の位置に原子線を精度良く集束させることができ
る。
[Function] In a focusing device using a laser beam having a frequency lower than the resonance frequency of a neutral atomic beam, the atomic beam incident near the antinode of the standing wave is focused at the antinode position, Atom beams incident near the node of the wave do not focus at the antinode position, and atom beams incident at the node of the standing wave are not focused at all. However, in the present invention, only the atomic beam that is going to enter near the antinode of the standing wave is made incident, and the atomic beam that is going to enter near the node of the standing wave is arranged so as to cut the opening. , Atomic beams can be accurately focused on the antinode of the standing wave. On the other hand, in the focusing device that uses a laser beam with a frequency higher than the resonance frequency of the neutral atomic beam, the atomic beam incident in the vicinity of the node of the standing wave is focused at the position of the node. Atomic beams incident near the antinode of the are not focused at the node position, and atomic beams incident on the antinode of the standing wave are not focused at all. However, in the present invention, only the atomic beam that is about to enter the vicinity of the node of the standing wave is incident, and the atomic beam that is about to enter near the antinode of the standing wave is arranged with an opening so as to be cut. , Atomic beams can be focused with high accuracy at the nodes of standing waves.

【0006】[0006]

【実施例】次に、図面を参照して、本発明による中性原
子線集束装置の一実施例を説明する。図1は、本発明に
よる中性原子線集束装置を採用した真空蒸着装置の構造
を示す図である。Na原子線源22の下方、すなわち図
面y方向には、幅1mmのスリット23aを有するスリ
ット板23が配置されており、こうしてNa原子線源2
2を230度に加熱することによって放出されるNa原
子線4は、スリット23aによって整形される。スリッ
ト板23の下方には、直径100nmの開口7を有する
開口板6が配置されており、開口板6の下方にSi基板
5が配置されており、Si基板5は試料台26上に載置
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the neutral atom beam focusing device according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the structure of a vacuum vapor deposition apparatus adopting a neutral atomic beam focusing apparatus according to the present invention. A slit plate 23 having a slit 23a having a width of 1 mm is arranged below the Na atomic beam source 22, that is, in the y direction in the drawing.
The Na atomic beam 4 emitted by heating 2 to 230 degrees is shaped by the slit 23a. An opening plate 6 having an opening 7 having a diameter of 100 nm is arranged below the slit plate 23, a Si substrate 5 is arranged below the opening plate 6, and the Si substrate 5 is placed on a sample table 26. Has been done.

【0007】レーザー光発生装置9の右方、すなわち図
面z方向には、ビームスプリッター10、ビームスプリ
ッター15、1/4波長板24、及びレンズ25がその
順に配置されており、更に開口板6の開口7の下側を隔
てて鏡2が配置されている。レーザー光発生装置9は、
Na原子の共鳴周波数よりも若干周波数の低い直線偏光
のレーザー光1を発生し、レンズ25はその焦点が鏡2
上に至るように配置されており、また鏡2は試料台26
上に固定されている。ビームスプリッター10とビーム
スプリッター15の上方には、それぞれビームスプリッ
ター11と鏡14が配置されており、ビームスプリッタ
ー11と鏡14との間に、音響光学変調素子12とビー
ムスプリッター13とがその順に配置されている。ビー
ムスプリッター11とビームスプリッター13の上方に
は、それぞれ鏡16とビームスプリッター17が配置さ
れている。鏡16の右方、すなわち図面z方向には、ビ
ームスプリッター17に引き続いて音響光学変調素子1
8が配置されており、更にスリット板23のスリット2
3aの下側を隔てて、1/4波長板20、及び鏡19が
その順に配置されている。
A beam splitter 10, a beam splitter 15, a quarter-wave plate 24, and a lens 25 are arranged in that order on the right side of the laser beam generator 9, that is, in the z direction in the drawing, and further, the aperture plate 6 is provided. A mirror 2 is arranged on the lower side of the opening 7. The laser light generator 9 is
A linearly polarized laser beam 1 having a frequency slightly lower than the resonance frequency of the Na atom is generated, and the lens 25 has a focal point of the mirror 2.
The mirror 2 is arranged so as to reach the top, and the mirror 2 is mounted on the sample table 26.
It is fixed on. A beam splitter 11 and a mirror 14 are arranged above the beam splitter 10 and the beam splitter 15, respectively, and an acousto-optic modulator 12 and a beam splitter 13 are arranged in this order between the beam splitter 11 and the mirror 14. Has been done. A mirror 16 and a beam splitter 17 are arranged above the beam splitter 11 and the beam splitter 13, respectively. To the right of the mirror 16, that is, in the z direction in the drawing, the acousto-optic modulator 1 is connected to the beam splitter 17 following
8 are arranged, and further the slit 2 of the slit plate 23
A quarter wave plate 20 and a mirror 19 are arranged in that order on the lower side of 3a.

【0008】こうしてレーザー光発生装置9で発生した
直線偏光のレーザー光1のうち、ビームスプリッター1
0を透過したレーザー光1aは、ビームスプリッター1
5を透過して1/4波長板24に入射する。またビーム
スプリッター10とビームスプリッター11とで反射
し、ビームスプリッター13を透過し、鏡14とビーム
スプリッター15とで反射したレーザー光1bは、途中
の音響光学変調素子12によって周波数変調を受けた後
に、レーザー光1aと共に1/4波長板24に入射す
る。これらのレーザー光1a,1bは、1/4波長板2
4を透過することによって円偏光に変換され、レンズ2
5を透過することによって鏡2上に集光する。更にレー
ザー光1a,1bは、鏡2によって反射して往路とは逆
回転の円方向に変換され、往路の円偏光と復路の逆回転
の円偏光とは重ね合わせられ、こうして開口板6とSi
基板5との間の空間に定在波3の領域が形成される。
Of the linearly polarized laser light 1 generated by the laser light generator 9 in this way, the beam splitter 1
The laser beam 1a transmitted through 0 is reflected by the beam splitter 1
After passing through 5, the light enters the quarter wave plate 24. The laser beam 1b reflected by the beam splitter 10 and the beam splitter 11, transmitted through the beam splitter 13, and reflected by the mirror 14 and the beam splitter 15 is frequency-modulated by the acousto-optic modulator 12 on the way, It is incident on the quarter-wave plate 24 together with the laser light 1a. These laser beams 1a and 1b are transmitted by the quarter wavelength plate 2
It is converted into circularly polarized light by passing through 4 and the lens 2
The light is focused on the mirror 2 by passing through 5. Further, the laser beams 1a and 1b are reflected by the mirror 2 and are converted into a circular direction which is a reverse rotation of the forward path, and the forward polarized light and the backward polarized light are superposed on each other.
A region of the standing wave 3 is formed in a space between the substrate 5 and the substrate 5.

【0009】この定在波3は、図2に示すようにz方向
に複数個の節Nを持ち、したがって隣接する節N,Nの
中央に腹Wを持ち、隣接する節N,Nの間隔はレーザー
光1a,1bの波長の半分に等しい。ここで開口板6の
開口7のz方向の幅は、定在波3の隣接する節N,Nど
うしの間隔、すなわちレーザー光1a,1bの波長の半
分よりも十分に狭く形成されており、また開口7のz方
向の中心が、定在波3のいずれかの腹Wと一致するよう
に配置されている。
The standing wave 3 has a plurality of nodes N in the z direction as shown in FIG. 2, and therefore has an antinode W at the center of the adjacent nodes N, N, and the interval between the adjacent nodes N, N. Is equal to half the wavelength of the laser light 1a, 1b. Here, the width in the z direction of the aperture 7 of the aperture plate 6 is formed sufficiently narrower than the interval between the adjacent nodes N of the standing wave 3, that is, the half of the wavelength of the laser light 1a, 1b. Further, the center of the opening 7 in the z direction is arranged so as to coincide with any antinode W of the standing wave 3.

【0010】他方、レーザー光発生装置9で発生した直
線偏光のレーザー光1のうち、ビームスプリッター10
で反射し、ビームスプリッター11を透過したレーザー
光1cは、鏡16で反射し、ビームスプリッター17を
透過して音響光学変調素子18に入射する。またビーム
スプリッター11で反射し、ビームスプリッター13と
ビームスプリッター17とで反射したレーザー光1d
は、途中の音響光学変調素子12によって周波数変調を
受けた後に、レーザー光1cと共に音響光学変調素子1
8に入射する。これらのレーザー光1c,1dは、音響
光学変調素子18によって周波数変調を受けた後に、1
/4波長板20を透過することによって円偏光に変換さ
れる。更にレーザー光1c,1dは、鏡19によって反
射して往路とは逆回転の円方向に変換され、1/4波長
板20を透過することによって往路とは直交する直線偏
光のレーザー光21に変換される。こうしてスリット板
23と開口板6との間の空間に、+z方向のレーザー光
1c,1dと−z方向のレーザー光21とが共存するコ
リメート領域が形成される。以上の各部材のうち、Na
原子線源22、スリット板23、開口板6、鏡2、試料
台26、及びSi基板5は、真空容器27内に設置され
ている。
On the other hand, of the linearly polarized laser light 1 generated by the laser light generator 9, the beam splitter 10
The laser light 1c reflected by the laser beam 1c and transmitted through the beam splitter 11 is reflected by the mirror 16 and transmitted through the beam splitter 17 to enter the acousto-optic modulator 18. Also, the laser beam 1d reflected by the beam splitter 11 and reflected by the beam splitter 13 and the beam splitter 17
Is subjected to frequency modulation by the acousto-optic modulation element 12 on the way, and then the acousto-optic modulation element 1 together with the laser beam 1c.
It is incident on 8. These laser lights 1c and 1d are frequency-modulated by the acousto-optic modulator 18 and then 1
It is converted into circularly polarized light by passing through the quarter wave plate 20. Further, the laser beams 1c and 1d are reflected by the mirror 19 and converted into a circular direction which is the reverse rotation of the outward path, and are transmitted through the quarter wavelength plate 20 to be converted into linearly polarized laser light 21 orthogonal to the outward path. To be done. In this way, in the space between the slit plate 23 and the aperture plate 6, a collimated region where the + z direction laser lights 1c and 1d and the −z direction laser light 21 coexist is formed. Of the above members, Na
The atomic beam source 22, the slit plate 23, the aperture plate 6, the mirror 2, the sample stage 26, and the Si substrate 5 are installed in a vacuum container 27.

【0011】しかしてNa原子線源22より発生したy
方向のNa原子線4は、スリット23aによって整形さ
れるものの、当然に±z方向の速度成分と、紙面の手前
側あるいは奥側、すなわち±x方向の速度成分を持つ。
このうち+z方向の速度成分を持つNa原子は、ドップ
ラー効果により−z方向からのレーザー光21の周波数
を高く感じ、+z方向からのレーザー光1c,1dの周
波数を低く感じる。本実施例の場合、レーザー光の周波
数は、Na原子の共鳴周波数よりも低く設定してあるた
め、+z方向からのレーザー光1c,1dに比べて、−
z方向からのレーザー光21の方をより吸収する。その
ため、+z方向の速度成分を持つNa原子は、−z方向
のレーザー光の運動量を受けて+z方向の速度成分を失
う。同様に−z方向の速度成分を持つNa原子は、+z
方向のレーザー光の運動量を受けて−z方向の速度成分
を失う。こうしてNa原子線4は、スリット板23と開
口板6との間の空間において、z方向にコリメートされ
る。
However, y generated from the Na atomic beam source 22
Although the Na atom beam 4 in the direction is shaped by the slit 23a, it naturally has a velocity component in the ± z direction and a velocity component in the front or back side of the paper surface, that is, in the ± x direction.
Of these, Na atoms having a velocity component in the + z direction feel the frequency of the laser light 21 from the −z direction high and the frequencies of the laser lights 1c and 1d from the + z direction low due to the Doppler effect. In the case of the present embodiment, the frequency of the laser light is set lower than the resonance frequency of the Na atom, so that the frequency is − compared to the laser light 1c and 1d from the + z direction.
The laser light 21 from the z direction is absorbed more. Therefore, the Na atom having the velocity component in the + z direction receives the momentum of the laser light in the −z direction and loses the velocity component in the + z direction. Similarly, a Na atom having a velocity component in the −z direction is + z
It loses the velocity component in the −z direction due to the momentum of the laser light in the direction. In this way, the Na atomic beam 4 is collimated in the z direction in the space between the slit plate 23 and the aperture plate 6.

【0012】コリメートされたNa原子線4は、開口7
を通過した後に定在波3の領域を通過する。この領域で
はz方向に節Nと腹Wとを交互に持つ電場が形成され、
この電場によってNa原子に双極子が誘起される。本実
施例では電場の周波数はNa原子の共鳴周波数よりも若
干低い周波数で振動するから、双極子の振動の周波数は
電場の周波数に追随しようとし、こうしてNa原子は電
場の最も強い腹W、すなわち定在波3の腹Wに向ってz
方向に軌道を曲げられて、Si基板5上に堆積する。
The collimated Na atomic beam 4 has an opening 7
And then passes through the area of the standing wave 3. In this region, an electric field having nodes N and antinodes W alternately is formed in the z direction,
A dipole is induced in the Na atom by this electric field. In the present embodiment, the frequency of the electric field oscillates at a frequency slightly lower than the resonance frequency of the Na atom, so that the frequency of the dipole vibration tries to follow the frequency of the electric field, and thus the Na atom has the strongest antinode W of the electric field, that is, Z toward the belly W of standing wave 3
The orbit is bent in the direction and deposited on the Si substrate 5.

【0013】このとき定在波3の腹Wの近傍に入射した
Na原子線4は腹Wの位置に集束するものの、定在波の
節Nの近傍に入射したNa原子線4は完全には腹Wの位
置には集束せず、定在波の節Nに入射したNa原子線4
は集束作用を全く受けない。しかるに本実施例では、定
在波の腹Wの近傍に入射しようとするNa原子線4のみ
を入射させ、定在波の節Nの近傍に入射しようとするN
a原子線4はカットするように開口7を配置しているか
ら、定在波の腹Wの位置にNa原子線4を精度良く集束
させることができる。図3はSi基板5上に堆積するN
a原子の分布を計算した結果を示す。同図に示すよう
に、裾の広がりがない微細パターンを形成することがで
きた。
At this time, the Na atomic beam 4 incident near the antinode W of the standing wave 3 is focused on the position of the antinode W, but the Na atomic beam 4 incident near the node N of the standing wave is not completely generated. The Na atomic beam 4 which is not focused on the antinode W and is incident on the node N of the standing wave
Is not focused at all. However, in the present embodiment, only the Na atomic beam 4 that is about to enter the antinode W of the standing wave is incident, and N about to enter the node N of the standing wave.
Since the opening 7 is arranged so as to cut the a atom beam 4, the Na atom beam 4 can be accurately focused at the position of the antinode W of the standing wave. FIG. 3 shows N deposited on the Si substrate 5.
The result of having calculated the distribution of a atom is shown. As shown in the figure, it was possible to form a fine pattern with no skirt expansion.

【0014】なおNa原子の基底状態は複数の微細構造
準位に分かれている。したがってコリメート領域におい
て単一の波長の光を照射し続けると、光の吸収と放出と
を繰返す過程で光ポンピング効果を生じ、照射光との相
互作用が徐々に弱くなる。そこで本実施例では、音響光
学変調素子12を通過しない光1cと、音響光学変調素
子12によって周波数変調を受けた光1dとを照射し
て、光ポンピング効果を防止している。同様に定在波3
の領域においても、音響光学変調素子12を通過しない
光1aと、音響光学変調素子12によって周波数変調を
受けた光1bとによって定在波3を形成して、光ポンピ
ング効果を防止している。他方、音響光学変調素子18
は、コリメート領域でのNa原子とレーザー光との相互
作用が最も強くなるように調節するためのものである。
The ground state of Na atom is divided into a plurality of fine structure levels. Therefore, if irradiation with light of a single wavelength is continued in the collimating region, an optical pumping effect occurs in the process of repeating absorption and emission of light, and the interaction with irradiation light gradually weakens. Therefore, in this embodiment, the light 1c that does not pass through the acousto-optic modulator 12 and the light 1d that is frequency-modulated by the acousto-optic modulator 12 are irradiated to prevent the optical pumping effect. Similarly, standing wave 3
Also in the region (2), the standing wave 3 is formed by the light 1a that does not pass through the acousto-optic modulator 12 and the light 1b that is frequency-modulated by the acousto-optic modulator 12 to prevent the optical pumping effect. On the other hand, the acousto-optic modulator 18
Is for adjusting the interaction between Na atoms and laser light in the collimating region to be the strongest.

【0015】また開口7によるNa原子線4の回折の影
響を避けるために、開口板6と定在波3との間の距離は
できるだけ近づけることが望ましい。また定在波3とS
i基板5との間も接近させることが好ましい。更に本実
施例では開口7として円形の開口を設けたが、x方向に
長い、あるいは短いスリットとすることもできる。また
本実施例では定在波3の周波数、すなわちレーザー光1
の周波数として、Na原子線の共鳴周波数よりも若干低
い周波数を用いたが、レーザー光1の周波数として、N
a原子線の共鳴周波数よりも若干高い周波数を用いるこ
ともできる。但しこのときにはNa原子は斥力を受け、
したがってNa原子線は定在波領域を通過することによ
って定在波3の節Nに集束されるから、開口7の中心も
また定在波3の節Nに位置させることとなる。
Further, in order to avoid the influence of the diffraction of the Na atomic beam 4 by the opening 7, it is desirable that the distance between the opening plate 6 and the standing wave 3 be as close as possible. Also, the standing wave 3 and S
It is preferable that the i-substrate 5 and the i-substrate 5 are also brought close to each other. Further, although a circular opening is provided as the opening 7 in this embodiment, it may be a slit that is long or short in the x direction. Further, in this embodiment, the frequency of the standing wave 3, that is, the laser beam 1
As the frequency of the laser beam 1, a frequency slightly lower than the resonance frequency of the Na atomic beam was used.
It is also possible to use a frequency slightly higher than the resonance frequency of the a atom beam. However, at this time, the Na atom receives repulsive force,
Therefore, since the Na atomic beam is focused on the node N of the standing wave 3 by passing through the standing wave region, the center of the opening 7 is also located at the node N of the standing wave 3.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、中性原
子線を基板上にナノメートルのサイズで集束できるの
で、例えばナノメートルサイズの超微細構造物を形成す
ることができ、量子力学的効果を利用した電子デバイス
や光デバイス等の製造装置として応用することができ
る。
As described above, according to the present invention, since the neutral atomic beam can be focused on the substrate in the size of nanometer, it is possible to form, for example, a nanometer-sized ultrafine structure. It can be applied as a manufacturing apparatus for electronic devices, optical devices, etc. using mechanical effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による真空蒸着装置を示す構
成図
FIG. 1 is a configuration diagram showing a vacuum vapor deposition apparatus according to an embodiment of the present invention.

【図2】該実施例の要部を示す図FIG. 2 is a diagram showing a main part of the embodiment.

【図3】該実施例で作製された微細パターンを示す図FIG. 3 is a view showing a fine pattern produced in the example.

【図4】従来の技術を示す概略図FIG. 4 is a schematic diagram showing a conventional technique.

【図5】従来の技術における中性原子線の軌道を示す図FIG. 5 is a diagram showing a trajectory of a neutral atom beam in a conventional technique.

【図6】従来の技術で作製された微細パターンを示す図FIG. 6 is a view showing a fine pattern produced by a conventional technique.

【符号の説明】[Explanation of symbols]

1,1a〜1d,21…レーザー光 2,14,16,19…鏡 3…定在波 4…Na原子線 5…基板 6…開口板 7…開口 8…定在波中の原子の軌道 9…レーザ
ー光発生装置 10,11,13,15,17…ビームスプリッター 12,18…音響光学変調素子 20,24
…1/4波長板 22…Na原子線源 23…スリ
ット板 23a…スリット 25…レン
ズ 26…試料台 27…真空
容器
1, 1a to 1d, 21 ... Laser light 2, 14, 16, 19 ... Mirror 3 ... Standing wave 4 ... Na atomic beam 5 ... Substrate 6 ... Aperture plate 7 ... Aperture 8 ... Orbit of atom in standing wave 9 ... Laser light generator 10, 11, 13, 15, 17 ... Beam splitter 12, 18 ... Acousto-optic modulator 20, 24
... 1/4 wavelength plate 22 ... Na atomic beam source 23 ... Slit plate 23a ... Slit 25 ... Lens 26 ... Sample stage 27 ... Vacuum container

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】中性原子線の共鳴周波数よりも低い周波数
を有するレーザー光によって、前記中性原子線と直交す
る方向に定在波を形成して、該直交する方向に前記中性
原子線を集束する中性原子線集束装置において、 前記中性原子線が前記定在波に入射する直前の位置に開
口板を配置し、該開口板に、前記定在波の隣接する節ど
うしの間隔よりも短い幅を有する開口を、前記定在波の
腹の位置に中心が位置するように形成したことを特徴と
する中性原子線集束装置。
1. A standing wave is formed in a direction orthogonal to the neutral atom beam by a laser beam having a frequency lower than the resonance frequency of the neutral atom beam, and the neutral atom beam is formed in the orthogonal direction. In the neutral atom beam focusing device for focusing, the aperture plate is arranged at a position immediately before the neutral atom beam is incident on the standing wave, and in the aperture plate, an interval between adjacent nodes of the standing wave. A neutral atomic beam focusing device, characterized in that an opening having a width shorter than that of the above is formed such that the center thereof is located at the position of the antinode of the standing wave.
【請求項2】中性原子線の共鳴周波数よりも高い周波数
を有するレーザー光によって、前記中性原子線と直交す
る方向に定在波を形成して、該直交する方向に前記中性
原子線を集束する中性原子線集束装置において、 前記中性原子線が前記定在波に入射する直前の位置に開
口板を配置し、該開口板に、前記定在波の隣接する節ど
うしの間隔よりも短い幅を有する開口を、前記定在波の
節の位置に中心が位置するように形成したことを特徴と
する中性原子線集束装置。
2. A laser beam having a frequency higher than the resonance frequency of the neutral atom beam forms a standing wave in a direction orthogonal to the neutral atom beam, and the neutral atom beam is in the orthogonal direction. In the neutral atom beam focusing device for focusing, the aperture plate is arranged at a position immediately before the neutral atom beam is incident on the standing wave, and in the aperture plate, an interval between adjacent nodes of the standing wave. A neutral atomic beam focusing device, wherein an opening having a width shorter than that of the above is formed so that the center thereof is located at the position of the node of the standing wave.
JP7145476A 1995-05-19 1995-05-19 Neutral atomic beam focusing device Pending JPH08315999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7145476A JPH08315999A (en) 1995-05-19 1995-05-19 Neutral atomic beam focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7145476A JPH08315999A (en) 1995-05-19 1995-05-19 Neutral atomic beam focusing device

Publications (1)

Publication Number Publication Date
JPH08315999A true JPH08315999A (en) 1996-11-29

Family

ID=15386140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7145476A Pending JPH08315999A (en) 1995-05-19 1995-05-19 Neutral atomic beam focusing device

Country Status (1)

Country Link
JP (1) JPH08315999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2430541A (en) * 2005-09-21 2007-03-28 Univ Hertfordshire Apparatus for magneto-optical and/or electro-optical manipulation of an atomic beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2430541A (en) * 2005-09-21 2007-03-28 Univ Hertfordshire Apparatus for magneto-optical and/or electro-optical manipulation of an atomic beam

Similar Documents

Publication Publication Date Title
US5222112A (en) X-ray pattern masking by a reflective reduction projection optical system
JPH02142111A (en) Lighting method and device therefor and projection type exposure method and device therefor
JPH06181153A (en) Optical drawing apparatus
US4631743A (en) X-ray generating apparatus
FR2524198A1 (en) CHARGED PARTICLE BEAM EXPOSURE APPARATUS USING VARIABLE LINE SCAN
US6852985B2 (en) Method and apparatus for nanometer-scale focusing and patterning of ultra-low emittance, multi-MeV proton and ion beams from a laser ion diode
JPH08315999A (en) Neutral atomic beam focusing device
TW202126115A (en) A method for generating an extreme ultraviolet radiation
JPH05217865A (en) High-resolution x-ray lithograohy by means of phase-shifting mask
US6686290B2 (en) Method of forming a fine pattern
JP3918055B2 (en) An atomic lithography apparatus using an electro-optic effect and a method for manufacturing an atomic structure.
WO2017036717A2 (en) Beam splitting apparatus
JPS5942432A (en) Light scattering type floating particle counting apparatus
JP4189523B2 (en) Plasma microundulator device
RU2007783C1 (en) Process of formation of nanostructure
JP2000098100A (en) Soft x-ray parallel flux forming device
JPH0722685A (en) Focus composition method of beam and its focus composition device
JP3400334B2 (en) Photoelectron generation method and apparatus
JPH02239556A (en) X-ray generating device
CN113433804B (en) Extreme ultraviolet lithography method and system
JPH10326928A (en) Device and method for shortening wavelength of light
JP3278086B2 (en) Electron beam drawing method and electron beam drawing apparatus
JPS63250122A (en) X-ray aligner
JPH0372172B2 (en)
JPS62117246A (en) Target for high-luminance x-ray generation