JPH08311636A - Gear and its production - Google Patents

Gear and its production

Info

Publication number
JPH08311636A
JPH08311636A JP11564695A JP11564695A JPH08311636A JP H08311636 A JPH08311636 A JP H08311636A JP 11564695 A JP11564695 A JP 11564695A JP 11564695 A JP11564695 A JP 11564695A JP H08311636 A JPH08311636 A JP H08311636A
Authority
JP
Japan
Prior art keywords
gear
nitriding
film
treatment
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11564695A
Other languages
Japanese (ja)
Inventor
Jun Isono
純 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP11564695A priority Critical patent/JPH08311636A/en
Publication of JPH08311636A publication Critical patent/JPH08311636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE: To provide a gear with which the deviation in dimensional accuracy at the time of a nitriding treatment and the degradation in surface roughness are minimized, noises are small and which has excellent wear resistance. CONSTITUTION: The metallic gear, such as upper shaft bevel gear 3, is held for a prescribed period of time in a gaseous fluorine atmosphere previously maintained at a high temp. and fluorinated films are formed on its respective tooth surfaces, flanks, etc. The gear is thereafter heated for the prescribed period of time in a nitriding gaseous atmosphere, by which nitrided hard layers are formed thereon with the flurinated films described above as reaction media. The nitride films are formed on the surfaces of the gear in such a manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種機械類に使用され
る金属製の歯車及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal gear used in various machines and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、各種機械類に使用される金属製の
歯車においては、歯車の摩耗の内、ピッチングやスポー
リングと呼ばれる繰り返し荷重による表面の疲労摩耗を
防止するために、各種の表面硬化法がとられてきた。一
般に材料は硬い方のものが耐ピッチング性、即ち、耐摩
耗性が向上する。歯車の歯面の表面硬化方法には、固体
浸炭方法、ガス浸炭方法、液体浸炭方法、高周波焼入方
法、火炎焼入方法、そして、窒化方法等がある。
2. Description of the Related Art Conventionally, in the case of metal gears used in various machines, in order to prevent fatigue wear of the surface due to repeated loads called pitching and spalling, various surface hardening is applied to the gears. The law has been taken. Generally, a harder material improves pitting resistance, that is, wear resistance. Surface hardening methods for gear tooth surfaces include solid carburizing methods, gas carburizing methods, liquid carburizing methods, induction hardening methods, flame hardening methods, and nitriding methods.

【0003】これらの表面硬化方法の内、窒化処理方法
は、浸炭処理等の硬化方法に比べて耐摩耗性や耐疲れ性
に優れ、さらに、スコーリングと呼ばれる焼き付きに起
因するかじりにも有効とされ、幅広く用いられている。
窒化処理によって形成される窒素化合物層は、厚さ10
μm以下と薄く、従って、処理後に寸法や面粗さを補正
するための加工ができず、処理面をそのまま使用するこ
とが通常である。
Among these surface hardening methods, the nitriding method is more excellent in wear resistance and fatigue resistance than hardening methods such as carburizing, and is also effective for galling caused by seizure called scoring. Has been widely used.
The nitrogen compound layer formed by the nitriding treatment has a thickness of 10
Since the thickness is as thin as μm or less, it is not possible to perform processing for correcting dimensions and surface roughness after processing, and the processed surface is usually used as it is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
歯車の窒化処理によれば、表面を活性化し、窒素の拡散
及び反応を促進する目的で500〜600℃の高温中に
置かれるため、歯切り加工等の際に表層に残存していた
加工歪が解放され、所謂熱変形が生じていた。また、窒
化処理によって5〜10μm程度の不均一な窒素化合物
層が前記歯車の表面に形成されるために、寸法の膨れが
生じたり、歯面の面粗さが処理前に比べて粗くなること
があった。従って、歯車の噛み合い精度が狂うために、
例えば、工業用ミシンのように、5000〜10000
rpmといった高速運転をする際に騒音が大きくなった
り、また、時には局所荷重によって、かえって摩耗が増
大するという問題があった。
However, according to the conventional nitriding treatment of gears, the gear is placed at a high temperature of 500 to 600 ° C. for the purpose of activating the surface and promoting the diffusion and reaction of nitrogen, so that the gear cutting is performed. The processing strain remaining on the surface layer during processing was released, and so-called thermal deformation occurred. In addition, since a non-uniform nitrogen compound layer of about 5 to 10 μm is formed on the surface of the gear by the nitriding treatment, dimensional swelling occurs and the tooth surface becomes rougher than before the treatment. was there. Therefore, because the meshing accuracy of the gears goes wrong,
For example, like an industrial sewing machine, 5000 to 10000
There is a problem that noise is increased during high-speed operation such as rpm, and sometimes wear is increased due to local load.

【0005】本発明は、上述した問題点を解決するため
になされたものであり、窒化処理時の寸法精度の狂いや
表面粗さの悪化を最小限にすることができ、しかも、騒
音の小さい、耐摩耗性に優れた歯車を提供することを目
的としている。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to minimize the deviation of the dimensional accuracy and the deterioration of the surface roughness during the nitriding treatment, and to reduce the noise. The purpose is to provide a gear having excellent wear resistance.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、本発明の請求項1の歯車は、金属製の歯車の、少な
くとも他の歯車と噛み合う歯の接触面にフッ化処理を施
し、さらに、その箇所に窒化処理を施して窒化膜を形成
している。
In order to achieve this object, according to the gear of claim 1 of the present invention, at least a contact surface of a tooth of a metal gear meshing with another gear is fluorinated. Further, a nitriding process is applied to that portion to form a nitride film.

【0007】また、請求項2の歯車の製造方法は、金属
製の歯車の、少なくとも他の歯車と噛み合う歯の接触部
分を、フッ素系ガス雰囲気中で所定時間加熱して、その
部分の表面にフッ化膜を形成し、その後に、その部分を
窒化ガス雰囲気中で所定時間加熱して、前記フッ化膜を
分離除去すると同時に、その除去部分に窒化膜を置換形
成するようにしている。
According to a second aspect of the present invention, there is provided a method for manufacturing a gear, wherein at least a contact portion of a tooth of a metal gear that meshes with another gear is heated in a fluorine-based gas atmosphere for a predetermined time, and the surface of the portion is contacted. A fluoride film is formed, and thereafter, the portion is heated in a nitriding gas atmosphere for a predetermined time to separate and remove the fluoride film, and at the same time, a nitride film is replaced and formed on the removed portion.

【0008】さらに、請求項3の歯車の製造方法は、前
記フッ化膜を形成する前に、そのフッ化膜を形成する部
分に対して、浸炭焼き入れ、高周波焼き入れ、火炎焼き
入れ等の焼入れ処理及び焼き戻し処理を施すようにして
いる。
Further, in the method of manufacturing a gear according to a third aspect of the present invention, before forming the fluorinated film, the portion where the fluorinated film is formed is subjected to carburizing quenching, induction quenching, flame quenching, etc. A quenching process and a tempering process are performed.

【0009】[0009]

【作用】前記の構成を有する本発明の請求項1の歯車よ
れば、金属製の歯車の、少なくとも他の歯車と噛み合う
歯の接触面にフッ化処理を施し、さらに、その箇所に窒
化処理を施して窒化膜を形成する。
According to the gear of the first aspect of the present invention having the above-mentioned structure, at least the contact surface of the tooth of the metal gear that meshes with another gear is subjected to a fluorination treatment, and further, the nitriding treatment is applied to that portion. To form a nitride film.

【0010】また、請求項2の歯車の製造方法によれ
ば、金属製の歯車の、少なくとも他の歯車と噛み合う歯
の接触部分を、フッ素系ガス雰囲気中で所定時間加熱し
て、その部分の表面にフッ化膜を形成し、その後に、そ
の部分を窒化ガス雰囲気中で所定時間加熱して、前記フ
ッ化膜を分離除去すると同時に、その除去部分に窒化膜
を置換形成する。この場合、前記フッ化膜は、前記フッ
化処理温度以上に加熱されると非常に活性な膜として作
用するため、この箇所に窒化処理を施す際、従来よりも
はるかに低い温度で窒素を吸着し、表層に窒素を拡散す
る。この際、フッ化膜は、窒素と置換する形で表面より
取り除かれる。
Further, according to the method of manufacturing a gear of claim 2, at least a contact portion of a tooth of a metal gear that meshes with another gear is heated in a fluorine-based gas atmosphere for a predetermined time, and the portion A fluoride film is formed on the surface, and then that portion is heated in a nitriding gas atmosphere for a predetermined time to separate and remove the fluoride film, and at the same time, a nitride film is replaced and formed on the removed portion. In this case, the fluorinated film acts as a very active film when heated to the fluorination temperature or higher, and therefore, when nitriding treatment is applied to this portion, nitrogen is adsorbed at a temperature much lower than the conventional temperature. Then, nitrogen is diffused to the surface layer. At this time, the fluorinated film is removed from the surface by replacing nitrogen with nitrogen.

【0011】さらに、請求項3の歯車の製造方法によれ
ば、前記フッ化膜を形成する前に、そのフッ化膜を形成
する部分に対して、浸炭焼き入れ、高周波焼き入れ、火
炎焼き入れ等の焼入れ処理及び焼き戻し処理を施す。こ
の場合、最終的に窒化膜を形成した部分をその深層域ま
でより高硬度にすることができる。
Further, according to the method of manufacturing a gear of claim 3, before forming the fluoride film, the portion where the fluoride film is formed is carburized, induction hardened, and flame hardened. Quenching treatment and tempering treatment. In this case, the hardness of the portion where the nitride film is finally formed can be increased to the deep layer region.

【0012】[0012]

【実施例】以下に、本発明をミシンに使用されている歯
車に具体化した実施例を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment in which the present invention is embodied in a gear used in a sewing machine will be described below with reference to the drawings.

【0013】図1は、本実施例の工業用本縫いミシンの
上軸と下軸の間の動力伝達機構の構成を示している。モ
ーター等の駆動源(図示せず)によって、ベルトを介し
て駆動されるプーリー1が図中矢印方向に回ると、前記
プーリー1と連結した上軸2に取り付けられた上軸ベベ
ルギヤ3により、縦軸4上端に取り付けられた縦軸ベベ
ルギヤ5に回転を伝える。この回転運動は、前記縦軸4
下端に取り付けられた縦軸ベベルギヤ6より、下軸ベベ
ルギヤ7を介して下軸8に伝達される。これ等2箇所で
組み合わされる歯車のギヤ比は、合計して1:2となる
よう設定されており、従って、前記下軸8の末端に固定
されたミシン釜9は、前記上軸2の2倍の回転数で回転
することになる。ここで、前記上軸ベベルギヤ3、縦軸
ベベルギヤ5、縦軸ベベルギヤ6、及び下軸ベベルギヤ
7の各歯車は、本発明の方法による下記窒化処理を施す
ことにより、耐摩耗性に優れた表面硬化層を有する金属
材料によって形成されている。
FIG. 1 shows the structure of a power transmission mechanism between an upper shaft and a lower shaft of an industrial lockstitch sewing machine of this embodiment. When the pulley 1 driven via a belt by a drive source (not shown) such as a motor rotates in the direction of the arrow in the figure, the upper bevel gear 3 attached to the upper shaft 2 connected to the pulley 1 causes a vertical movement. The rotation is transmitted to the vertical axis bevel gear 5 attached to the upper end of the shaft 4. This rotational movement is caused by the vertical axis 4
The vertical axis bevel gear 6 attached to the lower end transmits the lower axis bevel gear 7 to the lower axis 8. The gear ratios of the gears combined at these two locations are set to be 1: 2 in total, so that the sewing machine hook 9 fixed to the end of the lower shaft 8 has a gear ratio of 2: 1. It will rotate at twice the number of rotations. Here, each of the upper bevel gear 3, the vertical bevel gear 5, the vertical bevel gear 6, and the lower bevel gear 7 is subjected to the following nitriding treatment according to the method of the present invention to obtain a surface-hardened excellent wear resistance. It is formed of a metal material having a layer.

【0014】図2は、前記ミシンとは別の構造の2本針
型の工業用本縫いミシンの下軸とミシン釜間の動力伝達
機構の構成を示している。この型のミシンでは、上軸と
下軸との間の動力伝達はタイミングベルト10及び上軸
11に取り付けられたタイミングプーリー12、下軸1
3に取り付けられたタイミングプーリー14によって行
われる。下軸13が回転すると、その回転運動は、前記
下軸13に取り付けられた2つのスパイラルギヤ15に
伝わる。前記スパイラルギヤ15の鉛直方向の回転運動
は、それぞれのスパイラルギヤ15と対になったピニオ
ンギヤ16を介して2つのミシン釜17を水平方向に回
転させる。前記スパイラルギヤ15及びピニオンギヤ1
6は1:2のギヤ比に設定されており、従って、前記ミ
シン釜17は、前記下軸13の2倍の回転数で回転する
ことになる。ここで、前記2つのスパイラルギヤ15及
びピニオンギヤ16の各歯車は、やはり、本発明の方法
による下記窒化処理を施すことにより、耐摩耗性に優れ
た表面硬化層を有する金属材料によって形成されてい
る。
FIG. 2 shows a structure of a power transmission mechanism between a lower shaft of a two-needle type industrial lockstitch sewing machine having a structure different from that of the sewing machine and a sewing machine hook. In this type of sewing machine, the power transmission between the upper shaft and the lower shaft is performed by the timing belt 12 and the timing pulley 12 mounted on the upper shaft 11 and the lower shaft 1.
This is done by the timing pulley 14 attached to the No. When the lower shaft 13 rotates, the rotational movement is transmitted to the two spiral gears 15 attached to the lower shaft 13. The vertical rotary motion of the spiral gear 15 causes the two sewing machine hooks 17 to rotate horizontally via the pinion gears 16 paired with the respective spiral gears 15. The spiral gear 15 and the pinion gear 1
6 is set to a gear ratio of 1: 2, so that the sewing machine hook 17 rotates at twice the number of rotations of the lower shaft 13. Here, the respective gears of the two spiral gears 15 and the pinion gears 16 are also formed of a metal material having a surface hardened layer having excellent wear resistance by performing the following nitriding treatment according to the method of the present invention. .

【0015】次に、本発明の各歯車の製造方法について
説明する。歯車は、炭素鋼や合金鋼を材料として選定
し、主に切削加工、及び歯面の研磨によって形成され
る。これ等加工した歯車は、その全体が予め高温とされ
たフッ素系ガス雰囲気中に所定時間保持され、その歯表
面や側面にフッ化膜を形成した後、窒化ガス雰囲気中で
所定時間加熱され、前記フッ化膜を反応媒体として窒化
硬質層が形成される。この際、前記フッ化膜は分離除去
されると同時に、その除去部分に窒化硬質層が置換形成
されることになる。
Next, a method of manufacturing each gear of the present invention will be described. The gear is made of carbon steel or alloy steel as a material, and is mainly formed by cutting and polishing the tooth surface. The gears processed in this way are entirely held in advance in a fluorine-based gas atmosphere at a high temperature for a predetermined time, and after forming a fluoride film on the tooth surfaces and side surfaces thereof, they are heated in a nitriding gas atmosphere for a predetermined time, A hard nitride layer is formed using the fluoride film as a reaction medium. At this time, the fluoride film is separated and removed, and at the same time, the hard nitride layer is replaced and formed in the removed portion.

【0016】前記フッ素ガスに用いられるものとして
は、NF3、BF3、CF4、HF、SF6、F2、CH2
2、CH3F、C26、WF6、CHF3、SiF4等から
選ばれた少なくとも一つのフッ素源成分をN2等の不活
性ガス中に含有させたものであり、これらの中でも、反
応性、取扱い性等の面でNF3が最も優れている。雰囲
気ガスとして、このNF3を使用した場合、前記各歯車
が収納された炉の温度を300℃前後に加熱する。する
と、NF3は活性基のフッ素を発生し、このフッ素が前
記各歯車表面の金属と反応して、表面に極薄いフッ化膜
が形成されるのである。このフッ化膜は、フッ化処理温
度以下では保護膜として作用するが、フッ化処理温度以
上の高温で加熱されると、活性膜として作用する性質を
有する。
NF 3 , BF 3 , CF 4 , HF, SF 6 , F 2 , CH 2 F are used as the fluorine gas.
2 , CH 3 F, C 2 F 6 , WF 6 , CHF 3 , CHF 3 , SiF 4, etc. At least one fluorine source component is contained in an inert gas such as N 2 , among these. , NF 3 is the best in terms of reactivity, handleability, etc. When this NF 3 is used as the atmospheric gas, the temperature of the furnace accommodating the gears is heated to around 300 ° C. Then, NF 3 generates fluorine as an active group, and this fluorine reacts with the metal on the surface of each gear to form an extremely thin fluoride film on the surface. This fluorinated film acts as a protective film below the fluorination treatment temperature, but has the property of acting as an active film when heated at a temperature higher than the fluorination treatment temperature.

【0017】このフッ化膜が形成された前記各歯車を、
窒化用ガス、例えばアンモニアを用いて、従来の窒化処
理温度である約550〜600℃より約150〜200
℃も低い400℃程度の温度で加熱すると、活性なフッ
化膜の作用でN原子が歯車表面に吸着され、その金属内
部に侵入、拡散し、その結果、前記各歯車の表層に窒化
物を含有する窒化硬質層が形成されるのである。
Each of the gears on which the fluorinated film is formed is
About 150-200 from the conventional nitriding temperature of about 550-600 ° C. using a nitriding gas such as ammonia.
When heated at a low temperature of about 400 ° C, N atoms are adsorbed on the surface of the gear due to the action of the active fluorinated film, penetrate into the metal and diffuse, and as a result, nitride is formed on the surface layer of each gear. The contained hard nitride layer is formed.

【0018】このようにして形成された窒化硬質層は、
従来と変わりない優れた耐焼付き性、耐摩耗性、そし
て、耐衝撃性を有する。そして、従来よりもはるかに低
温で窒化処理を行うため、熱変形による寸法精度の狂い
や窒化物層による過大な寸法の膨れ、また、表面粗さの
悪化を極力抑えることが可能となる。従って、組み合わ
される歯車の歯面同士の噛み合い精度は、窒化処理前と
同様、良好に保たれ、高速運転時の騒音や異常摩耗が発
生することはない。
The hard nitride layer thus formed is
It has excellent seizure resistance, abrasion resistance, and impact resistance that are the same as before. Since the nitriding treatment is performed at a much lower temperature than in the conventional case, it is possible to suppress dimensional accuracy deviation due to thermal deformation, excessive swelling of the dimension due to the nitride layer, and deterioration of the surface roughness as much as possible. Therefore, the meshing accuracy of the tooth surfaces of the gears to be combined is maintained as good as before nitriding treatment, and noise and abnormal wear during high-speed operation do not occur.

【0019】処で、前記各歯車にフッ化膜を形成する前
に、これ等の部品に予め浸炭焼き入れ、高周波焼き入
れ、火炎焼き入れ等の焼き入れ処理、及び焼き戻し処理
を施してもよい。この焼入れ処理によって、各歯車の深
層部に亙って高硬度な表層を得ることができる。また、
基材となる焼入れ鋼の種類によっては、窒化処理温度で
ある400℃近辺は、基材の焼き戻し脆性を引き起こす
危険性があるが、焼入れ後の焼き戻し温度を窒化処理温
度以上の適当な値に設定することにより脆化を防止する
ことができる。
Before forming the fluoride film on each of the gears, these parts may be subjected to carburizing, induction hardening, flame hardening and other hardening treatments and tempering treatments in advance. Good. By this quenching treatment, a highly hard surface layer can be obtained over the deep layer portion of each gear. Also,
Depending on the type of hardened steel used as the base material, there is a risk that tempering brittleness of the base material may occur near the nitriding temperature of 400 ° C, but the tempering temperature after quenching should be an appropriate value above the nitriding temperature. By setting to, brittleness can be prevented.

【0020】なお、本実施例では、窒化膜を歯車の表面
全体に形成するようにしたが、最低限、その歯車の歯の
噛み合い接触面にのみ前記窒化膜を形成するようにして
もよい。この場合、その接触面以外の部分はマスキング
する必要がある。
In this embodiment, the nitride film is formed on the entire surface of the gear, but at least the nitride film may be formed only on the meshing contact surface of the gear teeth. In this case, it is necessary to mask the portion other than the contact surface.

【0021】以上はミシンに使用されている歯車に本発
明を適用した実施例を説明したが、その外、あらゆる機
械類に使用されている金属製の歯車であれば、そのいず
れの歯車にも本発明を適用することができることは言う
までもない。
Although the embodiments in which the present invention is applied to the gears used in the sewing machine have been described above, in addition to the gears made of metal used in all machines, any gears can be used. It goes without saying that the present invention can be applied.

【0022】[0022]

【発明の効果】以上詳述したことから明かなように、本
発明の歯車及びその製造方法によれば、金属製の歯車
の、少なくとも他の歯車と噛み合う歯の接触面にフッ化
処理を施し、さらに、その箇所に窒化処理を施して窒化
膜を形成したので、歯車の熱変形や寸法膨れを最小限に
することができ、また、処理前と変わらない面粗さを維
持することが可能となり、噛み合い精度の悪化による騒
音を防止し、局所荷重による摩耗を抑えることができ
る。
As is apparent from the above detailed description, according to the gear of the present invention and the method for manufacturing the same, at least the contact surface of the tooth of the metal gear that meshes with another gear is subjected to the fluorination treatment. In addition, since a nitride film is formed by nitriding that part, it is possible to minimize thermal deformation and swelling of the gear, and it is possible to maintain the same surface roughness as before processing. Therefore, noise due to deterioration of meshing accuracy can be prevented, and wear due to local load can be suppressed.

【0023】また前記フッ化処理に先だって、前記歯車
に焼き入れ、焼き戻し処理を施すことによって、歯面の
表面及び表層深部まで更に硬化させ、耐摩耗性を向上さ
せる等の効果を得ることができる。
Further, prior to the fluorination treatment, the gear is subjected to quenching and tempering treatments to further harden the surface of the tooth surface and the deep portion of the surface layer, and to obtain the effect of improving wear resistance. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の工業用本縫いミシンの上軸と下軸の
間の動力伝達機構の構成図である。
FIG. 1 is a configuration diagram of a power transmission mechanism between an upper shaft and a lower shaft of an industrial lockstitch sewing machine of the present embodiment.

【図2】本実施例の2本針型の工業用本縫いミシンの下
軸とミシン釜間の動力伝達機構の構成図である。
FIG. 2 is a configuration diagram of a power transmission mechanism between a lower shaft of a two-needle type industrial lockstitch sewing machine and a sewing machine hook of the present embodiment.

【符号の説明】[Explanation of symbols]

3 上軸ベベルギヤ 5 縦軸ベベルギヤ 6 縦軸ベベルギヤ 7 下軸ベベルギヤ 15 スパイラルギヤ 16 ピニオンギヤ 3 Upper shaft bevel gear 5 Vertical shaft bevel gear 6 Vertical shaft bevel gear 7 Lower shaft bevel gear 15 Spiral gear 16 Pinion gear

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属製の歯車の、少なくとも他の歯車と
噛み合う歯の接触面にフッ化処理を施し、さらに、その
箇所に窒化処理を施して窒化膜を形成したことを特徴と
する歯車。
1. A gear, characterized in that at least a contact surface of a tooth of a metal gear that meshes with another gear is subjected to a fluorination treatment, and the portion is subjected to a nitriding treatment to form a nitride film.
【請求項2】 金属製の歯車の、少なくとも他の歯車と
噛み合う歯の接触部分を、フッ素系ガス雰囲気中で所定
時間加熱して、その部分の表面にフッ化膜を形成し、そ
の後に、その部分を窒化ガス雰囲気中で所定時間加熱し
て、前記フッ化膜を分離除去すると同時に、その除去部
分に窒化膜を置換形成したことを特徴とする歯車の製造
方法。
2. A metal gear, at least a contact portion of a tooth that meshes with another gear is heated in a fluorine-based gas atmosphere for a predetermined time to form a fluoride film on the surface of the portion, and thereafter, A method of manufacturing a gear, wherein the portion is heated in a nitriding gas atmosphere for a predetermined time to separate and remove the fluoride film, and at the same time, a nitride film is replaced and formed on the removed portion.
【請求項3】 前記フッ化膜を形成する前に、そのフッ
化膜を形成する部分に対して、浸炭焼き入れ、高周波焼
き入れ、火炎焼き入れ等の焼入れ処理及び焼き戻し処理
を施したことを特徴とする請求項2に記載の歯車の製造
方法。
3. Prior to forming the fluoride film, the portion where the fluoride film is to be formed is subjected to quenching treatment such as carburizing quenching, induction hardening, flame quenching and tempering treatment. The method for manufacturing a gear according to claim 2, wherein:
JP11564695A 1995-05-15 1995-05-15 Gear and its production Pending JPH08311636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11564695A JPH08311636A (en) 1995-05-15 1995-05-15 Gear and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11564695A JPH08311636A (en) 1995-05-15 1995-05-15 Gear and its production

Publications (1)

Publication Number Publication Date
JPH08311636A true JPH08311636A (en) 1996-11-26

Family

ID=14667799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11564695A Pending JPH08311636A (en) 1995-05-15 1995-05-15 Gear and its production

Country Status (1)

Country Link
JP (1) JPH08311636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8286455B2 (en) 2006-03-08 2012-10-16 Osaka University Transformable metal surface hardening method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8286455B2 (en) 2006-03-08 2012-10-16 Osaka University Transformable metal surface hardening method

Similar Documents

Publication Publication Date Title
US6733600B2 (en) Nitrided maraging steel and method of manufacture thereof
JPH02138554A (en) Highly strenghtened gear
JP2991759B2 (en) Manufacturing method of nitriding steel
JPH08311636A (en) Gear and its production
JP2009228829A (en) Manufacturing method of stem, manufacturing method of bearing, stem, and bearing
JP2000008121A (en) Production of high facial pressure resistant parts and high facial resistant parts
JP2885118B2 (en) Sewing machine hook device and its manufacturing method
JPH08196768A (en) Upper shaft mechanism for sewing machine
JPH11230312A (en) High contact fatigue lifetime gear and manufacture thereof
JP2544160B2 (en) Carburized bearing body and manufacturing method thereof
JPH0968261A (en) Cast iron gear and its manufacture
JP4526616B2 (en) Gear made of spheroidal graphite cast iron material and manufacturing method thereof
JPH10238548A (en) High strength spline and manufacture thereof
JP4547795B2 (en) gear
WO2022153770A1 (en) Shaft member
JP3119732B2 (en) Manufacturing method of high contact fatigue strength gear
JP3512608B2 (en) Gear pair
JP3470741B2 (en) Rolling element for toroidal type continuously variable transmission and method of manufacturing the same
CN1032263C (en) Motor rotary shaft and manufacturing method thereof
JP2003183808A (en) Mechanical structural part
KR20240051532A (en) Low temperature plasma nitriding method for flex spline and flex spline manufactured thereby
JPH0525610A (en) Production of gear
JP2009228828A (en) Manufacturing method of stem, manufacturing method of bearing, stem, and bearing
JPH11200010A (en) Surface treatment of metallic multilayered belt for automobile
JP2006349055A (en) Gear