JPH08306256A - Electric contact point on the basis of nickel - Google Patents

Electric contact point on the basis of nickel

Info

Publication number
JPH08306256A
JPH08306256A JP7230265A JP23026595A JPH08306256A JP H08306256 A JPH08306256 A JP H08306256A JP 7230265 A JP7230265 A JP 7230265A JP 23026595 A JP23026595 A JP 23026595A JP H08306256 A JPH08306256 A JP H08306256A
Authority
JP
Japan
Prior art keywords
nickel
layer
atomic
glass
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7230265A
Other languages
Japanese (ja)
Inventor
Joachim J Hauser
ジャッキーズ ハウザー,ジョアチム
John T Plewes
トラヴィス プリューズ,ジョン
Murray Robbins
ロビンス,マレイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Corp filed Critical AT&T Corp
Publication of JPH08306256A publication Critical patent/JPH08306256A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To raise stability as good as gold while lowering contact resistance by providing a surface layer composed of an alloy of nickel with a glass-forming additive element. SOLUTION: A surface layer 22 is formed on an electrically conductive member 21, and this layer 22 is made of an alloy of nickel with at least one glass- forming additive element. A part 23 of the layer 22, when exposed to an oxidizing atmosphere, includes oxygen further. In this case, boron, silicon, germanium, phosphorus, arsenic, antimony, and bismuth are used as glass-forming additive elements, and the quantity of them in the contact layer is caused to fall within a range of 1 to 40 atomic % or a range of 2 to 10 atomic % with respect to the total quantity of nickel and the additive elements. With this, metallic conductivity of the contact layer in an oxidizing atmosphere is maintained, and along with this, formation of a semiconducting nickel oxide is inhibited, and/or a thermodynamically further stabilized compound can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は電気接点表面に関し、さらに詳し
くはニッケルを基本とする接点表面材料に関する。
TECHNICAL FIELD This invention relates to electrical contact surfaces and, more particularly, to nickel-based contact surface materials.

【0002】[0002]

【発明の背景】高品質電気接点を製造する際には金を用
いるのが典型的である。接点抵抗が低く化学的安定度が
大きいという金の特性がこのような用途では主要な利点
となる。しかし金の価格は依然として高いので、接点製
造用の代替材料をさがす努力が続けられている。
BACKGROUND OF THE INVENTION Gold is typically used in making high quality electrical contacts. The low contact resistance and high chemical stability properties of gold are a major advantage in such applications. However, since the price of gold is still high, efforts are ongoing to find alternative materials for making contacts.

【0003】そのような代替材料の中で主要なものは金
以外の貴金属である。例えば銀−パラジウム合金はある
種の応用例に適切であることが判明している。このよう
な代替合金は金より低価格であるが、さらにコストを下
げることが望ましい。従って例えば銅−ニッケル合金の
ような非貴金属合金が接点抵抗と長時間にわたる安定性
との面で検討されて来た。エス・エム・ガルテ(S.
M.Garte)ら「ニッケルを含む合金の接点特性」
(”Contact Properties of Nickel-ContainingAlloy
s”)、エレクトリカルコンタクト(Electrical Contac
t)1972年、イリノイ工科工学(Iillinois Institu
te of Technology)を参照のこと。
The major of such alternative materials are precious metals other than gold. Silver-palladium alloys, for example, have been found to be suitable for certain applications. While such alternative alloys are less expensive than gold, it is desirable to further reduce costs. Therefore, non-noble metal alloys such as copper-nickel alloys have been investigated in terms of contact resistance and long-term stability. S.M.Garte (S.M.
M. Garte) et al. "Contact characteristics of alloys containing nickel"
(“Contact Properties of Nickel-ContainingAlloy
s ”), electrical contacts ( Electrical Contac
t ) 1972, Iillinois Institu
te of Technology).

【0004】[0004]

【発明の概要】ある種のニッケル合金は金と匹敵するほ
どに安定性が高く接点抵抗が低いという接点特性を有す
ることが判明した。本発明によるデバイスは、ニッケル
と少なくとも1つのガラス形成添加元素例えばボロン、
シリコン、ゲルマニウム、リン、ヒ素、アンチモンまた
はビスマスとを含む合金の表面である接点表面を含む。
そのようなガラス形成元素が存在すると酸化ふんい気中
における接点層の金属伝導度を維持する一方で半導体ニ
ッケル酸化物の形成が禁止され、及び/または熱力学的
にさらに安定した化合物が形成される結果となると考え
られる。
SUMMARY OF THE INVENTION It has been found that certain nickel alloys have contact characteristics that are as stable and have low contact resistance as gold. The device according to the invention comprises nickel and at least one glass-forming additive element such as boron,
Includes contact surfaces that are surfaces of alloys containing silicon, germanium, phosphorus, arsenic, antimony or bismuth.
The presence of such glass-forming elements maintains the metal conductivity of the contact layer in an oxidizing atmosphere while inhibiting the formation of semiconducting nickel oxides and / or forming thermodynamically more stable compounds. It is thought that this will result in

【0005】1つまたはいくつかのガラス形成元素を加
えるとその結果として、少なくともこの層を酸化ふんい
気に露出させる時には、結晶学的に秩序のない(dis
ordered)構造が生じる。このことはガラス形成
元素を付加しない場合には結晶ニッケル酸化物が形成さ
れるのと対照的である。または、結晶学的に秩序のない
構造はイオン照射によって生成される。この目的はアル
ファ粒子が好適に用いられる。100mΩに満たない表
面接点抵抗が、酸化ふんい気に一層長く露出させた後で
も典型的に維持される。
The addition of one or several glass-forming elements results in a crystallographically disordered (dis) state, at least when the layer is exposed to oxidizing atmosphere.
ordered) structure occurs. This is in contrast to the formation of crystalline nickel oxide when the glass-forming element is not added. Alternatively, a crystallographically unordered structure is produced by ion irradiation. For this purpose, alpha particles are preferably used. Surface contact resistances of less than 100 mΩ are typically maintained after longer exposure to oxidative atmosphere.

【0006】[0006]

【詳細な説明】図1に示す電気接続デバイスはハウジン
グ11と接点ピン12とを含む。ハウジング11は電気
的絶縁材料で作られており、接点ピン12は本発明によ
る接点表面を有している。図2に断面図で示されている
のは電気的伝導部材21で、その上に表面層22が置か
れている。本発明に従い、表面層22はニッケルと少な
くとも1つのガラス形成添加元素との合金で作られる。
酸化ふんい気に露出される際には層22の部分23はさ
らに酸素を含む。
DETAILED DESCRIPTION The electrical connection device shown in FIG. 1 includes a housing 11 and contact pins 12. The housing 11 is made of an electrically insulating material and the contact pins 12 have contact surfaces according to the invention. Shown in cross-section in FIG. 2 is an electrically conductive member 21, on which a surface layer 22 is placed. In accordance with the present invention, surface layer 22 is made of an alloy of nickel and at least one glass-forming additive element.
Portion 23 of layer 22 further contains oxygen when exposed to oxidizing atmosphere.

【0007】好ましいガラス形成添加元素はボロン、シ
リコン、ゲルマニウム、リン、ヒ素、アンチモン及びビ
スマスであり、接点層中のこれらの量は、ニッケルと添
加元素の合計量に対して好ましくは1ないし40原子%
の範囲、さらに好ましくは2ないし10原子%の範囲で
ある。熱力学的に安定な化学量論的化合物が形成される
場合25ないし35原子%の範囲も好ましい。
Preferred glass-forming additive elements are boron, silicon, germanium, phosphorus, arsenic, antimony and bismuth, the amount of which in the contact layer is preferably 1 to 40 atoms relative to the total amount of nickel and additive element. %
Is more preferable, and the range of 2 to 10 atomic% is more preferable. A range of 25 to 35 atomic% is also preferred if thermodynamically stable stoichiometric compounds are formed.

【0008】合計するとニッケル及びガラス形成添加元
素は接点層材料の少なくとも70原子%を占める。電気
的及び機械的接点特性を向上させるという点ではコバル
トを添加するのが望ましく、コバルト以外の元素は合計
で5原子%未満好ましくは1原子%未満に制限するのが
望ましい。特に不適当なのはイオン、セレン、テルルの
ようなVI族元素が存在することであり、これらの合計
量は好ましくは0.5原子%未満に制限される。
In total, the nickel and glass forming additive elements make up at least 70 atomic percent of the contact layer material. From the viewpoint of improving electrical and mechanical contact characteristics, it is desirable to add cobalt, and it is desirable to limit the total of elements other than cobalt to less than 5 atomic% and preferably less than 1 atomic%. Particularly unsuitable is the presence of Group VI elements such as ions, selenium and tellurium, the total amount of which is preferably limited to less than 0.5 atom%.

【0009】非化学量論的集合体の場合はニッケルに対
するガラス形成添加物は酸化ふんい気中での半導体ニッ
ケル酸化物の形成を禁止するものと考えられる。ガラス
形成添加物が存在する場合はそのような半導体ニッケル
酸化物の代わりに、ニッケル、酸素及びガラス形成添加
物を含む集合体の表面層が該層の充分に広い領域におい
て形成されるものと考えられる。そのような集合体は本
質的に金属伝導特性を有している。実験的証拠に基づ
き、酸素を含む表面層の厚さは2.5nmの大きさであ
ると推測される。
In the case of non-stoichiometric aggregates, glass-forming additives to nickel are believed to inhibit the formation of semiconducting nickel oxide in oxidizing atmosphere. If a glass-forming additive is present, it is believed that instead of such a semiconductor nickel oxide, a surface layer of an assembly containing nickel, oxygen and a glass-forming additive will be formed over a sufficiently large area of the layer. To be Such an assembly inherently has metallic conducting properties. Based on experimental evidence, the thickness of the surface layer containing oxygen is estimated to be as large as 2.5 nm.

【0010】ニッケルを含む層における結晶学的無秩序
構造はイオン照射の際にも生成され、この場合は酸化ふ
んい気に露出する前であっても結晶学的無秩序構造が生
じる。これも酸化された表面部分の無秩序、準アモルフ
ァス的なガラス状本性であり、酸化ふんい気用に用いら
れる接点層の望ましい程に低い接点抵抗を成す助けとな
ると考えられる。結晶学的に無秩序なニッケル集合体は
好ましくは少なくとも50原子%の量のニッケルを含
む。以下の実例は本発明の接点の特性を特定して説明す
るものである。
The crystallographically disordered structure in the layer containing nickel is also formed during ion irradiation, and in this case, the crystallographically disordered structure occurs even before the exposure to the oxidizing atmosphere. It is also believed that this is a disordered, quasi-amorphous glassy nature of the oxidized surface portion, which helps to achieve the desired low contact resistance of the contact layer used for oxidizing fumes. The crystallographically disordered nickel aggregate preferably comprises nickel in an amount of at least 50 atomic%. The following examples specify and describe the characteristics of the contacts of the present invention.

【0011】[0011]

【実例1】95原子%のニッケルと5原子%のアンチモ
ンから本質的に成る層が銅基板上に約3μmの厚さにな
るようゲッタ・スパッタにより堆積された。標準的な四
点探針を用いて表面接点抵抗を測定したが、5ないし7
mΩの範囲であることが判った。堆積されたフィルムは
次に高温、多湿(温度75℃、相対湿度95%で65時
間)での安定性の試験をされたが、接点抵抗は15ない
し20mΩの範囲であることが判った。
Example 1 A layer consisting essentially of 95 atomic% nickel and 5 atomic% antimony was deposited by getter sputtering on a copper substrate to a thickness of about 3 μm. The surface contact resistance was measured using a standard four-point probe.
It was found to be in the range of mΩ. The deposited film was then tested for stability at elevated temperatures and humidity (temperature 75 ° C., 95% relative humidity for 65 hours), and contact resistance was found to be in the range of 15-20 mΩ.

【0012】[0012]

【実例2】95原子%のニッケルと5原子%のリンから
本質的に成る層上で実例1と同様な実験を行った。接点
抵抗は試験前1.8mΩ、試験後4.4ないし5mΩで
あった。
Example 2 An experiment similar to Example 1 was conducted on a layer consisting essentially of 95 atomic% nickel and 5 atomic% phosphorus. The contact resistance was 1.8 mΩ before the test and 4.4 to 5 mΩ after the test.

【0013】[0013]

【実例3】95原子%のニッケルと5原子%のボロンか
ら本質的に成る層上で実例1と同様な実験を行った。接
点抵抗は試験前2.9ないし3.5mΩの範囲、試験後
10ないし14mΩの範囲であった。
Example 3 An experiment similar to Example 1 was performed on a layer consisting essentially of 95 atomic% nickel and 5 atomic% boron. The contact resistance was in the range of 2.9 to 3.5 mΩ before the test and in the range of 10 to 14 mΩ after the test.

【0014】[0014]

【実例4】95原子%のニッケルと5原子%のシリコン
から本質的に成る層上で実例1と同様な実験を行った。
接点抵抗は試験前1.6ないし2.1mΩの範囲、試験
後4.5ないし6mΩの範囲であった。
Example 4 An experiment similar to Example 1 was performed on a layer consisting essentially of 95 atomic% nickel and 5 atomic% silicon.
The contact resistance was in the range of 1.6 to 2.1 mΩ before the test and in the range of 4.5 to 6 mΩ after the test.

【0015】[0015]

【実例5】95原子%のニッケルと5原子%のゲルマニ
ウムから本質的に成る層上で実例1と同様な実験を行っ
た。接点抵抗は試験前1.5ないし1.85mΩの範
囲、試験後10ないし14mΩの範囲であった。
Example 5 An experiment similar to Example 1 was performed on a layer consisting essentially of 95 atomic% nickel and 5 atomic% germanium. The contact resistance was in the range of 1.5 to 1.85 mΩ before the test and in the range of 10 to 14 mΩ after the test.

【0016】[0016]

【実例6】208g/lのNiCl2 ・6H2 O、49
g/lのH3 PO4 85%及び5g/lのH3 PO3
含む水溶液を用意した。この溶液を銅電極上に電気メッ
キするのに用いた。メッキ漕の温度は75℃、電流密度
は150mA/cm2 、メッキ速度は約3μm/分であ
った。堆積層の厚さは約4.5μmであった。堆積層の
接点抵抗は試験ふんい気に露出させた後で10mΩ未満
であった。
[Example 6] 208 g / l of NiCl 2 .6H 2 O, 49
An aqueous solution containing 85% g / l H 3 PO 4 and 5 g / l H 3 PO 3 was prepared. This solution was used to electroplate on copper electrodes. The temperature of the plating bath was 75 ° C., the current density was 150 mA / cm 2 , and the plating rate was about 3 μm / min. The thickness of the deposited layer was about 4.5 μm. The contact resistance of the deposited layer was less than 10 mΩ after exposure to test atmosphere.

【0017】[0017]

【実例7】0.087モルのAs25 と0.5モルの
NiCl2 ・6H2 Oの水溶液を用意した。銅電極は、
この溶液からパルスメッキによりニッケル、ヒ素でメッ
キした。温度は75℃、電流パルスは200mA/cm
2 で1.5秒間オン、0.5秒間オフとした。堆積層の
厚さは約4.5μmであった。堆積層の接点抵抗は試験
ふんい気に露出させた後で10mΩ未満であった。
Example 7 An aqueous solution of 0.087 mol As 2 O 5 and 0.5 mol NiCl 2 .6H 2 O was prepared. The copper electrode is
This solution was plated with nickel and arsenic by pulse plating. Temperature is 75 ℃, current pulse is 200mA / cm
2 was on for 1.5 seconds and off for 0.5 seconds. The thickness of the deposited layer was about 4.5 μm. The contact resistance of the deposited layer was less than 10 mΩ after exposure to test atmosphere.

【0018】[0018]

【実例8】50ccの水に5gのGeO2 、及び4cc
のアンモニウム水酸化物、及び0.5モルのNiCl2
・6H2 Oの溶液に150g/lのアンモニウム・クエ
ン酸塩を加えた。この溶液をろ過し、pHが8.5とな
るまでアンモニウム水酸化物を加えた。この溶液から銅
電極上にニッケル・ゲルマニウムの層がメッキされた。
温度は75℃、濾過密度は150mA/cm2 、メッキ
速度は約2.5μm/分であった。堆積層の厚さは約
4.5μmであった。堆積層の接点抵抗は試験ふんい気
に露出させた後で10mΩ未満であった。
[Example 8] 5 g of GeO 2 and 4 cc in 50 cc of water
Ammonium hydroxide and 0.5 mol of NiCl 2
150 g / l ammonium citrate was added to the 6H 2 O solution. The solution was filtered and ammonium hydroxide was added until the pH was 8.5. A nickel-germanium layer was plated from this solution onto a copper electrode.
The temperature was 75 ° C., the filtration density was 150 mA / cm 2 , and the plating rate was about 2.5 μm / min. The thickness of the deposited layer was about 4.5 μm. The contact resistance of the deposited layer was less than 10 mΩ after exposure to test atmosphere.

【0019】[0019]

【実例9】厚さ約350nmのニッケル層を研磨した銅
はく上に堆積させた。ニッケル層の一部分はアルミニウ
ムはくで覆い、ニッケル層の覆わない部分にアルファ粒
子を打込んだアルファ粒子のエネルギーは約1.8Me
Vであった。実例1で記載した温度で湿った空気に露出
させた後で最小の接点抵抗(10mΩ未満)を得るため
にはアルファ粒子の線量は約1.6×1016 粒子/c
2 が最適またはそれに近いということが判った。(こ
の試験は通常の大気の状態に5年間露出させたのとほぼ
等価であると考えられる。)試験の後、打込まれた部分
とアルミニウムはくで覆われていた部分とを比較して視
覚検査を行ったが、後者がにぶい茶色がかった状態を示
したのに対し、前者は明るく輝いていた。
Example 9 A nickel layer about 350 nm thick was deposited on a polished copper foil. Part of the nickel layer is covered with aluminum foil, and the energy of the alpha particles is about 1.8 Me, which is the alpha particles implanted into the uncovered part of the nickel layer
It was V. The dose of alpha particles is about 1.6 × 10 16 particles / c to obtain the minimum contact resistance (less than 10 mΩ) after exposure to humid air at the temperature described in Example 1.
It has been found that m 2 is optimal or close to it. (This test is considered to be almost equivalent to exposure to normal atmospheric conditions for 5 years.) After the test, the driven part and the part covered with aluminum foil were compared. Upon visual inspection, the latter showed a dull brown color, while the former was bright and shiny.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による電気接続デバイス斜視図であ
る。
FIG. 1 is a perspective view of an electrical connection device according to the present invention.

【図2】 本発明によるデバイスの一部分の概略的断面
図である。
FIG. 2 is a schematic cross-sectional view of a portion of a device according to the present invention.

【符号の説明】[Explanation of symbols]

11 ハウジング 12 接点ピン 11 housing 12 contact pins

フロントページの続き (72)発明者 プリューズ,ジョン トラヴィス アメリカ合衆国 07928 ニュージャーシ ィ,カザム,ウッズ レーン 8 (72)発明者 ロビンス,マレイ アメリカ合衆国 07922 ニュージャーシ ィ,バークレイ ハイツ,ケント ドライ ヴ 110Continued Front Page (72) Inventor Pleuze, John Travis United States 07928 New Jersey, Kazam, Woods Lane 8 (72) Inventor Robins Murray United States 07922 New Jersey, Berkeley Heights, Kent Drive 110

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 接点材料の体部の表面を含む電気接点を
含む装置において、 該接点材料は結晶学的に無秩序であり、相当な量のニッ
ケルを含むことを特徴とする装置。
1. A device comprising an electrical contact comprising a surface of a body of contact material, the contact material being crystallographically disordered and containing a substantial amount of nickel.
JP7230265A 1984-08-31 1995-09-07 Electric contact point on the basis of nickel Pending JPH08306256A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US64670784A 1984-08-31 1984-08-31
US646707 1984-08-31
US76140285A 1985-08-01 1985-08-01
US761402 1985-08-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60503833A Division JPS62500129A (en) 1984-08-31 1985-08-19 Nickel-based electrical contacts

Publications (1)

Publication Number Publication Date
JPH08306256A true JPH08306256A (en) 1996-11-22

Family

ID=27094992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7230265A Pending JPH08306256A (en) 1984-08-31 1995-09-07 Electric contact point on the basis of nickel

Country Status (7)

Country Link
EP (1) EP0192703B1 (en)
JP (1) JPH08306256A (en)
KR (1) KR930009233B1 (en)
CA (1) CA1248780A (en)
DE (1) DE3574075D1 (en)
ES (1) ES8704042A1 (en)
WO (1) WO1986001636A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481130A (en) * 1987-09-21 1989-03-27 Omron Tateisi Electronics Co Electrical contact
JPH0359972A (en) * 1989-07-27 1991-03-14 Yazaki Corp Electrical contact
JP3467527B2 (en) * 1992-12-17 2003-11-17 株式会社山王 Contact material and method of manufacturing the same
FI113912B (en) * 2001-12-13 2004-06-30 Outokumpu Oy Connector terminal with additive coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637218B2 (en) * 1977-06-06 1981-08-29
JPS57132615A (en) * 1981-02-10 1982-08-17 Tokyo Shibaura Electric Co Composite contact
JPS588085A (en) * 1981-06-30 1983-01-18 フアルムイタリア・カルロ・エルバ・ソチエタ・ペル・アツイオ−ニ Manufacture of optically active trans-6- substituted-5(r)-2-penem-3-carboxylic acid derivatives, manufacture and compounds obtained thereby
JPS59229428A (en) * 1984-04-27 1984-12-22 Toshiba Corp Production of two-stage hysteresis loop soft magnetic alloy
JPS6129021A (en) * 1984-05-11 1986-02-08 バ−リングトン インダストリ−ズ インコ−ポレ−テツド Electric contact and method of producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1769229A (en) * 1925-05-19 1930-07-01 Ambrose J Mandell Electrode and contact element
US3017532A (en) * 1956-02-27 1962-01-16 Gen Am Transport Electrical elements
US3856513A (en) * 1972-12-26 1974-12-24 Allied Chem Novel amorphous metals and amorphous metal articles
NL7513557A (en) * 1974-11-29 1976-06-01 Allied Chem PRECISION RESISTANCE.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637218B2 (en) * 1977-06-06 1981-08-29
JPS57132615A (en) * 1981-02-10 1982-08-17 Tokyo Shibaura Electric Co Composite contact
JPS588085A (en) * 1981-06-30 1983-01-18 フアルムイタリア・カルロ・エルバ・ソチエタ・ペル・アツイオ−ニ Manufacture of optically active trans-6- substituted-5(r)-2-penem-3-carboxylic acid derivatives, manufacture and compounds obtained thereby
JPS59229428A (en) * 1984-04-27 1984-12-22 Toshiba Corp Production of two-stage hysteresis loop soft magnetic alloy
JPS6129021A (en) * 1984-05-11 1986-02-08 バ−リングトン インダストリ−ズ インコ−ポレ−テツド Electric contact and method of producing same

Also Published As

Publication number Publication date
CA1248780A (en) 1989-01-17
ES8704042A1 (en) 1987-03-01
EP0192703A1 (en) 1986-09-03
EP0192703B1 (en) 1989-11-02
KR860700310A (en) 1986-08-01
KR930009233B1 (en) 1993-09-24
WO1986001636A1 (en) 1986-03-13
ES546448A0 (en) 1987-03-01
DE3574075D1 (en) 1989-12-07

Similar Documents

Publication Publication Date Title
EP0059348B1 (en) An electroconductive paste to be baked on ceramic bodies to provide capacitors, varistors or the like
JP2591205B2 (en) Thermistor
US4261764A (en) Laser method for forming low-resistance ohmic contacts on semiconducting oxides
JPH05251210A (en) Conductive chip type ceramic element and manufacturing method thereof
US4610932A (en) Electrical contacts
JPH08306256A (en) Electric contact point on the basis of nickel
US4925407A (en) Nickel-based electrical contact
Lindborg et al. Intermetallic growth and contact resistance of tin contacts after aging
US3555376A (en) Ohmic contact electrode to semiconducting ceramics and a method for making the same
JP2007242715A (en) Method of manufacturing ceramic electronic component
JP2722401B2 (en) Highly conductive copper alloy for electrical and electronic component wiring with excellent migration resistance
US4732821A (en) Nickel-based electrical contact
JP4904853B2 (en) Manufacturing method of ceramic electronic component
JP2555770B2 (en) Copper thick film circuit substrate and method of manufacturing the same
EP0225912A1 (en) Nickel-based electrical contact device
JPS62500129A (en) Nickel-based electrical contacts
JPS61288384A (en) Electric contact
JPH087960A (en) Terminal material
EP4365329A1 (en) Composite material, composite material production method, terminal, and terminal production method
JPS58201201A (en) Conductive composition and electrode forming method for semiconductor porcelain
JPS61179261A (en) Electrically conductive resin paste
KR20240060624A (en) Silver plating film and electrical contacts having the corresponding silver plating film
JPH0114301B2 (en)
JPH04211101A (en) Voltage nonlinear resistor element
JPH0674463B2 (en) Copper alloy for lead frame