JPH08312350A - Indirect injection engine - Google Patents

Indirect injection engine

Info

Publication number
JPH08312350A
JPH08312350A JP7153775A JP15377595A JPH08312350A JP H08312350 A JPH08312350 A JP H08312350A JP 7153775 A JP7153775 A JP 7153775A JP 15377595 A JP15377595 A JP 15377595A JP H08312350 A JPH08312350 A JP H08312350A
Authority
JP
Japan
Prior art keywords
combustion chamber
sub
engine
chamber
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7153775A
Other languages
Japanese (ja)
Inventor
Tokuaki Ono
徳昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP7153775A priority Critical patent/JPH08312350A/en
Publication of JPH08312350A publication Critical patent/JPH08312350A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE: To aim at the fruition of good combustibility in almost all the driving state of an engine by installing an antechamber member provided with a sub combustion chamber on the inside so as to be turnable around an axis to be contained in a plane almost orthogonal with a cylinder axis. CONSTITUTION: In time of a low speed of rotation, making an antechamber member 20 turn as far as an angle θb around an axis 0-0, and angle to be made between the center of a nozzle hole 28 and a piston top face is turned to α1 and thereby it is decreased more than in time of a high speed of rotation, and thus the nozzle hole 28 points to an inward part in the radial direction of a combustion chamber 16. At this time, since an end edge 30' of an opening 30 of a cylinder 18 interferes with an opening of an outlet of the nozzle hole 28, a passage area of combustion gas flowing into a main combustion chamber 16 from a sub combustion chamber 22 is decreased in proportion to the turning angle θb of the antechamber member 20. With this constitution, a speed of the combustion gas flowing into the main combustion chamber 16 from the sub combustion chamber 22 is increased, and also at this time, the center line of a jet is the same in substance, so it will not partially flow into the main combustion chamber 16 at all and, and also the diffusion range of a combustion gas jet in a cylinder 14 becomes widened, and this gas jet is diffusedly burned in an effectively manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、副室式エンジンに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a subchamber engine.

【0002】[0002]

【従来の技術】従来、セラミックス材料で作られた球状
の渦流室をシリンダヘッド内に収容し、同渦流室内に燃
料を噴射する燃料噴射弁に対し同軸的に配設された回転
軸によって上記渦流室を回転させることにより、エンジ
ンの運転状態に応じて、噴孔の有効開口面積を変化させ
るようにした副室式エンジンは、公知である。(例え
ば、特開昭62−282112号公報参照)
2. Description of the Related Art Conventionally, a spherical vortex chamber made of a ceramic material is housed in a cylinder head, and the vortex flow is generated by a rotary shaft coaxially arranged with a fuel injection valve for injecting fuel into the vortex flow chamber. A sub-chamber engine in which the effective opening area of the injection hole is changed by rotating the chamber according to the operating state of the engine is known. (See, for example, JP-A-62-282121)

【0003】上記既提案の副室式エンジンの概略構成
を、図10ないし図12を参照して説明する。図中符号
01は副室式ディーゼルエンジンのクランクケース02
に形成されたシリンダ03内に嵌装されたピストンであ
って、同ピストン01の頂部に主燃焼室04が凹設され
ている。一方、クランクケース02に装架されたシリン
ダヘッド05内に、セラミックス製の球状をなす副室部
材06が収容され、同副室部材06の内部には、球形の
副室又は渦流室08が同心的に形成されている。
A schematic structure of the above-mentioned proposed sub-chamber engine will be described with reference to FIGS. 10 to 12. In the figure, reference numeral 01 is a crankcase 02 of the sub chamber type diesel engine.
The main combustion chamber 04 is recessed at the top of the piston 01 which is fitted in the cylinder 03 formed in 1. On the other hand, a spherical spherical sub-chamber member 06 is housed in a cylinder head 05 mounted on the crankcase 02, and a spherical sub-chamber or swirl chamber 08 is concentric inside the sub-chamber member 06. Has been formed.

【0004】上記球状副室部材06の上側部分に、中空
円筒状の回転軸010が渦流室08の中心を指向して斜
設され、同回転軸010は下端を副室部材06の壁内に
埋設固定されている。また、回転軸010の内部に、同
心的に燃料噴射弁012が挿入され、同噴射弁012の
燃料噴孔を具えた先端部分は、副室部材06の周壁に開
設された透孔014内に位置している。
A hollow cylindrical rotary shaft 010 is obliquely provided on the upper side of the spherical sub-chamber member 06 so as to be directed toward the center of the swirl chamber 08, and the lower end of the rotary shaft 010 is inside the wall of the sub-chamber member 06. It is embedded and fixed. Further, a fuel injection valve 012 is concentrically inserted inside the rotary shaft 010, and a tip end portion of the injection valve 012 provided with a fuel injection hole is inside a through hole 014 formed in a peripheral wall of the sub chamber member 06. positioned.

【0005】また、副室部材06の下側部周壁には、上
記主燃焼室04を指向した噴孔016が斜設され、同噴
孔016は、副室部材06を回転自在にシリンダヘッド
05内に支持するシート部材018に設けられた開口0
20を介して上記主燃焼室04に連通する。上記シート
部材018は、上下に2分割して形成され、上下に分割
されたシート分割部片間には、クッションリング022
が介装されている。
Further, a nozzle hole 016 directed toward the main combustion chamber 04 is obliquely provided on the lower peripheral wall of the sub chamber member 06, and the nozzle hole 016 is capable of rotatably moving the sub chamber member 06 in the cylinder head 05. Opening 0 provided in the sheet member 018 supported inside
It communicates with the main combustion chamber 04 via 20. The seat member 018 is formed by dividing the seat member 018 into upper and lower parts, and a cushion ring 022 is provided between the upper and lower seat dividing parts.
Is interposed.

【0006】上記構成のエンジンにおいて、上記回転軸
010は、エンジンの回転数及び負荷に応じて廻動さ
れ、低回転数かつ低負荷運転時には、図12の底面図に
示されているように、シリンダヘッド05側の開口02
0と副室部材06の噴孔016の出口端016′とが、
一部分だけ重なり合って絞られた小さい断面積の燃焼ガ
ス通路を形成する。一方、エンジンの高負荷運転時は、
図11の底面図に示されているように、シリンダヘッド
側の開口020と副室部材06の噴孔016の開口端0
16′とが、実質的に同軸的に重なり、大きい断面積の
燃焼ガス通路が形成される。
In the engine having the above construction, the rotary shaft 010 is rotated according to the engine speed and load, and at the time of low speed and low load operation, as shown in the bottom view of FIG. Cylinder head 05 side opening 02
0 and the outlet end 016 ′ of the injection hole 016 of the sub chamber member 06 are
Partially overlapping to form a narrowed cross-section combustion gas passage. On the other hand, during high load operation of the engine,
As shown in the bottom view of FIG. 11, the opening 020 on the cylinder head side and the opening end 0 of the injection hole 016 of the sub chamber member 06 are zero.
16 'and 16' overlap substantially coaxially to form a combustion gas passage having a large cross-sectional area.

【0007】エンジンの低回転かつ低負荷運転時に、渦
流室08と主燃焼室04とを小断面積の燃焼ガス通路に
より連通させることによって、燃焼の安定性及び良好な
始動性がある程度達成され、またエンジンの高負荷運転
時は、上記のように渦流室08と主燃焼室04とを、大
きい断面積の燃焼ガス通路により連通させることによっ
て、吸入空気量及び燃料噴射量の増大に適応した良好な
燃焼が得られる。しかしながら、この既提案の構成で
は、図12に示されている低回転、低負荷運転時に、渦
流室08から主燃焼室04に燃焼ガスを供給する通路の
中心が、シリンダ03又はピストン01の中心線(又は
燃焼上好ましい燃焼ガス噴流の中心線)に対して距離e
だけ偏っており、また部分負荷状態でも、全負荷状態を
示す図11と上記低回転時の図12との間の中間の状態
になり、燃焼ガス通路の中心がなお偏り、燃焼ガス噴流
の方向が好ましい方向からずれるため、結局、低回転、
低負荷運転状態及び部分負荷運転状態において十分良好
な燃焼が得られず、特に低回転時の排煙性能が悪化し、
低温始動時の白煙発生を有効に低減し得ない欠点があっ
た。
During low engine speed and low load operation of the engine, by making the swirl chamber 08 and the main combustion chamber 04 communicate with each other through a combustion gas passage having a small cross-sectional area, combustion stability and good startability are achieved to some extent. Further, during high-load operation of the engine, as described above, the swirl chamber 08 and the main combustion chamber 04 are communicated with each other through the combustion gas passage having a large cross-sectional area, so that the intake air amount and the fuel injection amount can be appropriately adjusted. Combustion is obtained. However, in this proposed configuration, the center of the passage for supplying the combustion gas from the swirl chamber 08 to the main combustion chamber 04 at the time of low rotation and low load operation shown in FIG. 12 is the center of the cylinder 03 or the piston 01. Distance e to the line (or the center line of the combustion gas jet that is preferable for combustion)
Even in the partial load state, the state becomes an intermediate state between FIG. 11 showing the full load state and FIG. 12 at the time of low rotation, the center of the combustion gas passage is still biased, and the direction of the combustion gas jet flow Is shifted from the preferred direction, so after all, low rotation,
In a low load operation state and a partial load operation state, sufficiently good combustion cannot be obtained, and the smoke exhaust performance is deteriorated especially at low rotation speed.
However, there is a drawback that the white smoke generation at the time of cold start cannot be effectively reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記既提案
の副室式エンジンの欠点を改善して、エンジンの略すべ
ての運転状態において、良好な燃焼を達成することがで
き、特に低回転時の排煙濃度の一層低減、及び低温始動
時の白煙低減を効率的に達成することができる副室式エ
ンジンを提供することを、主たる目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the previously proposed subchamber engine so that good combustion can be achieved in almost all operating conditions of the engine, especially at low revolutions. A main object of the present invention is to provide a sub-chamber engine capable of efficiently achieving further reduction of smoke exhaust concentration during cold start and reduction of white smoke during cold start.

【課題を解決するための手段】[Means for Solving the Problems]

【0009】本発明は、上記目的を達成するために創案
されたもので、エンジンのシリンダヘッド内に、シリン
ダ軸線に略直交する平面内に含まれる軸線を中心として
廻動し得るように配設された副室部材、同副室部材の内
部に形成され、噴孔を介してピストン頂部の主燃焼室に
連通する副燃焼室、上記シリンダヘッドに装着され、上
記副室部材に設けられた透孔を介して上記副燃焼室内に
燃料を噴射する燃料噴射弁、上記副室部材をその軸線の
周りに廻動させて上記噴孔の主燃焼室に対する指向角度
を変更する駆動装置、及びエンジンの運転状態に応じて
上記駆動装置を制御するコントロールユニットを具備し
たことを特徴とする副室式エンジンを提案するものであ
る。
The present invention was devised to achieve the above object, and is arranged in a cylinder head of an engine so as to be rotatable about an axis contained in a plane substantially orthogonal to the cylinder axis. And a sub-combustion chamber that is formed inside the sub-chamber member and communicates with the main combustion chamber at the top of the piston through an injection hole. A fuel injection valve for injecting fuel into the auxiliary combustion chamber through a hole, a drive device for rotating the auxiliary chamber member around its axis to change the directivity angle of the injection hole with respect to the main combustion chamber, and the engine It is an object of the present invention to provide a sub-chamber engine including a control unit that controls the drive unit according to an operating state.

【0010】本発明において、上記シリンダヘッドに
は、上記副室部材をその軸線の周りに回転し得るように
収納する収納凹部と、同収納凹部の上記主燃焼室に隣接
する部分に形成され、上記噴孔の主燃焼室側の開口と協
働して可変面積のオリフィスを形成する開口とが設けら
れることが好ましい。また本発明において、上記コント
ロールユニットは、エンジンの冷却水温が設定温度より
低いエンジン運転状態において、上記噴孔が主燃焼室の
シリンダ中心寄りの部分を指向するように、上記駆動装
置を制御することが好ましく、さらにまた上記コントロ
ールユニットは、エンジンの冷却水温が上記設定温度以
上のエンジン運転状態において、エンジンの回転数が設
定回転数より低いときに、上記噴孔が主燃焼室のシリン
ダ中心寄りの部分を指向し、かつエンジン回転数が上記
設定回転数以上の状態では、上記噴孔が主燃焼室のシリ
ンダ中心から遠い部分を指向するように、上記駆動装置
を制御することが好ましい。なおまた、上記副室部材内
の副燃焼室が、上記燃料噴射弁から燃料が噴射される上
記透孔に連通するドーム部を具えた釣鐘形の形状を有す
ることが望ましい。
In the present invention, the cylinder head is formed with a storage recess for storing the sub chamber member so as to be rotatable about its axis and a portion of the storage recess adjacent to the main combustion chamber. It is preferable to provide an opening that cooperates with the main combustion chamber side opening of the injection hole to form an orifice having a variable area. Further, in the present invention, the control unit controls the drive device such that, in an engine operating state in which the temperature of the cooling water of the engine is lower than a set temperature, the injection hole is directed to a portion of the main combustion chamber near the center of the cylinder. Furthermore, in the engine operating state in which the cooling water temperature of the engine is equal to or higher than the set temperature, the control unit preferably has the injection hole near the center of the cylinder of the main combustion chamber when the engine speed is lower than the set speed. It is preferable that the drive device be controlled so that the injection hole is directed to a portion far from the cylinder center of the main combustion chamber when the engine rotation speed is equal to or higher than the set rotation speed. Further, it is preferable that the auxiliary combustion chamber in the auxiliary chamber member has a bell shape having a dome portion communicating with the through hole through which fuel is injected from the fuel injection valve.

【0011】[0011]

【作用】本発明によれば、その内部に副燃焼室を具えた
副室部材が、シリンダ軸線に略直交する平面内に含まれ
る軸線の周りに廻動し得るように設けられているので、
同副室部材に設けられた噴孔の主燃焼室側の開口と、シ
リンダヘッドの主燃焼室に隣接する部分に形成された開
口とによって可変面積のオリフィスが形成され、同オリ
フィスは、その面積が変化しても、燃焼ガス噴流のシリ
ンダ軸線に直交する平面に投影した中心線の位置が、実
質的に変化しない特徴を有し、この結果、エンジンのす
べての運転状態において、従来より優れた燃焼を確保す
ることができる。また、上記副室部材の内部に形成され
る副燃焼室の形状と同副燃焼室に対する燃料噴射弁との
適切な関係的配置によって、同噴射弁から噴射された燃
料噴霧が副燃焼室の内周壁面に到達するまでの距離(以
下、場合により噴霧到達距離という)を、上記副室部材
の廻動により変化させて、副燃焼室内の燃焼を好ましい
状態に制御することができる。上記噴霧到達距離の変化
は、副燃焼室の形状を所謂釣鐘形とし、そのドーム部分
に燃料噴射弁を配置することによって、効果的に達成さ
れる。
According to the present invention, the sub-chamber member having the sub-combustion chamber therein is provided so as to be rotatable around the axis contained in the plane substantially orthogonal to the cylinder axis.
A variable area orifice is formed by the main combustion chamber side opening of the injection hole provided in the sub chamber member and the opening formed in the portion of the cylinder head adjacent to the main combustion chamber. The position of the center line projected on the plane orthogonal to the cylinder axis of the combustion gas jet does not substantially change even when the engine is changed, and as a result, it is superior to the conventional one in all operating conditions of the engine. Combustion can be secured. Further, due to the shape of the sub-combustion chamber formed inside the sub-chamber member and an appropriate relational arrangement with the fuel injection valve with respect to the sub-combustion chamber, the fuel spray injected from the sub-combustion chamber is not It is possible to control the combustion in the auxiliary combustion chamber to a preferable state by changing the distance to reach the peripheral wall surface (hereinafter, referred to as spray arrival distance in some cases) by the rotation of the auxiliary chamber member. The change in the spray reach distance is effectively achieved by forming the auxiliary combustion chamber in a so-called bell shape and disposing the fuel injection valve in the dome portion.

【0012】[0012]

【実施例】以下本発明の実施例を図1ないし図9につい
て具体的に説明する。先ず、図1及び図2に示した要部
断面図において、符号10はディーゼルエンジンのクラ
ンクケース12に形成されたシリンダ14内に摺動自在
に嵌装されたピストンであって、同ピストン10の頂部
に主燃焼室16が凹設されている。クランクケース12
に装架されたシリンダヘッド18内に外形が円筒状をな
す副室部材20が、その軸線O−O(図の紙面に直角方
向に延在する)の周りに自在に回転し得るように配置さ
れている。
Embodiments of the present invention will be specifically described below with reference to FIGS. 1 to 9. First, in the cross-sectional views of the main parts shown in FIGS. 1 and 2, reference numeral 10 is a piston slidably fitted in a cylinder 14 formed in a crankcase 12 of a diesel engine. The main combustion chamber 16 is recessed at the top. Crankcase 12
A sub-chamber member 20 having a cylindrical outer shape is arranged in a cylinder head 18 mounted on the vehicle so that the sub-chamber member 20 can freely rotate around its axis OO (extending in a direction perpendicular to the plane of the drawing). Has been done.

【0013】副室部材20の内部に、所謂釣鐘形をなす
副燃焼室22が形成され、同副燃焼室22は、上記回転
軸線O−Oに直交する軸線O−O(図1参照)を有
する回転体であって、上方の半球形をなすドーム部22
aと、同ドーム部22aの下方に接続された円筒部22
bと、同円筒部22bの下方に接続された高さが低い截
頭円錐部22cとから形成されている。また、上記ドー
ム部22aの頂部付近の副室部材周壁に透孔24が設け
られ、同透孔24に隣接するシリンダヘッド18内に、
自体公知の燃料噴射弁26が、上記軸線O−Oに対
し傾斜して配設され、同噴射弁26の噴口部は透孔24
の外側入口に臨んで配置されている。さらに、上記副燃
焼室22の截頭円錐部の底部における副室部材20の周
壁には、上記軸線O−Oに対し傾斜した噴孔28が
設けられ、同噴孔28は、上記ピストン10が図示の上
死点付近に位置しているとき、シリンダヘッド18の主
燃焼室16に対向する下端部分に設けられた開口30を
介して、同主燃焼室16に連通する。
A so-called bell-shaped auxiliary combustion chamber 22 is formed inside the auxiliary chamber member 20, and the auxiliary combustion chamber 22 has an axis O 1 -O 1 (see FIG. 1) orthogonal to the rotation axis OO. ), Which has a hemispherical upper dome portion 22
a and a cylindrical portion 22 connected below the dome portion 22a
b, and a frustoconical portion 22c having a low height connected to the lower side of the cylindrical portion 22b. Further, a through hole 24 is provided in the peripheral wall of the sub chamber member near the top of the dome portion 22a, and in the cylinder head 18 adjacent to the through hole 24,
A fuel injection valve 26 known per se is arranged so as to be inclined with respect to the axis O 1 -O 1 , and the injection port portion of the injection valve 26 has a through hole 24.
It is located facing the outside entrance of the. Furthermore, an injection hole 28 that is inclined with respect to the axis O 1 -O 1 is provided on the peripheral wall of the auxiliary chamber member 20 at the bottom of the frustoconical portion of the auxiliary combustion chamber 22, and the injection hole 28 is the piston hole. When 10 is located near the top dead center in the figure, it communicates with the main combustion chamber 16 via an opening 30 provided in the lower end portion of the cylinder head 18 facing the main combustion chamber 16.

【0014】図1は、エンジンが高速度で回転している
状態を示し、図2はエンジンが低速度で回転している状
態を示している。図1の高回転時は、シリンダ軸線に対
し直交する平面、換言すればピストン10の頂面に対し
て、副室部材20の噴孔28の中心線がなす角度はα
であって、同噴孔28はピストン頂面の主燃焼室16の
半径方向外方、即ちシリンダ中心から遠い部分を指向し
ている。またこのとき、図3の底面図に示されているよ
うに、噴孔28(この実施例では、長円状に形成されて
いる)と、シリンダヘッド18の開口30とが干渉せ
ず、噴孔28の全断面積が副燃焼室22から主燃焼室1
6に向って流れる燃焼ガスの通路を形成している。さら
に、燃料噴射弁26から噴射された燃料噴霧が副燃焼室
22の内壁面に到達するまでの噴霧到達距離は、図示の
ようにLである。
FIG. 1 shows a state where the engine is rotating at a high speed, and FIG. 2 shows a state where the engine is rotating at a low speed. At the time of high rotation of FIG. 1, the angle formed by the center line of the injection hole 28 of the sub chamber member 20 with respect to the plane orthogonal to the cylinder axis, in other words, the top surface of the piston 10 is α 0.
That is, the injection hole 28 is directed to the piston top surface radially outward of the main combustion chamber 16, that is, a portion far from the center of the cylinder. Further, at this time, as shown in the bottom view of FIG. 3, the injection hole 28 (which is formed in an oval shape in this embodiment) and the opening 30 of the cylinder head 18 do not interfere with each other and the injection is performed. The total cross-sectional area of the holes 28 is from the auxiliary combustion chamber 22 to the main combustion chamber 1
A passage for combustion gas flowing toward 6 is formed. Further, the spray arrival distance until the fuel spray injected from the fuel injection valve 26 reaches the inner wall surface of the auxiliary combustion chamber 22 is L 0 as illustrated.

【0015】一方、副室部材20を、図1の状態からそ
の軸線O−Oの周りに時計方向に角度θだけ廻動させ
た低回転時は、図2に示されているように、噴孔28の
中心線とピストン頂面とのなす角度がαとなって、図
1の高回転時より減少し、噴孔28は主燃焼室16の半
径方向内方、即ちシリンダ中心寄りの部分を指向する。
このとき、シリンダヘッド18の開口30の端縁30′
が、図4の底面図に良く示されているように、噴孔28
の出口の開口と干渉するので、副燃焼室22から主燃焼
室16に流れる燃焼ガスの通路面積は、副室部材20の
回転角θに略比例的に減少することとなり、上記噴孔
28と開口30とによって、副室部材20の回転角θ
に応じ通路面積が変化する可変オリフィスが形成される
こととなる。またこのとき、燃料噴射弁26から噴射さ
れた燃料噴霧が副燃焼室22の内壁面に到達するまでの
噴霧到達距離は、図2に示されているようにLとな
り、図1のLより増大する。
Meanwhile, the auxiliary combustion chamber member 20, when the low rotation is Mawarido clockwise by an angle theta b around its axis O-O from the state of FIG. 1, as shown in FIG. 2, The angle formed by the center line of the injection hole 28 and the piston top surface becomes α 1 , which is smaller than that at the time of high rotation in FIG. 1, and the injection hole 28 is located radially inward of the main combustion chamber 16, that is, near the cylinder center. Direct the part.
At this time, the edge 30 ′ of the opening 30 of the cylinder head 18
However, as well shown in the bottom view of FIG.
Since it interferes with the opening of the outlet of the sub-combustion chamber 22, the passage area of the combustion gas flowing from the sub-combustion chamber 22 to the main combustion chamber 16 is reduced substantially in proportion to the rotation angle θ b of the sub-chamber member 20. And the opening 30 allow the rotation angle θ b of the sub-chamber member 20.
A variable orifice whose passage area changes in accordance with the above is formed. At this time, the spray reach distance until the fuel spray injected from the fuel injection valve 26 reaches the inner wall surface of the auxiliary combustion chamber 22 is L 1 as shown in FIG. 2, and L 0 of FIG. Increase more.

【0016】エンジンの高回転時は、吸気量が多く燃料
噴射弁26から噴射される燃料の量も多いので、副室部
材20内の副燃焼室22の形状及び容積、噴孔28の断
面積及び傾斜角α等は、高回転状態で良好な燃焼が行
なわれ、所望の出力、燃費及び排出ガス性能が得られる
ように調定される。しかし、図1の高回転状態に調定し
たままでは、低回転時、噴射弁26から噴射される燃料
量が少なく、副燃焼室22内で発生する燃焼ガス(勿
論、主燃焼室16で燃焼されるべき未燃燃料噴霧を含
む)の渦流の速度が相対的に小さく、この小さい速度の
燃焼ガス流が広い断面積の噴孔28から大きい傾斜角α
で主燃焼室16の半径方向外方部分に流入することと
なるので、シリンダ14内での拡散燃焼が不十分にな
り、燃焼ガス流入部分周辺の狭い範囲で局部的に酸素不
足の状態で燃焼が行なわれるため、排出ガス性能(特に
HC,CO及びスモーク)が悪化する。また、低温始動
時には、副燃焼室22内の噴霧到達距離Lが小さいた
め、噴霧が低温の副燃焼室壁面に付着し、白煙が増大す
る不具合が発生する。
At high engine speed, the intake amount is large and the amount of fuel injected from the fuel injection valve 26 is also large. Therefore, the shape and volume of the auxiliary combustion chamber 22 in the auxiliary chamber member 20 and the sectional area of the injection hole 28 are large. The inclination angle α 0 and the like are adjusted so that good combustion is performed in a high rotation state and desired output, fuel consumption, and exhaust gas performance are obtained. However, if the high speed state of FIG. 1 is maintained, the amount of fuel injected from the injection valve 26 is small at low speed, and the combustion gas generated in the auxiliary combustion chamber 22 (of course, the combustion gas in the main combustion chamber 16 is burned). (Including the unburned fuel spray to be sprayed) has a relatively small velocity, and the combustion gas flow having a low velocity has a large inclination angle α from the injection hole 28 having a wide cross-sectional area.
At 0 , the gas flows into the radially outer portion of the main combustion chamber 16, so that the diffusion combustion in the cylinder 14 becomes insufficient, and oxygen is locally insufficient in a narrow range around the combustion gas inflow portion. Exhaust gas performance (particularly HC, CO and smoke) deteriorates due to combustion. Further, at the time of low temperature starting, since the spray reaching distance L 0 in the sub combustion chamber 22 is small, the spray adheres to the wall surface of the sub combustion chamber at low temperature, which causes a problem that white smoke increases.

【0017】しかしながら、図2に示されているよう
に、副室部材20をその軸線O−Oの周りに廻動させる
ことによって、先づ、噴孔28と開口30との協作動に
より燃焼ガス通路の断面積が縮少されるため、副燃焼室
22から主燃焼室16に流入する燃焼ガスの速度が増大
され、またこの際に、図3及び図4から明らかなよう
に、噴流の中心線は実質的に同一で主燃焼室16に対し
偏って流入することがなく、さらに、噴孔28のピスト
ン頂面に対する傾斜角度αがαより十分小さくなる
ので、シリンダ14内における燃焼ガス噴流の拡散範囲
が広くなり、十分な酸素が供給され得る状態で効果的な
拡散燃焼が行なわれる。この結果、低回転時の排出ガス
性能(特にHC,CO及びスモークが低減)が著しく改
善される。また、低温始動時には、副燃焼室22内にお
ける噴霧到達距離の増大(L>L)によって、燃焼
室壁面に付着する燃料噴霧の量が減少し、白煙の発生が
効果的に低減される利点がある。
However, as shown in FIG. 2, by rotating the sub-chamber member 20 around its axis O--O, the combustion gas is first cooperated with the injection hole 28 and the opening 30. Since the cross-sectional area of the passage is reduced, the velocity of the combustion gas flowing from the auxiliary combustion chamber 22 into the main combustion chamber 16 is increased, and at this time, as is clear from FIGS. The lines are substantially the same, and do not flow into the main combustion chamber 16 in a biased manner. Further, since the inclination angle α 1 of the injection hole 28 with respect to the piston top surface is sufficiently smaller than α 0 , the combustion gas in the cylinder 14 is The diffusion range of the jet flow is widened, and effective diffusion combustion is performed in a state where sufficient oxygen can be supplied. As a result, the exhaust gas performance at low rotation speed (in particular, HC, CO and smoke are reduced) is significantly improved. In addition, at the time of low temperature startup, the amount of fuel spray adhering to the wall surface of the combustion chamber decreases due to the increase of the spray reach distance (L 1 > L 0 ) in the auxiliary combustion chamber 22, and the generation of white smoke is effectively reduced. There is an advantage.

【0018】次に、図5及び図6は、多気筒ディーゼル
エンジンの複数のシリンダ14の副室部材20を上記軸
線O−Oの周りに廻動させる駆動装置の一例を示したも
のである。図中符号32は、複数シリンダの副室部材2
0を連結する駆動ロッド、34は同駆動ロッド32の一
端に固着された被動歯車、36は駆動歯車38を介して
上記被動歯車34を駆動するステッピングモータ等のア
クチュエータ、40はエンジンの冷却水温Tを検知す
る温度センサ42の出力信号及びエンジンのクランク軸
回転数Nを検知する回転数センサ44の出力信号を受
けて上記アクチュエータ36に駆動出力を提供するコン
トロールユニット又は制御装置である。なお、図6にお
いて、符号46は吸気ポートのシリンダ側開口端を、又
48は排気ポートのシリンダ側開口端を概念的に示して
いる。
Next, FIGS. 5 and 6 show an example of a drive device for rotating the sub-chamber members 20 of the plurality of cylinders 14 of the multi-cylinder diesel engine around the axis O--O. Reference numeral 32 in the drawing denotes a sub-chamber member 2 having a plurality of cylinders.
0 is a driving rod, 34 is a driven gear fixed to one end of the driving rod 32, 36 is an actuator such as a stepping motor that drives the driven gear 34 via a driving gear 38, and 40 is a cooling water temperature T of the engine. It is a control unit or a control device which receives the output signal of the temperature sensor 42 for detecting w and the output signal of the rotation speed sensor 44 for detecting the crankshaft rotation speed N e of the engine and provides a drive output to the actuator 36. In FIG. 6, reference numeral 46 conceptually indicates the cylinder-side opening end of the intake port, and reference numeral 48 conceptually indicates the cylinder-side opening end of the exhaust port.

【0019】上記副室部材20は、勿論、シリンダヘッ
ド18内の収納凹部、例えば前記図10に示されている
と略同様な上下に2分割されたシート部材によって形成
される円筒状の収納凹部に収容され、また副室部材20
相互間の駆動ロッド32の上方部分は、図5に2点鎖線
で示されているように、シリンダヘッド18の本体とは
別個に作られた適宜の填隙部材46によって塞がれるこ
とが好ましい。また、他の方法として、複数の副室部材
20を填隙部材と一緒に円柱状の部材として一体的に鋳
込み、この円柱部材をシリンダヘッド18に予め準備さ
れた収納凹部内に挿入するようにしても良く、この場合
は、円柱状部材の一端に、上記被動歯車34が装着され
る。
The sub-chamber member 20 is, of course, a storage recess in the cylinder head 18, for example, a cylindrical storage recess formed by a vertically divided sheet member similar to that shown in FIG. And the sub chamber member 20
The upper portion of the drive rod 32 between them is preferably closed by a suitable gap member 46 made separately from the body of the cylinder head 18, as shown by the chain double-dashed line in FIG. . As another method, the plurality of sub-chamber members 20 are integrally cast together with the gap filling member as a columnar member, and the columnar member is inserted into the accommodating recess previously prepared in the cylinder head 18. In this case, the driven gear 34 is mounted on one end of the cylindrical member.

【0020】上記コントロールユニット又は制御装置4
0の作動態様の一例が図9のフローチャートに示されて
いる。プログラムがスタートし、ステップSで副室部
材20は回転角θ=0即ち図1の高回転状態に保持さ
れている。ステップSでエンジンの冷却水温Tが読
み込まれ、ステップSでエンジンの冷却水温Tが設
定温度T(例えば暖機完了状態を示す75℃)と比較
される。もし、冷却水温Tが設定温度より低いとき
は、プログラムはSに進んで、アクチュエータ36に
駆動出力が供給され、駆動歯車38及び被動歯車34を
介して駆動軸32が回転角θだけ図2において時計方
向に廻動される。この実施例では、回転角θは冷却水
温Tの逆比例的な関数として定められ、冷却水温T
が低いときは大きく、冷却水温Tが設定温度Tに近
いときは小さくなるように設定されている。
The control unit or control device 4
An example of the operation mode of 0 is shown in the flowchart of FIG. The program starts, and in step S 0 , the sub chamber member 20 is held at the rotation angle θ b = 0, that is, in the high rotation state of FIG. In step S 1 , the engine cooling water temperature T w is read, and in step S 2 , the engine cooling water temperature T w is compared with the set temperature T 1 (for example, 75 ° C. indicating a warm-up completion state). If the cooling water temperature T w is lower than the set temperature, the program proceeds to S 3 , the drive output is supplied to the actuator 36, and the drive shaft 32 is rotated by the rotation angle θ b via the drive gear 38 and the driven gear 34. It is rotated clockwise in FIG. In this embodiment, the rotation angle theta b is defined as an inverse proportional function of the coolant temperature T w, the cooling water temperature T w
Is set to be low when is low, and is set to be low when the cooling water temperature T w is close to the set temperature T 1 .

【0021】次に、ステップSにおいて、冷却水温T
が設定温度T以上のときは、回転数センサ44の出
力信号として読み込まれたエンジン回転数N(ステッ
プS)が設定回転数Nと比較される。(ステップS
)もし、エンジン回転数Nが設定回転数Nより低
いときは、ステップはSに進み、アクチュエータ36
に駆動出力が供給されて駆動軸32が回転角θだけ、
図2において時計方向に廻動される。この実施例では、
回転角θは、エンジン回転数の逆比例的な関数として
定められ、回転数Nが小さいときは回転角θが大き
く、回転数Nが設定回転数に近づくにつれ小さくなる
ように設定されている。もし、ステップSにおいて、
エンジン回転数Nが設定回転数以上のときは、プログ
ラムはSにリターンし、またステップS及びS
夫々ステップSにリターンする。上記コントロールユ
ニット又は制御装置40の作動により、図1及び図2に
関し説明した作用及び効果又は利点が得られることは、
明らかである。なお、上記フローチャートにおいて、ス
テップS及びステップSを比例的制御とせず、或る
一定の回転角θとして、高回転時のθ=0と、ステ
ップS及びSにおけるθ=一定角の2段階制御と
することもでき、上記と略同様の効果又は利点が得られ
る。
Next, in step S 2 , the cooling water temperature T
When w is equal to or higher than the set temperature T 1, the engine speed N e (step S 4 ) read as the output signal of the speed sensor 44 is compared with the set speed N 1 . (Step S
5 ) If the engine speed N e is lower than the set speed N 1 , the step proceeds to S 6 and the actuator 36
The drive output is supplied to the drive shaft 32 and the drive shaft 32 rotates by the rotation angle θ b ,
It is rotated clockwise in FIG. In this example,
Rotation angle theta b is defined as the inverse proportional function of the engine speed, when the rotation speed N e is small large rotation angle theta b is set to be smaller as the speed N e approaches the set rotational speed Has been done. If in step S 5 ,
When the engine speed N e is equal to or higher than the set speed, the program returns to S 0 , and steps S 3 and S 6 respectively return to step S 1 . The operation and effects or advantages described with reference to FIGS. 1 and 2 can be obtained by the operation of the control unit or the control device 40.
it is obvious. In the above flowchart, without proportional control steps S 3 and S S 6, as a certain rotation angle theta 0, and theta b = 0 at the time of high rotation, theta in steps S 3 and S 6 b = A two-step control with a constant angle can also be used, and substantially the same effect or advantage as described above can be obtained.

【0022】次に、図7及び図8は、多気筒エンジンの
複数のシリンダの中心線を含むエンジン中心面A−Aに
対して、副室部材20の軸線O−Oが平行でなく、傾斜
している場合の副室部材駆動装置の一例を示したもので
ある。この構成では、複数のシリンダ14(図では、1
個のみが示され他は省略されている)の副室部材20の
外周面から、その回転軸線O−Oを通りエンジン中心面
A−Aに対し平行な軸線を有するピン50を半径方向外
向きに突設し、同ピン50の先端部分を、駆動ロッド5
2に設けた斜溝54内に摺動自在に嵌装したものであ
る。同駆動ロッド54の一端にはラック56が設けら
れ、同ラック56にステッピングモータ等からなるアク
チュエータ58によって駆動されるピニオン60が噛合
している。
Next, in FIGS. 7 and 8, the axis O--O of the sub chamber member 20 is not parallel to the engine center plane A--A including the center lines of the plurality of cylinders of the multi-cylinder engine, and is inclined. It is an example of a sub-chamber member drive device in the case of. In this configuration, a plurality of cylinders 14 (in the figure, 1
From the outer peripheral surface of the sub-chamber member 20 (only one of which is shown and the others are omitted) is radially outwardly directed to the pin 50 having an axis passing through the rotation axis O-O and parallel to the engine center plane A-A. Projecting on the drive rod 5
It is slidably fitted in the slanted groove 54 provided in 2. A rack 56 is provided at one end of the drive rod 54, and a pinion 60 driven by an actuator 58 such as a stepping motor is meshed with the rack 56.

【0023】上記アクチュエータ58を、図7において
反時計方向に廻動させて、駆動ロッド52を図示位置か
ら右動させることにより、ピン50と斜溝54との協作
動に基づき副室部材20を軸線O−Oの周りに回転させ
ることができる。この際のアクチュエータ58の作動態
様は、上記図9のフローチャートに示したとおりで良
く、この構成によって、上述した効果及び利点が得られ
ることは明らかである。なお、駆動ロッド52には、そ
の円滑な摺動を許容する軸受が必要であり、シリンダヘ
ッド18内には、ピン50の廻動を許容する溝又は切欠
が当然必要であるが、図示は省略されている。)
The actuator 58 is rotated counterclockwise in FIG. 7 to move the drive rod 52 rightward from the position shown in the drawing, whereby the sub chamber member 20 is moved by the cooperative operation of the pin 50 and the inclined groove 54. It can be rotated about the axis O-O. At this time, the operation mode of the actuator 58 may be as shown in the flowchart of FIG. 9 above, and it is clear that the above-mentioned effects and advantages can be obtained by this configuration. It should be noted that the drive rod 52 needs a bearing that allows its smooth sliding, and the cylinder head 18 naturally needs a groove or notch that allows the pin 50 to rotate, but it is not shown. Has been done. )

【0024】なお、上記実施例では、副室部材20が円
筒状をなす場合について説明したが、シリンダ軸線に略
直交する平面内に含まれる軸線O−Oの周りに回転する
ことができる回転体、例えばビヤ樽型、鼓型等の形状と
することもできる。また、副室部材20内に形成される
副燃焼室22は、例示した釣鐘形燃焼室が最も好ましい
が、例えば球形でも良く、球形の場合には、燃焼室20
を自身の軸線O−Oの周りに廻動させることによって、
噴霧到達距離を変化させることができないので、釣鐘形
の場合ほど低温始動時の白煙低減の効果は得られない
が、低回転時の排出ガス性能及び燃費向上の効果は略同
等に得られる。さらに、副室部材20は、その全体をセ
ラミックス材料で作って熱効率の向上を図っても良く、
また通常の耐熱合金製としても良い。
In the above embodiment, the case where the sub-chamber member 20 has a cylindrical shape has been described. However, a rotating body that can rotate about an axis O--O included in a plane substantially orthogonal to the cylinder axis. For example, the shape may be a barrel shape, a drum shape, or the like. The auxiliary combustion chamber 22 formed in the auxiliary chamber member 20 is most preferably the bell-shaped combustion chamber illustrated above, but may be, for example, a spherical shape. In the case of a spherical shape, the combustion chamber 20 may be used.
By rotating the lens around its own axis OO,
Since the spray reaching distance cannot be changed, the white smoke reduction effect at the time of cold start cannot be obtained as in the case of the bell shape, but the exhaust gas performance and the fuel consumption improvement effect at the low rotation speed can be obtained almost at the same level. Further, the sub chamber member 20 may be made of a ceramic material as a whole to improve the thermal efficiency,
It may also be made of a normal heat-resistant alloy.

【0025】[0025]

【発明の効果】叙上のように、本発明に係る副室式エン
ジンは、エンジンのシリンダヘッド内に、シリンダ軸線
に略直交する平面内に含まれる軸線を中心として廻動し
得るように配設された副室部材、同副室部材の内部に形
成され噴孔を介してピストン頂部の主燃焼室に連通する
副燃焼室、上記シリンダヘッドに装着され、上記副室部
材に設けられた透孔を介して上記副燃焼室内に燃料を噴
射する燃料噴射弁、上記副室部材をその軸線の周りに廻
動させて上記噴孔の主燃焼室に対する指向角度を変更す
る駆動装置、及びエンジンの運転状態に応じて上記駆動
装置を制御するコントロールユニットを具備したことを
特徴とし、エンジンの略全運転領域において優れた燃焼
を確保することができ、特に低回転時の排出ガス性能及
び燃費を著しく向上し、かつ低温始動時の白煙低減を効
果的に達成し得る利点がある。
As described above, the sub-chamber engine according to the present invention is arranged in the cylinder head of the engine so as to be rotatable about an axis contained in a plane substantially orthogonal to the cylinder axis. A sub-chamber member provided therein, a sub-combustion chamber formed inside the sub-chamber member and communicating with a main combustion chamber at the top of the piston through an injection hole, and a transparent chamber provided in the sub-chamber member mounted on the cylinder head. A fuel injection valve for injecting fuel into the auxiliary combustion chamber through a hole, a drive device for rotating the auxiliary chamber member around its axis to change the directivity angle of the injection hole with respect to the main combustion chamber, and the engine It is characterized by being equipped with a control unit that controls the above-mentioned drive device according to the operating state, and can ensure excellent combustion in almost the entire operating region of the engine. Direction And, and there is an advantage capable of achieving the white smoke reduction of cold start effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例において高回転時を示す要部
断面図である。
FIG. 1 is a sectional view of an essential part showing a state of high rotation in an embodiment of the present invention.

【図2】図1の装置の低回転時を示す要部断面図であ
る。
FIG. 2 is a cross-sectional view of an essential part showing a low rotation speed of the device of FIG.

【図3】図1の要部底面図である。FIG. 3 is a bottom view of a main part of FIG. 1;

【図4】図2の要部底面図である。FIG. 4 is a bottom view of a main part of FIG.

【図5】多気筒エンジンにおける複数の副室部材の駆動
装置を示した概略構成図である。
FIG. 5 is a schematic configuration diagram showing a drive device for a plurality of sub chamber members in a multi-cylinder engine.

【図6】図5の駆動ロッド32の中心線を含みシリンダ
軸線に直角な平面に沿って視た概略断面図である。
6 is a schematic cross-sectional view taken along a plane including the center line of the drive rod 32 of FIG. 5 and perpendicular to the cylinder axis.

【図7】多気筒エンジンにおける複数の副室部材の他の
駆動装置を示した概略構成図である。
FIG. 7 is a schematic configuration diagram showing another drive device for a plurality of sub chamber members in a multi-cylinder engine.

【図8】図7の矢印VIII方向から視た部分的正面図
である。
FIG. 8 is a partial front view seen from the direction of arrow VIII in FIG.

【図9】図5におけるコントロールユニット40の作動
態様を示したフローチャートである。
9 is a flowchart showing an operation mode of the control unit 40 in FIG.

【図10】従来の副室式エンジンの要部断面図である。FIG. 10 is a sectional view of a main part of a conventional sub-chamber engine.

【図11】図10に示したエンジンの高回転時における
要部底面図である。
11 is a bottom view of an essential part of the engine shown in FIG. 10 when the engine rotates at high speed.

【図12】図10に示したエンジンの低回転時における
要部底面図である。
FIG. 12 is a bottom view of a main part when the engine shown in FIG. 10 is operating at low speed.

【符号の説明】[Explanation of symbols]

10…ピストン、12…クランクケース、14…シリン
ダ、16…主燃焼室、18…シリンダヘッド、20…副
室部材、22…副燃焼室、24…透孔、26…燃料噴射
弁、28…噴孔、30…開口、32及び52…駆動ロッ
ド、36…アクチュエータ、40…コントロールユニッ
ト(制御装置)。
10 ... Piston, 12 ... Crank case, 14 ... Cylinder, 16 ... Main combustion chamber, 18 ... Cylinder head, 20 ... Sub chamber member, 22 ... Sub combustion chamber, 24 ... Through hole, 26 ... Fuel injection valve, 28 ... Injection Hole, 30 ... Opening, 32 and 52 ... Driving rod, 36 ... Actuator, 40 ... Control unit (control device).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 エンジンのシリンダヘッド内に、シリン
ダ軸線に略直交する平面内に含まれる軸線を中心として
廻動し得るように配設された副室部材、同副室部材の内
部に形成され噴孔を介してピストン頂部の主燃焼室に連
通する副燃焼室、上記シリンダヘッドに装着され、上記
副室部材に設けられた透孔を介して上記副燃焼室内に燃
料を噴射する燃料噴射弁、上記副室部材をその軸線の周
りに廻動させて上記噴孔の主燃焼室に対する指向角度を
変更する駆動装置、及びエンジンの運転状態に応じて上
記駆動装置を制御するコントロールユニットを具備した
ことを特徴とする副室式エンジン。
1. A sub-chamber member disposed inside a cylinder head of an engine so as to be rotatable about an axis included in a plane substantially orthogonal to the cylinder axis, and inside the sub-chamber member. A sub-combustion chamber that communicates with the main combustion chamber at the top of the piston through injection holes, a fuel injection valve that is attached to the cylinder head and injects fuel into the sub-combustion chamber through a through hole provided in the sub-chamber member. A drive unit that rotates the sub chamber member around its axis to change the directivity angle of the injection hole with respect to the main combustion chamber; and a control unit that controls the drive unit according to the operating state of the engine. The sub-chamber engine, which is characterized by that.
【請求項2】 上記シリンダヘッドに、上記副室部材を
その軸線の周りに回転し得るように収納する収納凹部
と、同収納凹部の上記主燃焼室に隣接する部分に形成さ
れ、上記噴孔の主燃焼室側の開口と協働して可変面積の
オリフィスを形成する開口とが設けられたことを特徴と
する請求項1記載の副室式エンジン。
2. An injection hole formed in the cylinder head, the accommodating recess for accommodating the auxiliary chamber member so as to be rotatable about its axis, and the part of the accommodating recess adjacent to the main combustion chamber. 2. The sub-chamber engine according to claim 1, further comprising an opening that forms a variable area orifice in cooperation with the main combustion chamber side opening of the sub chamber engine.
【請求項3】 上記コントロールユニットは、エンジン
の冷却水温が設定温度より低いエンジン運転状態におい
て、上記噴孔が主燃焼室のシリンダ中心寄りの部分を指
向するように、上記駆動装置を制御することを特徴とす
る請求項1又は請求項2記載の副室式エンジン。
3. The control unit controls the drive device so that the injection hole is directed toward a portion of the main combustion chamber near the center of the cylinder in an engine operating state in which the temperature of the cooling water of the engine is lower than a set temperature. The subchamber engine according to claim 1 or 2.
【請求項4】 上記コントロールユニットは、エンジン
の冷却水温が上記設定温度以上のエンジン運転状態にお
いて、エンジンの回転数が設定回転数より低いときに、
上記噴孔が主燃焼室のシリンダ中心寄りの部分を指向
し、かつエンジン回転数が上記設定回転数以上の状態で
は、上記噴孔が主燃焼室のシリンダ中心から遠い部分を
指向するように、上記駆動装置を制御することを特徴と
する請求項1又は請求項2記載の副室式エンジン。
4. The control unit, when the engine cooling speed is lower than the set speed in an engine operating state in which the engine coolant temperature is equal to or higher than the set temperature.
In the state where the injection hole is directed toward the cylinder center of the main combustion chamber, and the engine speed is equal to or higher than the set speed, the injection hole is directed toward a portion far from the cylinder center of the main combustion chamber, The subchamber engine according to claim 1 or 2, wherein the drive device is controlled.
【請求項5】 上記副室部材内の副燃焼室が、上記燃料
噴射弁から燃料が噴射される上記透孔に連通するドーム
部を具えた釣鐘形の形状を有することを特徴とする請求
項1又は請求項2記載の副室式エンジン。
5. The auxiliary combustion chamber in the auxiliary chamber member has a bell shape having a dome portion communicating with the through hole for injecting fuel from the fuel injection valve. The subchamber engine according to claim 1 or claim 2.
【請求項6】 上記燃料噴射弁が、上記釣鐘形副燃焼室
の軸線に対し傾斜して配設され、上記副室部材がその軸
線の周りに廻動することにより、上記燃料噴射弁の先端
と副燃焼室壁面との間の距離が変化するように構成され
たことを特徴とする請求項5記載の副室式エンジン。
6. The tip end of the fuel injection valve, wherein the fuel injection valve is arranged to be inclined with respect to the axis of the bell-shaped auxiliary combustion chamber, and the auxiliary chamber member is rotated around the axis. The auxiliary chamber engine according to claim 5, wherein the distance between the auxiliary combustion chamber wall surface and the auxiliary combustion chamber wall surface is changed.
JP7153775A 1995-05-17 1995-05-17 Indirect injection engine Pending JPH08312350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7153775A JPH08312350A (en) 1995-05-17 1995-05-17 Indirect injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7153775A JPH08312350A (en) 1995-05-17 1995-05-17 Indirect injection engine

Publications (1)

Publication Number Publication Date
JPH08312350A true JPH08312350A (en) 1996-11-26

Family

ID=15569875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7153775A Pending JPH08312350A (en) 1995-05-17 1995-05-17 Indirect injection engine

Country Status (1)

Country Link
JP (1) JPH08312350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293337B1 (en) * 2021-04-16 2022-04-05 Ford Global Technologies, Llc Systems and methods for adjustable pre-chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293337B1 (en) * 2021-04-16 2022-04-05 Ford Global Technologies, Llc Systems and methods for adjustable pre-chamber

Similar Documents

Publication Publication Date Title
US6009849A (en) Direct fuel injection engine
US7856958B2 (en) Piston for internal combustion engine, and internal combustion engine using the piston
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
JP4054223B2 (en) In-cylinder injection engine and control method for in-cylinder injection engine
JPH08232742A (en) Operation control device for cylinder injection type two-cycle engine
JP4918910B2 (en) Internal combustion engine
JPH08312350A (en) Indirect injection engine
JPH10299539A (en) Cylinder injection type spark ignition engine
JP2007051549A (en) Fuel injection valve and direct injection engine provided with it
JP2009236057A (en) Fuel injection valve and internal combustion engine
JPH10196372A (en) Uniflow type scavenging device
JP3775038B2 (en) In-cylinder injection spark ignition internal combustion engine piston
JP3817910B2 (en) Piston for in-cylinder internal combustion engine
JPS61215422A (en) Multi-intake valve engine
JP2005325736A (en) Internal combustion engine
JP4123974B2 (en) Direct-injection spark ignition internal combustion engine
JPH06147022A (en) Cylinder injection type internal combustion engine
JP2524177Y2 (en) Fuel injection device for internal combustion engine
JP4045671B2 (en) Direct injection spark ignition internal combustion engine
US6082327A (en) Direct-injection spark-ignition internal-combustion engine
JP2006307691A (en) Cylinder injection internal combustion engine and its combustion method
JPH11218026A (en) Piston for cylinder injection type internal combustion engine
JPH0429054Y2 (en)
JPH0544501A (en) Internal combustion engine
JPH0979081A (en) Cylinder injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011002