JPH0830686B2 - Damage detection method for equipment lining layer - Google Patents

Damage detection method for equipment lining layer

Info

Publication number
JPH0830686B2
JPH0830686B2 JP26488087A JP26488087A JPH0830686B2 JP H0830686 B2 JPH0830686 B2 JP H0830686B2 JP 26488087 A JP26488087 A JP 26488087A JP 26488087 A JP26488087 A JP 26488087A JP H0830686 B2 JPH0830686 B2 JP H0830686B2
Authority
JP
Japan
Prior art keywords
lining layer
liquid medium
damage
circuit
reference circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26488087A
Other languages
Japanese (ja)
Other versions
JPH01107143A (en
Inventor
正 榎本
Original Assignee
神鋼パンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼パンテック株式会社 filed Critical 神鋼パンテック株式会社
Priority to JP26488087A priority Critical patent/JPH0830686B2/en
Publication of JPH01107143A publication Critical patent/JPH01107143A/en
Publication of JPH0830686B2 publication Critical patent/JPH0830686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) グラスライニング等の耐蝕性ライニング層を施工した
機器は、使用中の不測の原因によりライニング層が破損
した場合、製品中に母材金属イオンが溶出して製品の損
失を招いたり、あるいは腐蝕作用が著しい場合には短時
間で母材金属が貫通され大事故に到ることがある。
[Detailed Description of the Invention] (Industrial field of application) For equipment with a corrosion-resistant lining layer such as glass lining, if the lining layer is damaged due to an unexpected cause during use, the base metal ion If the metal is eluted to cause a loss of the product, or if the corrosive effect is significant, the base metal may be penetrated in a short time, leading to a serious accident.

本発明は、この種機器におけるライニング層の損傷を
機器の使用中に最も早い時期に検出して損害が軽微なう
ちに対策を構ずることを可能とする技術の改良に関す
る。
TECHNICAL FIELD The present invention relates to an improvement in a technique that enables damage of a lining layer in such a device to be detected at the earliest time during use of the device and to take countermeasures while the damage is slight.

(従来の技術) 第4図は、この種ライニング機器のライニング層の損
傷検知の従来技術の1例を原理的に示す図である。
(Prior Art) FIG. 4 is a view showing in principle an example of a prior art for detecting damage to a lining layer of this type of lining equipment.

グラスライニング等の耐蝕性ライニング層(1)を施
工して耐蝕性とした機器の母材金属(2)に直流電源
(3)の(+)極(4)を接続し、機器内に収容する反
応処理物質の導電性液媒質(5)中に設置した電極担体
(6)の白金等の高耐蝕性電極(7)に(−)極を接続
し導電性液媒質の抵抗R1および絶縁性ライニング層
(1)の高い抵抗R2を通じて流れる電流値の変化を測定
する。すなわち、耐蝕性ライニング層(1)が健全であ
れば、その電気抵抗値R2が大きいが故に上記電流値は微
小であるが、ライニング層が損傷すれば当該部分の電気
抵抗値が減少し電流値が増加することを基本原理として
いる。この回路は検出回路(A)である。
Connect the (+) pole (4) of the DC power supply (3) to the base metal (2) of the equipment that has been made corrosion resistant by applying the corrosion resistant lining layer (1) such as glass lining and store it in the equipment. a high corrosion resistance electrodes such as platinum electrode carrier is placed in the conductive liquid medium of the reaction process material (5) (6) (7) (-) resistors R 1 and insulating connecting the electrode conductive liquid medium The change in the value of the current flowing through the high resistance R 2 of the lining layer (1) is measured. That is, if the corrosion-resistant lining layer (1) is sound, the electric current value is small because the electric resistance value R 2 is large, but if the lining layer is damaged, the electric resistance value of the portion is reduced and the electric current value decreases. The basic principle is that the value increases. This circuit is the detection circuit (A).

この場合、機器内の導電性液媒質の性状が一定してお
ればよいが、実操業では温度変化、濃度変化等が起こ
り、すなわち例えば温度が変化すればライニング層およ
び導電性液媒質の電気抵抗が変化し、上記電流値も対応
して変化するため、ライニング層の損傷に起因する電流
値の変化の識別が難しくなる。そこで導電性液媒質中に
電極(7)を共用し対の電極(8)を設け外部の交流電
源(9)より両電極(7)(8)間に交流電圧を印加し
導電性液媒質中を流れる電流値を測定する基準回路
(B)を設けている。この基準回路(B)の電流値を分
母とし、前記の直流検出回路(A)の電流値を分子とし
てその比率を演算し、耐蝕性ライニング層の損傷度を判
定する。これにより導電性液媒質の温度変化、濃度変化
に起因する判別の困難さはある程度解消できる。
In this case, the property of the conductive liquid medium in the equipment should be constant, but in actual operation, temperature change, concentration change, etc. occur, that is, if the temperature changes, for example, the electrical resistance of the lining layer and the conductive liquid medium is changed. Changes and the current value also changes correspondingly, making it difficult to identify the change in current value due to damage to the lining layer. Therefore, the electrode (7) is shared in the conductive liquid medium, a pair of electrodes (8) is provided, and an AC voltage is applied between both electrodes (7) and (8) from an external AC power source (9) in the conductive liquid medium. A reference circuit (B) for measuring the value of the current flowing through is provided. The current value of the reference circuit (B) is used as the denominator, and the current value of the direct current detection circuit (A) is used as the numerator to calculate the ratio to determine the degree of damage to the corrosion-resistant lining layer. As a result, the difficulty of discrimination due to the temperature change and the concentration change of the conductive liquid medium can be eliminated to some extent.

(発明が解決しようとする問題点) 前記の従来技術においては、耐蝕性ライニング層の損
傷を連続的に監視することから、基準回路および検出回
路ともに同時に連続して通電している。
(Problems to be Solved by the Invention) In the above-mentioned conventional technique, since damage to the corrosion-resistant lining layer is continuously monitored, both the reference circuit and the detection circuit are simultaneously energized.

この場合、検出回路電流は通常、耐蝕性ライニング層
の電気抵抗が大きいために僅少の電流が流れるに過ぎな
いが、基準回路においては導電性液媒質の抵抗値に応じ
た電流が流れ、その電流値は検出回路電流値の10〜20倍
となる。
In this case, the detection circuit current usually has only a small current because the electrical resistance of the corrosion-resistant lining layer is large, but in the reference circuit, a current according to the resistance value of the conductive liquid medium flows, and the current The value is 10 to 20 times the current value of the detection circuit.

その結果、導電性液媒質の種類によっては、電極
(7)(8)に電気化学的な作用に起因する生成物が付
着し、時間経過に伴って増加するという現象が生ずる。
この場合、付着生成物量は通電した電気量に比例するの
で、電極部の抵抗は次第に増大し回路の電流値を減少さ
せるよう働く。こうして、ある時点での温度、濃度の変
化状態に起因する電流変化の他に経時的に増大する付着
物の生成という2次的な要因による電流変化が加わるこ
とになり、これは基準回路の本来の目的である温度、濃
度変化補償基準に誤差を発生させることになり、探傷検
出結果の信頼性、精度が低下する。
As a result, depending on the type of the conductive liquid medium, a product caused by an electrochemical action adheres to the electrodes (7) and (8) and increases with time.
In this case, since the amount of the attached product is proportional to the amount of electricity supplied, the resistance of the electrode portion gradually increases and acts to reduce the current value of the circuit. Thus, in addition to the current change caused by the temperature and concentration change state at a certain point, the current change caused by a secondary factor such as the generation of deposits that increase with time is added. Therefore, an error is generated in the temperature and concentration change compensation reference which is the purpose of, and the reliability and accuracy of the flaw detection result decrease.

本発明は、従来の機器ライニング層の損傷検知技術の
前記問題点を解消させることを目的とする。
An object of the present invention is to eliminate the above-mentioned problems of the conventional damage detection technology for equipment lining layers.

(問題点を解決するための手段) 本発明においては、検出回路に基準回路を併用する場
合に基準回路への通電により生成する電気化学的作用に
基づく付着物を軽減するため、基準回路への通電を連続
的に行うことなくライニング層損傷検出に必要充分な最
小限の継続時間長さに限定して間けつ的に印加するよう
にする。この場合に、検出回路への通電は連続的に行う
ままとしてもよいが、なるべく基準回路への通電と重畳
しないように、さらに通電時間の隔離を明確とするため
に相互間に短時間のタイムラグを介して交互に行うよう
にすることが望ましい。
(Means for Solving Problems) In the present invention, when a reference circuit is used together with a detection circuit, in order to reduce deposits due to an electrochemical action generated by energizing the reference circuit, The current is not applied continuously but is applied intermittently by limiting the duration to the minimum required and sufficient for detecting damage to the lining layer. In this case, the detection circuit may be continuously energized, but a short time lag between them is added to clarify the separation of the energization time so as not to overlap with the energization to the reference circuit as much as possible. It is desirable to alternately carry out through.

すなわち、本発明の機器ライニング層の損傷検知方法
は、全体的構成としては、耐蝕性ライニング層を施工し
て耐蝕性とした機器のライニング層の損傷を検知するた
め、導電性液媒質を収容する機器の母材金属を1極とし
液媒質中に設置した他電極との間に直流電圧を印加して
液媒質およびライニング層の直列電気抵抗を介して流れ
る電流を測定してその変化によりライニング層の破損を
検出する検出回路(A)および液媒質の性状の変化によ
り生ずる前記検出回路電流の変化を補償するため、液媒
質中に設置した2つの電極間に交流電圧を印加して2電
極間に液媒質の抵抗を介して流れる電流を測定する基準
回路(B)により損傷検知回路を構成したものにおい
て、前記基準回路への通電を間けつ的に行うことを特徴
とする。
That is, the damage detection method for the equipment lining layer of the present invention, as an overall configuration, contains a conductive liquid medium in order to detect damage to the lining layer of the equipment that is made corrosion resistant by applying the corrosion resistant lining layer. Applying a DC voltage between the base metal of the device as one pole and another electrode installed in the liquid medium, the current flowing through the series electric resistance of the liquid medium and the lining layer is measured, and the change causes the lining layer to change. Circuit (A) for detecting breakage of the liquid and a voltage between the two electrodes by applying an AC voltage between the two electrodes installed in the liquid medium in order to compensate for the change in the current of the detection circuit caused by the change in the property of the liquid medium. Further, in the damage detection circuit configured by the reference circuit (B) for measuring the current flowing through the resistance of the liquid medium, the reference circuit is energized intermittently.

好ましい実施態様として基準回路用電極の1つを検出
回路用電極と共用する場合に、基準回路および検出回路
への通電を短いタイムラグを置いて交互に繰返す。
When one of the reference circuit electrodes is shared with the detection circuit electrode as a preferred embodiment, the energization of the reference circuit and the detection circuit is alternately repeated with a short time lag.

本発明方法を添付図を参照し具体的に説明すると次の
通りである。第1図は本発明による回路通電のタイムチ
ャートで、横軸の時間経過に対し縦軸に通電の有無を接
続のON-OFFで示す。
The method of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a time chart of circuit energization according to the present invention. The horizontal axis indicates the passage of time, and the vertical axis indicates the presence or absence of energization by connection ON-OFF.

第1図の上半は基準回路(B)の通電波形で一定の時
間間隔を置いて通電継続時間T1の通電を間けつ的に繰り
返す。
In the upper half of FIG. 1, the energization waveform of the reference circuit (B) repeats the energization of the energization continuation time T 1 at intervals with a constant time interval.

第1図の下半は好ましい実施態様における検出回路
(A)への通電波形で、前記の基準回路への通電と関連
しその非通電時間間隔中に通電継続時間T2の通電を間け
つ的に行い、時間T1の通電と重畳しないようにする。重
畳回避を確実にするため通電継続時間T1,T2間に短いタ
イムラグ時間TOを設けている。
Energization waveform to the detection circuit (A) in the lower half a preferred embodiment of Figure 1, butt manner during the energization of the energization time duration T 2 during associated the non-energized time interval between energization of the reference circuit Then, do not overlap with the energization of time T 1 . A short time lag time T O is provided between the energization durations T 1 and T 2 in order to ensure that the overlap is avoided.

(作用) 本発明においては、ライニング層の損傷を連続的に検
知するという目的に対して、基準回路通電時間T1および
タイムラグ時間TO内においては検出回路への通電は行え
ないが、時間T1は短く、例えば30sec.程度、時間TOはさ
らに短くでき、これに対し検出回路通電時間は充分に長
く、例えば300sec.程度とするので、実用上、安定性状
状態を害することなく殆ど連続に近い検知が可能であ
る。
(Operation) In the present invention, for the purpose of continuously detecting damage to the lining layer, the detection circuit cannot be energized within the reference circuit energization time T 1 and the time lag time T O , but the time T 1 is short, for example, about 30 sec., And the time T O can be further shortened. On the other hand, the detection circuit energization time is sufficiently long, for example, about 300 sec., So practically it is almost continuous without impairing the stability state. Near detection is possible.

そして基準回路(B)への通電時間T1が短く通電時間
間隔が長いことにより、基準回路への積算通電電気量は
従来技術の連続印加方式に較べて格段に少なくなり、電
極への付着生成物は大幅に減少し電極寿命が長くなるだ
けでなく、タイムラグ時間が短く両通電時間差が短いこ
とにより、その後の検出回路(A)への通電継続中の電
気測定結果に対する参照補償の役割は充分に正確に果た
せることができる。
Since the energization time T 1 to the reference circuit (B) is short and the energization time interval is long, the cumulative amount of electricity supplied to the reference circuit is significantly smaller than that in the continuous application method of the prior art, and adhesion to the electrode is generated. Not only does it significantly reduce the number of objects and prolong the electrode life, but also the time lag time is short and the difference between both energization times is short, so the role of reference compensation is sufficient for the subsequent electrical measurement results during energization of the detection circuit (A). Can be done accurately.

第2図は本発明方法の有効性を確認するために行った
実験の結果で、試験は導電性液媒質として25wt%乳酸を
使用し温度21℃の条件で行い、横軸に通電時間(時)を
とり縦軸に基準回路電流(mA)をとりその時間的変化を
示す。
FIG. 2 shows the results of an experiment conducted to confirm the effectiveness of the method of the present invention. The test was conducted at a temperature of 21 ° C. using 25 wt% lactic acid as a conductive liquid medium. ) And the reference circuit current (mA) is plotted on the vertical axis to show the time change.

本発明方法に準拠し、検出回路継続通電時間T1300
秒、基準回路継続通電時間T230秒として間けつ的に通電
した場合の基準回路電流値は線(a)に示すように低下
が少ない。これと比較し基準回路に連続通電した場合は
線(b)に示すように電流低下が著しい。これにより、
通電時間が電流低下に影響していることは明白である。
さらに従来技術により両回路とも連続通電した場合は、
線(c)に示すように電流値の低下は最も著しい。これ
よりそれぞれの回路における交流および直流電圧の重畳
による影響が明白である。
According to the method of the present invention, the detection circuit continuous energization time T 1 300
Second, the reference circuit current value when intermittently energized with the reference circuit continuous energization time T 2 30 seconds shows little decrease as shown by the line (a). In comparison with this, when the reference circuit is continuously energized, the current drop is remarkable as shown by the line (b). This allows
It is clear that the conduction time affects the current reduction.
Furthermore, if both circuits are energized continuously by conventional technology,
As shown by the line (c), the decrease in current value is the most remarkable. From this, the influence of the superposition of AC and DC voltages in each circuit is clear.

(実施例) 実施例として、本発明方法の実施に直接使用する装置
の回路を第3図に示す。装置としては、従来技術のそれ
と多く共通するので、第1図の原理説明図と共通する構
成部分は同一の符号を記入して示し、説明の重複を省略
する。
(Example) As an example, FIG. 3 shows a circuit of an apparatus used directly for carrying out the method of the present invention. Since the device has much in common with that of the prior art, the same reference numerals are used to indicate the components common to the principle explanatory view of FIG. 1, and duplicate description is omitted.

従来技術の装置と異なる点について説明すると、基準
回路(B)においては、リレー(10)の接点の閉結によ
り交流電源(9)から電極(7)(8)に継続通電時間
T1で間けつ的に交流電圧が印加され、その電流値は増幅
器(11)、A/D変換器(12)を経て制御演算器(13)に
伝送される。
Explaining the difference from the device of the prior art, in the reference circuit (B), the continuous energization time from the AC power source (9) to the electrodes (7) and (8) by closing the contacts of the relay (10).
An alternating voltage is applied intermittently at T 1 , and the current value is transmitted to a control calculator (13) via an amplifier (11) and an A / D converter (12).

検出回路(A)においては、リレー(14)の接点の閉
結により直流電源(3)から母材金属(2)、電極
(7)間に継続通電時間T2で間けつ的に直流電圧が印加
され、その電流値は増幅器(15)、A/D変換器(16)を
経て制御演算器(13)に伝送される。
In the detection circuit (A), the DC voltage is intermittently applied between the DC power source (3), the base metal (2), and the electrode (7) at the continuous energization time T 2 by closing the contact of the relay (14). The applied current value is transmitted to the control calculator (13) via the amplifier (15) and the A / D converter (16).

制御演算器(13)ではメモリを介して両電流信号が対
比され、ライニング破損度の信号が出力ライン(17)に
出力される。
In the control arithmetic unit (13), both current signals are compared with each other through the memory, and a lining damage degree signal is output to the output line (17).

制御演算器(13)から制御線(18)(19)を介してリ
レー(10)(14)に電圧印加の信号がタイミングとタイ
ムラグTOをとるようにして伝達される。
A voltage application signal is transmitted from the control arithmetic unit (13) to the relays (10) and (14) via the control lines (18) and (19) so as to have a timing and a time lag T O.

(発明の効果) 本発明方法によると、耐蝕性ライニング層の施工によ
り耐蝕性を付与した機器の使用中のライニング層の損傷
検知につき、基準回路の基準補償誤差を生ずる電極付着
物の生成を少なくして正確な損傷度の検出を可能とし、
それにより製品汚染、機器損傷による事故発生を防止す
ることができる効果がある。
(Effects of the Invention) According to the method of the present invention, the generation of electrode deposits that cause reference compensation error of the reference circuit is reduced when detecting damage to the lining layer during use of a device provided with corrosion resistance by applying the corrosion-resistant lining layer. Enables accurate detection of damage level,
This has the effect of preventing accidents due to product contamination and equipment damage.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による回路通電のタイムチヤート、第2
図は横軸に時間、縦軸に基準回路電流値をとり基準回路
電極への付着生成物による電流値の変化を示す図表、第
3図は本発明方法の実施に使用する装置の回路構成を示
す図で、第4図はライニング層の損傷検知の従来技術の
1例を原理的に示す回路構成図である。 (1)……ライニング層、(2)……母材金属、(3)
……直流電源、(4)……+極、(5)……導電性液媒
質、(6)……電極担体、(7)(8)……電極、
(9)……交流電源、(10)(14)……リレー、(11)
(15)……増幅器、(12)(16)……A/D変換器、(1
3)……制御演算器、(18)(19)……制御線、(A)
……検出回路、(B)……基準回路、(T1)(T2)(TO)……
時間、(a)(b)(c)……曲線。
FIG. 1 is a timing chart of circuit energization according to the present invention, FIG.
FIG. 3 is a diagram showing the change in current value due to the adhered products on the reference circuit electrodes, with the horizontal axis representing time and the vertical axis representing the reference circuit current value, and FIG. FIG. 4 is a circuit configuration diagram showing in principle an example of a conventional technique for detecting damage to a lining layer. (1) …… lining layer, (2) …… base metal, (3)
...... DC power supply, (4) …… + pole, (5) …… conductive liquid medium, (6) …… electrode carrier, (7) (8) …… electrode,
(9) …… AC power supply, (10) (14) …… Relay, (11)
(15) …… Amplifier, (12) (16) …… A / D converter, (1
3) …… Control calculator, (18) (19) …… Control line, (A)
…… Detection circuit, (B) …… Reference circuit, (T 1 ) (T 2 ) (T O ) ……
Time, (a) (b) (c) ... Curve.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】耐蝕性ライニング層を施工して耐蝕性とし
た機器のライニング層損傷を検知するため、導電性液媒
質を収容する機器の母材金属を1極とし液媒質中に設置
した他電極との間に直流電圧を印加して液媒質およびラ
イニング層の直列電気抵抗を介して流れる電流を測定し
てその変化によりライニング層の破損を検出する検出回
路、および液媒質の性状の変化により生ずる前記検出回
路電流の変化を補償するため、液媒質中に設置した2つ
の電極間に交流電圧を印加して2電極間に液媒質の抵抗
を介して流れる電流を測定する基準回路により損傷検知
回路を構成したものにおいて、前記基準回路への通電を
間けつ的に行うことを特徴とする機器ライニング層の損
傷検知方法。
1. In order to detect damage to the lining layer of a device which is made corrosion resistant by applying a corrosion resistant lining layer, the base metal of the device containing the conductive liquid medium is set as one pole and installed in the liquid medium. By applying a DC voltage between the electrodes and measuring the current flowing through the series electric resistance of the liquid medium and the lining layer and detecting the damage of the lining layer due to that change, the change of the property of the liquid medium In order to compensate the change in the detection circuit current that occurs, an AC voltage is applied between two electrodes installed in the liquid medium, and a reference circuit that measures the current flowing through the resistance of the liquid medium between the two electrodes detects damage. A method for detecting damage to a device lining layer, characterized in that, in a circuit configuration, the reference circuit is energized intermittently.
【請求項2】基準回路用電極の1つを検出回路用電極と
共用する場合に、基準回路および検出回路への通電を短
いタイムラグを置いて交互に繰返す特許請求の範囲第1
項記載の機器ライニング層の損傷検知方法。
2. The method according to claim 1, wherein when one of the electrodes for the reference circuit is shared with the electrode for the detection circuit, energization to the reference circuit and the detection circuit is alternately repeated with a short time lag.
A method for detecting damage to the equipment lining layer according to the item.
JP26488087A 1987-10-20 1987-10-20 Damage detection method for equipment lining layer Expired - Lifetime JPH0830686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26488087A JPH0830686B2 (en) 1987-10-20 1987-10-20 Damage detection method for equipment lining layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26488087A JPH0830686B2 (en) 1987-10-20 1987-10-20 Damage detection method for equipment lining layer

Publications (2)

Publication Number Publication Date
JPH01107143A JPH01107143A (en) 1989-04-25
JPH0830686B2 true JPH0830686B2 (en) 1996-03-27

Family

ID=17409508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26488087A Expired - Lifetime JPH0830686B2 (en) 1987-10-20 1987-10-20 Damage detection method for equipment lining layer

Country Status (1)

Country Link
JP (1) JPH0830686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152648A (en) * 2021-12-15 2022-03-08 无锡市智控科技有限公司 Glass lining online damage detection device and detection method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836097B2 (en) * 1989-05-09 1998-12-14 三菱化学株式会社 Defect detection device and detection method
JP4568140B2 (en) * 2005-02-22 2010-10-27 本田技研工業株式会社 Gas detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152648A (en) * 2021-12-15 2022-03-08 无锡市智控科技有限公司 Glass lining online damage detection device and detection method thereof
CN114152648B (en) * 2021-12-15 2022-09-09 无锡市智控科技有限公司 Online breakage detection device and detection method for glass lining

Also Published As

Publication number Publication date
JPH01107143A (en) 1989-04-25

Similar Documents

Publication Publication Date Title
EP0467902B1 (en) Fault detection in electrochemical gas sensing equipment
RU2222001C2 (en) Procedure foreseeing utilization of electrochemical noise under corrosion
US4777444A (en) Method and apparatus for testing the integrity of an electrode in a potentiometric measuring electrode system
JPH0523632B2 (en)
JP2004528552A (en) Sensor array and method for electrochemical corrosion monitoring
JPH07198643A (en) Method for measuring resistance of solution, method for measuring corrosion rate of metal surface using method thereof and device therefor
KR850001435B1 (en) Detector of ion density
JPH0830686B2 (en) Damage detection method for equipment lining layer
JPS6355661B2 (en)
JP3424611B2 (en) Electrochemical sensor device and measuring method using the same
JPS643071Y2 (en)
FI66257C (en) FARING REQUIREMENTS FOR VARIABLE ELECTRICAL EQUIPMENT WITH JEWELLE EFFECTIVE WASHING MATERIAL IN MATERIAL MATERIAL
US4829253A (en) Three wire amplifier circuit with diagnostic capabilities
JPS6239318Y2 (en)
EP0630426B1 (en) Process for mantaining a cathodic protection against corrosion and device for carrying out said process
US3410764A (en) Corrosion detecting and analyzing devices
JPS59174718A (en) Electromagnetic flowmeter
GB2250095A (en) Measuring electroless plating deposition speed
JPS6379053A (en) Corrosion test for metal material
JPH05106076A (en) Method for inspecting electrolytic cell
AU644355B2 (en) Fault detection in electrochemical gas sensing equipment
JP2640494B2 (en) Inspection device for paint defects on the inner surface of can
JPS6313457Y2 (en)
JPS6097247A (en) Continuous liquid-concentration measuring device
SU912440A1 (en) Apparatus for monitoring parameters of resistance welding process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080327