JPH08311847A - Baffle pier with blade-like sill type semi-automatic sand flash and intake weir - Google Patents
Baffle pier with blade-like sill type semi-automatic sand flash and intake weirInfo
- Publication number
- JPH08311847A JPH08311847A JP15375895A JP15375895A JPH08311847A JP H08311847 A JPH08311847 A JP H08311847A JP 15375895 A JP15375895 A JP 15375895A JP 15375895 A JP15375895 A JP 15375895A JP H08311847 A JPH08311847 A JP H08311847A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- water
- weir
- sill
- sediment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Barrages (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明の半自動排砂取水堰は、流
れ込み式水力発電、農業用水路、工業用水、パイプライ
ン等の取水に用いられる取水堰である。The semi-automatic sand removal weir of the present invention is an intake weir used for flow-in type hydroelectric power generation, water intake for agriculture, industrial water, pipelines and the like.
【0002】[0002]
【従来の技術】従来の取水堰には堤体正面側方取水、堤
頂取水(チロル型)、堤体背面取水、堤体背面側方取
水、越流水付着取水、埋設型取水、可動ゲート取水等が
あるが、代表的な3例(図10,図11,図12参照)
をあげて箇条書に説明する。 (イ) 堤体正面側方取水(図10参照)は、これまで
に多く採用されている。河川流水の土砂運搬作用によっ
て、取水ダムの堤体正面には土砂が堆積する。したがっ
て、堆積土砂を排除するために、取水口の下流側に排砂
ゲートを設け、人力、電動機等によってゲートを開閉
し、堆積土砂を下流側に排出している。また、排砂ゲー
トは通常では1基であるために、長年のうちには堤体正
面のゲート部を除いて、土砂が堆積し貯水容量を減ら
す。このため、堤体正面の沈砂機能が減少し、取水口へ
の土砂流入が増加する。さらに、取水口から土砂が流入
するので、沈砂池を設けて導水路に土砂が入るのを防止
しているが、沈砂池には洪水時、大流量時に大量の土砂
流入があって、沈砂池の維持管理に大きな労力、及び費
用を必要としている。 (ロ) ゴム引布製起伏取水堰(可動ゲート型〜図12
参照)では、堤体正面の上流側に堆積する土砂を、河川
の大流量時にゴム引布製体内の空気を排出して、ゴム袋
を転倒し、流水と共に土砂を排除している。また、取水
口へ入る土砂は、堤体正面側方取水と同様であるが、堆
積土砂は全堤体長の範囲で排除される。したがって、堤
体正面上流部に貯水容量が確保され、沈砂池への土砂流
入は減少する。よって、沈砂池容量の縮小が可能であ
る。しかし、ゴム引袋の起伏に機械装置(空気圧縮機,
排出機等)が必要であり、その維持管理を要する。更
に、固定型取水堰に比較して高価である。 (ハ) 堤体背面側方取水堰(図11参照)は、農業用
水、流れ込み水力発電の渓流取水に用いられている。こ
の取水堰は、半自動排砂取水堰と考えられる。その機構
を(図7,図8,図9)を例にあげて述べる。小流量時
(図7)において、河川流水は取水ダム堤頂から射流と
なって減勢池水面へ衝突流入する。水たたき始りまでは
噴流となっているようであるが、水たたき路床面上で
は、路床に沿って流れる底流層を形成する。したがっ
て、流入土砂は底流層と一緒になって流下し、副ダム上
流部に溜る。ゆえに、減勢池は沈砂池の役割をするの
で、沈砂池の省略、縮小が可能である。中流量時(図
8)においては、減勢池水深と副ダムによって跳水が発
生する。その場合に、底流層はジェット流となるが、そ
の方向は定まらず動揺跳水となって、大きな波動が下流
に伝わる。更に、取水口からの取水量は、跳水の状態変
化によって取水量が変化する。また、流入土砂は底層ジ
ェット流によって拡散、混合されるから、減勢池の沈砂
機能は減少する。大流量時(図9)では、跳水が吹き飛
ばされて、減勢池の常流域はなくなり射流となる。した
がって、減勢池の堆積土砂は下流に押し流される。この
ことは、流水のポテンシャルエネルギーを活用した半自
動排砂と考えることができる。ただし、減勢池の水深は
取水口の下端より下がり、取水は不可能となる。2. Description of the Related Art Conventional intake weirs include water intakes on the front side of the dam body, water intakes on the top of the dam (Tirol type), water intakes on the back face of the dam body, lateral water intakes on the back face of the dam body, overwater intake, intakes, and movable gate intakes. , Etc., but there are three typical examples (see FIGS. 10, 11, and 12).
And explain in the bullet points. (B) Water intake on the front side of the embankment (see Fig. 10) has been adopted so far. Sediment is deposited on the front of the dam body of the intake dam by the sediment transport action of the river running water. Therefore, in order to remove the accumulated sediment, a sand discharge gate is provided on the downstream side of the intake, and the gate is opened and closed by human power, an electric motor or the like to discharge the accumulated sediment on the downstream side. Also, since there is usually only one sand discharge gate, over the years, except for the gate part in front of the bank, sediment will be accumulated and the water storage capacity will be reduced. As a result, the sedimentation function in front of the levee body decreases and the inflow of sediment into the intake increases. In addition, since sediment flows from the intake, a sedimentation basin is provided to prevent sediment from entering the headrace channel. It requires a great deal of labor and cost for maintenance. (B) Rubbing cloth undulating weir (movable gate type ~ Fig. 12
In reference), the sediment accumulated on the upstream side in front of the bank is discharged from the inside of the rubberized cloth body at the time of a large flow of the river, and the rubber bag is tumbled to remove the sediment along with the running water. The sediment entering the intake is the same as the intake on the front side of the bank, but the sediment is removed within the entire bank length. Therefore, the water storage capacity will be secured in the upstream part of the front of the dam body, and the inflow of sediment into the settling basin will be reduced. Therefore, it is possible to reduce the capacity of the sand basin. However, mechanical equipment (air compressor,
Ejector, etc.) is required and its maintenance is required. Furthermore, it is more expensive than the fixed intake weir. (C) The intake weir on the side of the back of the dam (see Fig. 11) is used for agricultural water and stream water intake for run-in hydropower generation. This intake weir is considered to be a semi-automatic sand removal intake weir. The mechanism will be described by taking (Fig. 7, Fig. 8, Fig. 9) as an example. When the flow rate is small (Fig. 7), the river running water becomes a jet stream from the top of the dam dam and collides into the surface of the seismic pond. It seems that the jet flows until the beginning of water tapping, but on the water tapping roadbed surface, a bottom flow layer that flows along the roadbed is formed. Therefore, the inflowing sediment flows down together with the underflow layer and collects in the upstream part of the sub dam. Therefore, the sedentary pond acts as a sand basin, and it is possible to omit or reduce the size of the basin. When the flow rate is medium (Fig. 8), jumping occurs due to the depth of the seismic pond and the secondary dam. In that case, the underflow layer becomes a jet flow, but its direction is not fixed, and it becomes swaying jump water, and large waves are transmitted to the downstream. Further, the amount of water taken from the water intake changes with the state of jumping. Moreover, since the inflowing sediment is diffused and mixed by the bottom jet flow, the sedimentation function of the sewer pond decreases. At the time of a large flow rate (Fig. 9), the jumping water is blown away and the normal flow area of the seismic pond disappears and becomes a jet stream. Therefore, the sediment in the sewer pond is washed away downstream. This can be considered as semi-automatic sand removal utilizing the potential energy of running water. However, the depth of the seismic pond is lower than the lower end of the intake, and water intake is impossible.
【0003】[0003]
【発明が解決しようとする課題】解決しようとする課題
を箇条書に述べる。 (イ) 取水ダム堤体正面での、堆積土砂の排砂管理を
なくすこと。 (ロ) 河川の大流量時でも取水可能とし、かつ、沈砂
池への土砂流入を減らすこと。 (ハ) 機械装置をなくし、維持管理を容易にするこ
と。 (ニ) 沈砂池の容量(規模)を縮小し、取水堰と沈砂
池とを含めての建設工事費を減らすこと。 以上の課題を解決し、総合的にコストを下げることので
きる取水堰を提供すること。[Problems to be Solved by the Invention] The problems to be solved are described in the items. (A) Eliminate the management of sediment discharge on the front of the intake dam bank. (B) It should be possible to take water even when the river has a large flow rate, and reduce the inflow of sediment into the sand basin. (C) Eliminating mechanical devices and facilitating maintenance. (D) Reducing the capacity (scale) of the sand basin and reducing the cost of construction work including the intake weir and the sand basin. To provide an intake weir that can solve the above-mentioned problems and reduce costs comprehensively.
【0004】[0004]
【課題を解決するための手段】翼形シル付きバッフルピ
ア式半自動排砂取水堰の構成を(図1,図2,図3)の
例をあげて説明する。 (イ) 水たたき3の上部に、流線形バッフルピア4を
設け、その頂部に翼形シル1を取り付け、水たたき3と
翼形シル1の間にスロット5を構成する。 (ロ) 水たたき3の下流部に、副ダム2を設置し、取
水に必要な水深を確保する。そして、副ダムの勾配はθ
=15°〜25°位の範囲で定め、水たたき3と副ダム
2のすりつけ部分は、スムースな曲率変化ですりつけ
る。さらに、副ダムの高さ(減勢池の最低水深)は、河
川の流況と沈砂能力、堆砂厚さ等を考慮して決める。 (ハ) 副ダム2の沈砂池7側に排砂ゲート8を設け
る。その機能は、少流量時における堆積土砂の排砂と、
減勢池水深の低下(取水停止)とである。 (ニ) 取水口6は、沈砂池7の側壁部に設ける。ま
た、取水口の下端は、小流量時の土砂堆積厚さと、取水
量とを考慮して定める。 (ホ) 越流頂10と減勢池12との落差は、水たたき
路床に沿って流れる底流層の流速と沈砂機能、及び洪水
時の越流頂、上流部での堰上げ背水を考慮して定める。 (ヘ) 減勢池12に流入する転石等を除くために、沈
砂池7の上流側に進入路14を設置する。 以上のごとく構成する半自動排砂取水堰を特徴とする。The construction of a baffle pier type semi-automatic sand removal weir with an airfoil sill will be described with reference to an example of (Fig. 1, Fig. 2 and Fig. 3). (A) A streamlined baffle pier 4 is provided on the top of the waterfall 3, and the airfoil sill 1 is attached to the top thereof to form a slot 5 between the waterfall 3 and the airfoil sill 1. (B) Install a sub dam 2 downstream of the water tap 3 to secure the water depth required for water intake. And the slope of the sub dam is θ
= 15 ° to 25 °, and the water spray 3 and the sub dam 2 are rubbed together with a smooth curvature change. In addition, the height of the secondary dam (minimum water depth of the seismic pond) is determined in consideration of the river flow conditions, sedimentation capacity, and sediment thickness. (C) A sand discharging gate 8 is provided on the side of the submerged dam 2 on the sand basin 7. Its function is to remove sedimentary sediment when the flow rate is low,
It is the decrease of the water depth of the seismic pond (suspension of water intake). (D) The intake 6 is provided on the side wall of the sand basin 7. In addition, the lower end of the intake port is determined in consideration of the sediment deposition thickness at a small flow rate and the intake amount. (E) The head between the overflow top 10 and the seismic pond 12 takes into account the flow velocity and sedimentation function of the underflow layer that flows along the floodbed subgrade, and the overflow top at the time of flood and the weir backwater at the upstream. To determine. (F) In order to remove boulders and the like flowing into the sedentary pond 12, an approach passage 14 is installed on the upstream side of the sand basin 7. It features a semi-automatic sand removal weir constructed as described above.
【0005】[0005]
【作用】次に本発明の半自動排砂取水堰の作用を(図
4,図5,図6)の例をあげて説明する。 (イ) 河川の小流量時(図4)において、堤頂を流下
する水は射流となって減勢池に入る。そのとき、土砂も
流入するが、水たたき路床に沿って流れる底流層にのっ
て副ダム上流部の水たたき上面に吹き寄せられて、そこ
に溜る。 (ロ) 中流量時(図5)の場合には、堤頂を落下する
水流は減勢池で跳水を生じる。その跳水は、フルード数
によって弱跳水から定常跳水と変化する。また、流入土
砂は翼形シルとバッフルピアの整流作用によって、スロ
ットを通り副ダム上流部に溜ったり、一部分の土砂は下
流に押し流される。 (ハ) 大流量時(図6)では、翼形シル付きバッフル
ピアの強制的な跳水によって、跳水の位置は固定され
る。そして、翼形シル上面の跳水内部には激しい渦動が
生じるが、翼形シルの整流作用効果で、水たたき路床底
流層との混合は抑制される。また、スロットを出る底流
層は、跳水による動水圧と翼形シル上流の水位増加によ
る静水圧とによって、ジェット流となり、副ダム勾配面
上を流れる。したがって、流入土砂、滞留土砂は減勢池
の外に吹き飛ばされ、排砂される。Next, the operation of the semi-automatic sand removal weir of the present invention will be described with reference to the examples of FIGS. 4, 5 and 6. (B) When the flow rate of the river is small (Fig. 4), the water flowing down the top of the bank becomes a jet stream and enters the seismic pond. At that time, the earth and sand also flow in, but they are blown to the upper surface of the water tap in the upstream part of the sub dam by the underflow layer that flows along the water tap roadbed, and accumulate there. (B) In the case of medium flow rate (Fig. 5), the water flow falling on the top of the dike causes a jump in the damming pond. The jump jump changes from weak jump to steady jump depending on the Froude number. In addition, the inflowing sediment will be collected in the upstream part of the sub dam through the slots and part of the sediment will be swept down by the flow rectifying action of the airfoil sill and the baffle pier. (C) At high flow rate (Fig. 6), the position of the jump is fixed by the forced jump of the baffle pier with airfoil sill. Then, a strong vortex occurs inside the jump water on the upper surface of the airfoil sill, but due to the rectifying action effect of the airfoil sill, the mixing with the waterfloor subgrade is suppressed. Further, the underflow layer exiting the slot becomes a jet flow due to the hydrodynamic pressure due to the hydraulic jump and the hydrostatic pressure due to the increase in the water level upstream of the airfoil sill, and flows on the sub dam slope surface. Therefore, the inflow sediment and accumulated sediment are blown out of the sewer pond and discharged.
【0006】[0006]
【実施例】本発明の実施方法と、その構造について(図
1,図2,図3)を例にあげて述べる。(図1)は本発
明の、翼形シル付きバッフルピア式半自動排砂取水堰の
縦断面図(図2のA〜A線矢視)、(図2)は平面図、
(図3)は斜視図である。 (イ) 堤体背面側方取水堰において、水たたき3の上
面に流線形バッフルピア4、翼形シル1を設け、水たた
き3と翼形シル1の間にスロット5を構成する。 (ロ) スロット5の流水方向断面積変化は、スロット
入口(上流)からスロット出口方向に漸縮したり、漸縮
から等断面積としたり、漸縮から等断面積〜漸拡とした
りする。 (ハ) 翼形シル1の厚さと、バッフルピアの大きさ、
間隔は、大流量時の跳水の位置と跳水高さ(取水量の確
保)、及びスロット5出口からジェット流による堆積土
砂排除能力を考慮して定める。また、小流量時〜中流量
時における沈砂能力、土砂排除機能も考慮する。 (ニ) 翼形シル1上面の突起(シル型)は、跳水の長
さと高さを調整する補助シルの役割をするが、必要のな
い場合には設けなくてもよい。 (ホ) (図1)の翼形シル1は、減勢池12の水深内
に設置しているが、河川の流況によっては、水位より上
側(空気中)に設けることもできる。 (ヘ) 流線形バッフルピア4は、減勢池に流入する土
砂を副ダム2の上流部にすべらかに導くことができるよ
うに、流線形状に造る。 (ト) 流線形バッフルピア4、翼形シル1の築造材料
は、鉄筋コンクリート、FRP、鋼材を単独または組合
せて用いる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of implementing the present invention and its structure will be described with reference to FIGS. 1, 2 and 3 by way of example. (FIG. 1) is a longitudinal sectional view of the baffle pier type semi-automatic sand removal weir with an airfoil sill (viewed from the line AA of FIG. 2), (FIG. 2) is a plan view,
(FIG. 3) is a perspective view. (A) At the rear side intake weir of the bank, a streamlined baffle pier 4 and an airfoil sill 1 are provided on the upper surface of the waterfall 3 to form a slot 5 between the waterfall 3 and the airfoil sill 1. (B) The change in the cross-sectional area of the slot 5 in the direction of flowing water is gradually reduced from the slot inlet (upstream) toward the slot outlet, changed from reduced to an equal sectional area, or reduced to an equal sectional area to gradually expand. (C) The thickness of the airfoil sill 1 and the size of the baffle pier,
The interval is determined in consideration of the position of the jumping water at a large flow rate, the jumping height (ensuring water intake), and the ability to remove accumulated sediment by jet flow from the outlet of the slot 5. In addition, the sedimentation capacity and sediment removal function at low to medium flow rates will also be considered. (D) The protrusion (sill type) on the upper surface of the wing-shaped sill 1 serves as an auxiliary sill for adjusting the length and height of the jumping water, but it may be omitted if unnecessary. (E) Although the airfoil sill 1 of (FIG. 1) is installed within the water depth of the seismic pond 12, it may be installed above the water level (in the air) depending on the flow condition of the river. (F) The streamlined baffle pier 4 is formed in a streamlined shape so that the sediment flowing into the seismic pond can be smoothly guided to the upstream portion of the sub dam 2. (G) As a building material for the streamlined baffle pier 4 and the airfoil sill 1, reinforced concrete, FRP, and steel materials are used alone or in combination.
【0007】[0007]
【発明の効果】本発明の半自動排砂取水堰の効果(図
4,図5,図6)を、堤体背面側方取水堰の流況概念図
(図7,図8,図9)と比較して説明する。 (まえがき)日本国内で消費されるエネルギーの約8割
は、国外から輸入される石油、石炭等に依存している。
水力発電は、純国産、かつ、再生可能エネルギーであ
り、また、環境負荷の少ないクリーンエネルギーであ
る。したがって、中小水力発電開発を積極的に進める必
要があるが、他電源に比較して経済性が劣り開発が遅れ
ている。流れ込み式水力発電において、発電原価の構成
割合の大きなものは土木工事費(取水堰,沈砂池,導水
路等)である。ゆえに、土木工事費のコスト低減は経済
性の向上に大きく貢献する。本発明の効果を箇条書に述
べる。 (イ) 河川の小流量時(図4)において、減勢池は沈
砂池の機能をする。堤頂を越流した水は、落差によって
加速され減勢池へ流入する。水流は、減勢池水面より速
い流速で水たたき路床に沿って流れる底流層となる。底
流層は、流入土砂とともに流下しスロット出口を通過す
ると、水脈の拡散によって減速される。したがって、土
砂は副ダムと水たたきの接続部に溜る。この機構は、堤
体背面側方取水堰(図7)と同様である。 (ロ) 中流量時(図5)において、本発明の翼形シル
付きバッフルピアは、動揺する底層ジェット流(図8参
照)を整流し、かつ、跳水位置の変動を押える役割をす
る。堤体背面側方取水堰(図8参照)の堤体越流水は、
河川流量の増加によって運動エネルギーを増し、減勢池
内で跳水を発生する。そのとき、流入ジェットが間けつ
的に水路床に沿って流れたり、跳水の表面に沿って流れ
たりして時間的に変動する。そのために、小流量時に堆
積している土砂をかく播し沈砂機能を減らす。したがっ
て、本発明の翼形シルを設けることによって、動揺する
底層ジェット流を整流し、減勢池の沈砂機能を確保す
る。さらに、スロット出口からのジェット流効果で、粒
径の小さな土砂を減勢池より押し流すことができる。こ
のことは、水流のポテンシャルエネルギーを活用する自
動排砂と考えることがでる。 (ハ) 河川の大流量時(図6参照)では、本発明の翼
形シル付きバッフルピアは、取水量を確保すると同時に
堆積土砂を減勢池の外に排除する。堤体背面側方取水堰
(図9参照)では、減勢池内の跳水は吹き飛ばされ、水
の流れは射流となる。したがって、堆積土砂は減勢池の
外に押し流される。ただし、減勢池の水深は低下し取水
は不可能となる。本発明の翼形シル付きバッフルピアを
設けると、強制的な跳水が発生する。したがって、跳水
の位置が固定すると同時に、減勢池の水深が確保され、
取水することができる。しかも、スロット出口から出る
ジェットの掃流作用によって、小流量時に堆積した土砂
を排除することができる。 (ニ) 上記の作用によって、沈砂池容量の縮小、また
河川の流況によっては、沈砂池を省略することができ
る。 以上の効果により、中小流れ込み式水力発電原価の低減
に、本発明は効果的である。The effect of the semi-automatic sand removal weir of the present invention (Figs. 4, 5, and 6) is shown in the flow diagram conceptual diagram (Figs. 7, 8, and 9) of the side dike backside weir. Description will be made in comparison. (Foreword) About 80% of the energy consumed in Japan depends on oil, coal, etc. imported from abroad.
Hydropower is a purely domestic, renewable energy and clean energy with a low environmental load. Therefore, it is necessary to actively promote small and medium-scale hydropower development, but the economy is inferior and development is delayed compared to other power sources. In run-of-river hydropower generation, the largest component of the cost of power generation is civil engineering costs (intake weir, sand basin, headrace, etc.). Therefore, the cost reduction of civil engineering works will greatly contribute to the improvement of economic efficiency. The effects of the present invention are described in the bullet points. (B) At the time of small river flow (Fig. 4), the damping pond functions as a sand basin. The water that overflows the top of the bank is accelerated by the head and flows into the sewer pond. The water flow becomes an underflow layer that flows along the watering subgrade at a velocity faster than the surface of the seismic pond. When the underflow layer flows down with the inflowing sediment and passes through the slot outlet, it is decelerated by the diffusion of water veins. Therefore, the sediment will collect at the connection between the secondary dam and the waterfall. This mechanism is similar to that of the lateral weir (Fig. 7) on the back side of the bank. (B) At a medium flow rate (FIG. 5), the baffle pier with an airfoil sill of the present invention functions to rectify the swaying bottom layer jet flow (see FIG. 8) and to suppress fluctuations in the jumping position. The levee body overflow water at the side intake side weir (see Fig. 8) is
The increase in river flow increases kinetic energy and causes a jump in the seismic pond. At that time, the inflowing jet intermittently flows along the channel floor or along the surface of the jumping water, and temporally fluctuates. For this reason, the sedimentation function is reduced by sowing the sediment that accumulates when the flow rate is small. Therefore, by providing the airfoil sill of the present invention, the swaying bottom layer jet flow is rectified to ensure the sedimentation function of the dampening pond. Furthermore, due to the jet flow effect from the slot outlet, the sand with a small particle size can be swept away from the damping pond. This can be thought of as automatic sand removal utilizing the potential energy of the water stream. (C) When the river has a large flow rate (see FIG. 6), the baffle pier with airfoil sill of the present invention secures a water intake amount and, at the same time, removes sediment from the damping pond. At the backwater intake side weir (see FIG. 9), the jumping water in the seismic pond is blown away, and the water flow becomes a jet stream. Therefore, the sediment will be washed out of the sewer pond. However, the depth of the seismic pond will decrease and it will not be possible to take water. When the baffle pier with airfoil sill of the present invention is provided, forced jumping occurs. Therefore, the position of the jump water is fixed, and at the same time, the depth of the seismic pond is secured,
Can take water. Moreover, the scavenging action of the jet exiting from the slot outlet makes it possible to remove the sediment deposited at a small flow rate. (D) Due to the above action, the sand basin can be omitted depending on the reduction of the capacity of the sand basin and the flow condition of the river. Due to the above effects, the present invention is effective in reducing the cost of small and medium flow-in type hydroelectric power generation.
【図1】本発明の、翼形シル付きバッフルピアを設けた
半自動排砂取水堰の要部を示す縦断面図(図2のA−A
線矢視)である。FIG. 1 is a longitudinal sectional view showing a main part of a semi-automatic sand removal weir having a baffle pier with an airfoil sill of the present invention (AA in FIG. 2).
It is a line arrow).
【図2】翼形シル付きバッフルピア式半自動排砂取水堰
の一例を示す平面図である。FIG. 2 is a plan view showing an example of a baffle pier type semi-automatic sand drainage weir with an airfoil sill.
【図3】本発明の、要部を示す斜視図である。FIG. 3 is a perspective view showing a main part of the present invention.
【図4】FIG. 4
【図5】[Figure 5]
【図6】本発明の、翼形シル付きバッフルピア式半自動
排砂取水堰において、河川小流量時FIG. 6 shows a baffle pier type semi-automatic sand removal weir with airfoil sill of the present invention when a small amount of water is discharged from a river.
【図4】、中流量時[Fig. 4] At medium flow rate
【図5】、大流量時[Fig. 5] At large flow rate
【図6】の減勢池内での流れ状態を概念的に示す縦断面
図である。FIG. 6 is a vertical sectional view conceptually showing a flow state in the depressurization pond.
【図7】[Figure 7]
【図8】FIG. 8
【図9】堤体背面側方取水堰において、河川小流量時[Fig. 9] At a small river discharge at the weir on the back side of the dam
【図7】、中流量時[Figure 7] Medium flow rate
【図8】、大流量時[Fig. 8] At large flow rate
【図9】の減勢池内での流れ状態を概念的に示す縦断面
図である。FIG. 9 is a vertical sectional view conceptually showing a flow state in the depressurization pond.
【図10】一般的な、堤体正面側方取水堰の縦断面図で
ある。FIG. 10 is a vertical cross-sectional view of a general intake side weir on the front side of a dam body.
【図11】一般的な、堤体背面側方取水堰の縦断面図で
ある。FIG. 11 is a vertical cross-sectional view of a general dam on the rear side of a dam body.
【図12】一般的な、ゴム引布製起伏取水堰(可動ゲー
ト型)の縦断面図である。FIG. 12 is a vertical cross-sectional view of a general rubber upholstery undulating water weir (movable gate type).
(図1,図2,図3)の符号 1 翼形シル 2 副ダム 3 水たたき 4
流線形バッフルピア 5 スロット 6 取水口 7 沈砂池 8
排砂ゲート 9 越流水(射流) 10 越流頂 11 上流水
位 12 減勢池 13 下流水位(常流) 14 進入路Reference symbols (Fig. 1, Fig. 2, Fig. 3) 1 Airfoil sill 2 Secondary dam 3 Water hammer 4
Streamlined baffle pier 5 Slot 6 Intake 7 Sand set 8
Sand discharge gate 9 Overflow water (shooting flow) 10 Overflow top 11 Upstream water level 12 Suppression pond 13 Downstream water level (normal current) 14 Approach path
Claims (1)
3の上面に流線形バッフルピア4を設ける。その頂部
に、翼形シル1を取り付けて、水たたき3と翼形シル1
との間にスロット5(穴)を構成する。以上を特徴とす
る半自動排砂取水堰の構造。1. A streamlined baffle pier 4 is provided on the upper surface of a water hammer 3 in a water intake weir on the back side of a dam body. Attaching the airfoil sill 1 to the top of it, the water spatter 3 and the airfoil sill 1
A slot 5 (hole) is formed between and. The structure of the semi-automatic sand removal weir characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15375895A JPH08311847A (en) | 1995-05-16 | 1995-05-16 | Baffle pier with blade-like sill type semi-automatic sand flash and intake weir |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15375895A JPH08311847A (en) | 1995-05-16 | 1995-05-16 | Baffle pier with blade-like sill type semi-automatic sand flash and intake weir |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08311847A true JPH08311847A (en) | 1996-11-26 |
Family
ID=15569493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15375895A Pending JPH08311847A (en) | 1995-05-16 | 1995-05-16 | Baffle pier with blade-like sill type semi-automatic sand flash and intake weir |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08311847A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006070537A (en) * | 2004-09-01 | 2006-03-16 | Mitsuo Yamamoto | Right-angled v-shaped energy dissipator, cascade work using the same, and stepped-down waterway using them |
KR101109641B1 (en) * | 2011-06-28 | 2012-01-31 | 유한회사 태일토건 | Construction method of agricultural channel with pond |
JP2012041743A (en) * | 2010-08-19 | 2012-03-01 | Chugoku Electric Power Co Inc:The | Water intake structure and water intake method |
JP2014214468A (en) * | 2013-04-24 | 2014-11-17 | 前田設備工業株式会社 | Water intake device |
CN110624280A (en) * | 2019-09-28 | 2019-12-31 | 兰州理工大学 | Sediment basin that hierarchical sediment was used in turn |
-
1995
- 1995-05-16 JP JP15375895A patent/JPH08311847A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006070537A (en) * | 2004-09-01 | 2006-03-16 | Mitsuo Yamamoto | Right-angled v-shaped energy dissipator, cascade work using the same, and stepped-down waterway using them |
JP2012041743A (en) * | 2010-08-19 | 2012-03-01 | Chugoku Electric Power Co Inc:The | Water intake structure and water intake method |
KR101109641B1 (en) * | 2011-06-28 | 2012-01-31 | 유한회사 태일토건 | Construction method of agricultural channel with pond |
JP2014214468A (en) * | 2013-04-24 | 2014-11-17 | 前田設備工業株式会社 | Water intake device |
CN110624280A (en) * | 2019-09-28 | 2019-12-31 | 兰州理工大学 | Sediment basin that hierarchical sediment was used in turn |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8648487B2 (en) | Shaft power plant | |
US9109571B2 (en) | Shaft power plant | |
CN101148866A (en) | Drainage system estuary pier bar swirl chamber composite energy dissipation method | |
CN103882838A (en) | Sediment releasing method for water intake of low-head river channel pivotal power station | |
CN103882839A (en) | Sediment releasing system for water intake of low-head river channel pivotal power station | |
CN113893584A (en) | Double-layer energy dissipation and sand collection channel and method | |
CN113202065A (en) | Water taking structure for multi-silt river channel | |
JPH08311847A (en) | Baffle pier with blade-like sill type semi-automatic sand flash and intake weir | |
CN211256912U (en) | Fold-line type flip bucket at outlet of bank spillway/flood discharge tunnel | |
KR100530273B1 (en) | Apparatus of protect boring using a pier | |
CN110552331A (en) | Composite energy dissipater suitable for long-distance and complex-terrain slope surface drainage | |
CN102383401A (en) | Overflow water drainage integral type sluice weir | |
CN216586445U (en) | Double-layer energy dissipation and sand collection channel | |
JP3751282B2 (en) | Removal method of inflow sediment in waterway and drainage method of reservoir | |
CN214530556U (en) | Multifunctional dam | |
CN210737484U (en) | Water intaking system of hydraulic engineering | |
Sui et al. | An experimental study into local scour in a channel caused by a 90 bend | |
CN114875840A (en) | Sediment discharge device for reservoir sediment | |
CN104099908B (en) | Gravity type sand obstructing and guiding structure | |
CN210827381U (en) | Composite energy dissipater suitable for long-distance and complex-terrain slope surface drainage | |
JP2002167740A (en) | Hydraulic power generating method | |
JPH05331827A (en) | Dredging device for deposited silt in reservoir | |
CN214993621U (en) | Spillway tunnel export flip bucket structure | |
CN215801440U (en) | Water taking structure for multi-silt river channel | |
CN210031716U (en) | Reservoir flood overflow device |