JPH08305407A - Control system for jacking head - Google Patents

Control system for jacking head

Info

Publication number
JPH08305407A
JPH08305407A JP7111583A JP11158395A JPH08305407A JP H08305407 A JPH08305407 A JP H08305407A JP 7111583 A JP7111583 A JP 7111583A JP 11158395 A JP11158395 A JP 11158395A JP H08305407 A JPH08305407 A JP H08305407A
Authority
JP
Japan
Prior art keywords
propulsion
control
pressure receiving
fuzzy
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7111583A
Other languages
Japanese (ja)
Inventor
Teruo Kabeuchi
輝夫 壁内
Takashi Oshima
高 大島
Masaya Hattori
正也 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7111583A priority Critical patent/JPH08305407A/en
Publication of JPH08305407A publication Critical patent/JPH08305407A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/22Fuzzy logic, artificial intelligence, neural networks or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE: To provide the control system considering the experiential rules of experts for the steering control of a jacking head in the jacking method of construction. CONSTITUTION: This system is composed of a position detecting means C4 for detecting the horizontal and vertical positions of the jacking head itself to a planned jacking line, attitude detecting means C2 for detecting the horizontal and vertical attitudes of the jacking head itself, and fuzzy inference parts 52 and 53 having plural fuzzy rules for defining the position information from the position detecting means C4 and the attitude information from the attitude detecting means C2 as input values and defining a control direction and a controlled variable corresponding to a pressure plane as output values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、後方から押圧力を受け
て土中を推進する推進管の先端側に連結された推進用ヘ
ッドに土中推進に伴って土中からの反力を受けるように
設けられた受圧面の方向を変更することによって前記推
進用ヘッドの推進方向を制御する制御システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention receives a reaction force from the inside of a propelling head connected to the tip side of a propulsion pipe for propelling the soil by receiving a pressing force from the rear side as the soil is propelled. The present invention relates to a control system for controlling the propulsion direction of the propulsion head by changing the direction of the pressure receiving surface.

【0002】[0002]

【従来の技術】従来、この種の制御システムは、受圧面
を一定方向に向けたまま一定の推進力で推進する際受圧
面の向きとは反対側の方向に受ける反力により推進用ヘ
ッドの推進方向が変化する現象を利用して、所定の目標
点に推進用ヘッドが達するように受圧面の向きを調節す
る。この目的のために、推進計画線に対する前記推進用
ヘッドの位置を検出する位置検出手段と、前記推進用ヘ
ッド姿勢を検出する姿勢検出手段が備えられているとと
もに、受圧面は推進用ヘッドの前後軸芯周りに回動可能
に構成されている。この受圧面の調節においては、位置
検出手段によって得られた推進用ヘッド位置が許容範囲
から外れている場合そのずれを修正するように受圧面の
向きを調節し、さらに姿勢検出手段によって得られた推
進用ヘッドの姿勢が許容範囲から外れている場合もその
ずれを修正するように受圧面の向きを調節しなければな
らない。この位置のずれの修正と姿勢のずれの修正の両
方を満たすような受圧面の向きがあればよいが、位置の
ずれの修正が姿勢のずれを大きくしたり、逆に姿勢のず
れの修正が位置のずれを大きくするケースがあり、通常
の定量的手法を用いた操舵制御システムでは推進計画線
に対する蛇行が大きくなるため、そのようなケースでは
エキスパートによる経験則を頼りに受圧面の制御を行わ
なければならず、結果的に作業効率が低いものとなって
いた。
2. Description of the Related Art Conventionally, when a propelling head is propelled with a constant propulsive force while the pressure receiving surface is oriented in a constant direction, a reaction force received in a direction opposite to the direction of the pressure receiving surface causes the propulsion head to move. By utilizing the phenomenon that the propulsion direction changes, the direction of the pressure receiving surface is adjusted so that the propulsion head reaches a predetermined target point. For this purpose, position detecting means for detecting the position of the propulsion head with respect to the propulsion planning line, and attitude detection means for detecting the propulsion head attitude are provided, and the pressure receiving surface is provided at the front and rear of the propulsion head. It is configured to be rotatable around the axis. In the adjustment of the pressure receiving surface, the direction of the pressure receiving surface is adjusted so as to correct the deviation when the propulsion head position obtained by the position detecting means is out of the allowable range, and further obtained by the attitude detecting means. Even if the attitude of the propulsion head is out of the allowable range, the direction of the pressure receiving surface must be adjusted so as to correct the deviation. It suffices if the pressure-receiving surface is oriented so as to satisfy both the correction of the positional deviation and the correction of the positional deviation, but the correction of the positional deviation can increase the positional deviation, or conversely, the correction of the positional deviation. There is a case where the position shift is large, and in a steering control system that uses a normal quantitative method, the meandering with respect to the propulsion planning line becomes large.In such cases, the pressure receiving surface is controlled by relying on the empirical rule of the expert. Therefore, the work efficiency was low as a result.

【0003】[0003]

【発明が解決しようとする課題】上述したように、土中
推進に伴って土中からの反力を受けるように設けられた
受圧面の方向を変更することによって推進用ヘッドの推
進方向を変更する、いわゆる推進工法のための操舵制御
においては、伝統的な定量的手法では満足できる結果が
得られないため、作業効率の低下や人件費の向上を犠牲
にして、人間が中心である操舵制御システムを採用して
いる。本発明の課題は、推進用ヘッドのための制御シス
テムを信頼性を低下させることなしに人間が中心となる
制御システムから自動制御システムに移行するための技
術を提供することである。
As described above, the propulsion direction of the propulsion head is changed by changing the direction of the pressure receiving surface provided so as to receive the reaction force from the soil during the propulsion in the soil. In the so-called steering control for the so-called propulsion method, traditional quantitative methods do not give satisfactory results, so at the expense of lowering work efficiency and increasing labor costs, steering control that is mainly human The system is adopted. It is an object of the present invention to provide a technique for transitioning a control system for a propulsion head from a human-centered control system to an automatic control system without compromising reliability.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明による推進用ヘッドのための制御システムで
は、推進計画線に対する推進用ヘッド自身の水平方向と
垂直方向の位置と水平姿勢を検出する位置姿勢検出手段
と、推進用ヘッド自身の垂直姿勢を検出する姿勢検出手
段と、前記位置検出手段からの位置情報と前記姿勢検出
手段からの姿勢情報とを入力値とし受圧面に対する制御
方向と制御量を出力値とする複数のファジィルールを有
するファジィ推論部とが備えられている。
In order to solve the above-mentioned problems, in a control system for a propulsion head according to the present invention, the position and the horizontal attitude of the propulsion head itself relative to a propulsion planning line are set. Position / orientation detecting means for detecting, attitude detecting means for detecting the vertical attitude of the propulsion head itself, and control direction for the pressure receiving surface using position information from the position detecting means and attitude information from the attitude detecting means as input values. And a fuzzy inference unit having a plurality of fuzzy rules whose output values are control variables.

【0005】[0005]

【作用】本発明による推進用ヘッドのための制御システ
ムの中核をなすファジィ推論部は、推進用ヘッド自身の
水平方向と垂直方向の位置情報、例えば計画線に対して
上側に大きくずれているといった情報と、推進用ヘッド
自身の水平姿勢角と垂直姿勢情報、例えば上方に少し機
首を挙げているといった情報とをAND結合させてファ
ジィルールの前件部を構成し、その後件部を受圧面の向
きとその制御量として、エキスパートの経験則に基づい
て必要なファジィルールを作っているので、各検出手段
からの情報が入力されると各ルールから受圧面の向きと
その制御量が出力され、これらの出力からデファジィフ
ィケーションすることにより最終的な受圧面の向きとそ
の制御量が得られる。
The fuzzy inference unit, which is the core of the control system for the propulsion head according to the present invention, has positional information in the horizontal direction and the vertical direction of the propulsion head itself, for example, a large deviation to the upper side with respect to the planned line. The information and the horizontal attitude angle and vertical attitude information of the propulsion head itself are AND-combined to form the antecedent part of the fuzzy rule, and the posterior part of the fuzzy rule is used as the pressure receiving surface. Since the necessary fuzzy rules are created based on the empirical rule of the expert as the direction and its control amount, when the information from each detection means is input, the direction of the pressure receiving surface and its control amount are output from each rule. , The final direction of the pressure receiving surface and its control amount can be obtained by defuzzification from these outputs.

【0006】[0006]

【発明の効果】上記最終的に得られた受圧面の向きとそ
の制御量はエキスパートの経験則が生かされたものであ
るため、従来の定量的手法では得られなかった蛇行の少
ない推進工法が実現するとともに、このシステムが人間
が中心となるのではない自動制御システムであることか
ら人件費の低減と作業の効率化にも貢献できる。 〔本発明によるその他の特徴と利点〕本発明による制御
システムの好適な実施形態の一つに、そのファジィ推論
部がさらに推進用ヘッド自身の姿勢の単位推進当たりの
変化率が大きい場合に優先して用いられる複数の優先フ
ァジィルールを有するものがあり、この優先ファジィル
ールは前記位置情報と前記姿勢の単位推進当たりの変化
率とを入力値とし前記受圧面に対する制御方向と制御量
を出力値とする。このように推進用ヘッド自身の姿勢の
単位推進当たりの変化率が大きい場合に優先して用いら
れる複数の優先ファジィルールを有することにより、土
中の状況の急激な変化等で推進用ヘッドの姿勢が大きく
変化した場合でも緊急措置として優先ファジィルールを
働かせこの大きな姿勢のずれを短時間に修正することが
可能となる。さらに、推進工法においては、推進計画線
が曲線となっている場合には直線の推進計画線に適した
制御ではどうしても推進用ヘッドが外側に膨らみがちと
なる。この問題を解消するために、さらにファジィ推論
部が曲がった推進計画線に沿って前記推進用ヘッドが推
進するカーブ推進時に優先して用いられる複数のカーブ
推進用ファジィルールを有し、このカーブ推進用ファジ
ィルールは前回実行された前記受圧面に対する制御方向
と制御量と、前記姿勢の単位推進当たりの変化率とを入
力値とし前記受圧面に対する制御方向と制御量を出力値
とするように構成することができる。推進ヘッドの受圧
面が推進ヘッドの軸芯周りに回動可能であるが、その受
圧面自体の傾斜角は変更できない場合、決定された制御
量の大きさによって受圧面の傾斜角を変更することがで
きないため方向修正の能力は一定となる。このような場
合、1ストローク(1ピッチ)の推進中に制御方向に推
進する距離と制御方向とは異なる方向に進む距離とに制
御量に応じて分割することにより、擬似的に制御量に応
じた制御が可能となる。この目的のためには、推進管を
所定ストローク毎断続的に推進させる推進駆動信号と前
記受圧面を前記ファジィ推論部の結果に応じて方向変更
させる方向変更信号を作り出すドライバーが、前記ファ
ジィ推論部によって決定された制御量の大きさに応じて
前記所定ストロークを分割し、一方の分割ストロークを
前記ファジィ推論部によって決定された制御方向でもっ
て実行し、他方の分割ストロークを前記決定された制御
方向とは逆の方向でもって実行するように前記推進駆動
信号と方向変更信号を作り出すとよい。ファジィ推論部
の構成を簡単化するため、本発明による制御システムの
好適な実施形態の一つでは、ファジィ推論部が、前記推
進計画線に対する鉛直方向の制御と水平方向の制御とに
分けて構成されており、このファジィ推論部により決定
された鉛直方向の制御量と水平方向の制御量はベクトル
として合成され、その合成ベクトルの方向が受圧面に対
する制御方向として、その合成ベクトルの大きさが制御
量として用いられている。このように、鉛直方向の制御
と水平方向の制御とが別々にファジィ推論され、その結
果を合成することにより受圧面に対する制御方向と制御
量が決定されるため、制御システムがユニット化され、
簡単化された。本発明によるその他の特徴及び効果は、
以下に図面を用いて述べる実施例の説明によって明らか
にされるだろう。
Since the direction of the pressure receiving surface and the control amount thereof finally obtained are those which make use of the empirical rule of the expert, the propulsion method with less meandering which cannot be obtained by the conventional quantitative method is used. In addition to being realized, this system is an automatic control system that is not centered on humans, so it can contribute to the reduction of labor costs and work efficiency. [Other Features and Advantages of the Present Invention] One of preferred embodiments of the control system according to the present invention is such that the fuzzy inference unit is prioritized when the rate of change of the attitude of the propulsion head itself per unit propulsion is large. Some of them have a plurality of priority fuzzy rules that are used as input, and this priority fuzzy rule uses the position information and the rate of change of the posture per unit propulsion as an input value and the control direction and control amount for the pressure receiving surface as an output value. To do. In this way, by having multiple priority fuzzy rules that are used preferentially when the rate of change of the attitude of the propulsion head itself per unit propulsion is large, the attitude of the propulsion head can be changed due to sudden changes in the soil condition. Even if there is a large change, it is possible to use the priority fuzzy rule as an emergency measure to correct this large posture deviation in a short time. Further, in the propulsion method, when the propulsion planning line is a curve, the propulsion head tends to bulge outward in the control suitable for the straight propulsion planning line. In order to solve this problem, the fuzzy inference unit further has a plurality of curve propulsion fuzzy rules that are preferentially used during curve propulsion by the propulsion head along a curved propulsion planning line. The fuzzy rule for use is configured such that the control direction and control amount for the pressure receiving surface executed last time and the rate of change of the posture per unit propulsion are input values, and the control direction and control amount for the pressure receiving surface are output values. can do. If the pressure receiving surface of the propulsion head is rotatable around the axis of the propulsion head, but the inclination angle of the pressure receiving surface itself cannot be changed, change the inclination angle of the pressure receiving surface according to the determined control amount. The ability to correct the direction is constant because you cannot. In such a case, by dividing the distance to be propelled in the control direction and the distance to travel in a direction different from the control direction during the propulsion of one stroke (1 pitch) in accordance with the control amount, the control amount can be simulated in accordance with the control amount. Controlled. For this purpose, a driver that generates a propulsion drive signal for intermittently propelling a propulsion pipe at every predetermined stroke and a direction change signal for changing the direction of the pressure receiving surface according to the result of the fuzzy reasoning unit is a fuzzy reasoning unit. The predetermined stroke is divided according to the magnitude of the control amount determined by, one of the divided strokes is executed by the control direction determined by the fuzzy inference unit, and the other divided stroke is performed by the determined control direction. The propulsion drive signal and the direction change signal may be generated so as to be executed in the opposite direction. In order to simplify the configuration of the fuzzy inference unit, in one of preferred embodiments of the control system according to the present invention, the fuzzy inference unit is configured to be divided into a vertical control and a horizontal control for the propulsion planning line. The control amount in the vertical direction and the control amount in the horizontal direction determined by the fuzzy inference unit are combined as a vector, and the direction of the combined vector is the control direction for the pressure receiving surface, and the magnitude of the combined vector is controlled. Used as a quantity. In this way, the control in the vertical direction and the control in the horizontal direction are separately fuzzy inferred, and the control direction and control amount for the pressure receiving surface are determined by combining the results, so the control system is unitized,
Simplified Other features and effects of the present invention include
It will be made clear by the description of the embodiments described below with reference to the drawings.

【0007】[0007]

【実施例】図1は、発進ピット1内に設置した推進装置
2によって、推進体Sを到達ピット(不図示)の所定位
置に向けて地中推進させている状況を示すものである。
前記発進ピット1は、土留め壁1aを四方に設け、それ
らの土留め壁1aの内方側で前記土留め壁1aに作用す
る土圧を受ける支持フレーム1bを設けて構成してあ
る。前記推進装置2は、前記推進体Sを保持しつつ土中
に向けて押圧して推進させることができるように構成し
てある周知の装置である。前記推進体Sは、図2に示す
ように、複数の推進管3と、推進用ヘッド4とをそれぞ
れ長手方向に屈曲自在に連設し、前記各推進管3及び前
記推進用ヘッド4の内空部にわたって、前記推進用ヘッ
ド駆動用の圧油を流通させる複数の油圧ホース5や、推
進用ヘッド4に内装された計測手段につながる複数のケ
ーブル6を設けて構成してある。前記推進管3は、金属
製の円筒体で構成してあり、隣合う推進管3又は推進用
ヘッド4と屈曲自在に連結するために球状ジョイントJ
が採用されている。前記推進用ヘッド4は、図2に示す
ように、円筒状のヘッド本体4aを備え、前記ヘッド本
体4aの軸芯周りに回転自在で且つ軸芯方向に沿って出
退自在な嵌合筒部材4bを、前記ヘッド本体4aに内嵌
状態に設け、さらに推進に伴う土圧を受ける傾斜受圧面
7aを設けた先導体7を、前記嵌合筒部材4bの先端部
に固着して構成してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a situation in which a propelling device 2 installed in a starting pit 1 propels a propelling body S in the ground toward a predetermined position in a reaching pit (not shown).
The starting pit 1 is constructed by providing earth retaining walls 1a on four sides and providing a support frame 1b on the inner side of the earth retaining walls 1a for receiving earth pressure acting on the earth retaining walls 1a. The propulsion device 2 is a well-known device that is configured to hold the propulsion body S and press it toward the soil for propulsion. As shown in FIG. 2, the propulsion body S includes a plurality of propulsion pipes 3 and a propulsion head 4 which are connected to each other in a freely bendable manner in the longitudinal direction. A plurality of hydraulic hoses 5 for circulating the pressure oil for driving the propulsion head and a plurality of cables 6 connected to the measuring means incorporated in the propulsion head 4 are provided over the empty space. The propulsion pipe 3 is composed of a metal cylindrical body, and has a spherical joint J for flexibly connecting with the adjacent propulsion pipe 3 or the propulsion head 4.
Has been adopted. As shown in FIG. 2, the propulsion head 4 has a cylindrical head body 4a, and is a fitting tubular member that is rotatable around the axis of the head body 4a and is capable of retracting along the axial direction. 4b is provided in the head body 4a in an internally fitted state, and a front conductor 7 provided with an inclined pressure receiving surface 7a for receiving earth pressure due to propulsion is fixed to the tip of the fitting tubular member 4b. is there.

【0008】前記ヘッド本体4aには、前記嵌合筒部材
4b並びにそれに固着された先導体7を前記筒軸芯周り
に回転駆動する回転駆動機構Rと、前記嵌合筒部材4b
・先導体7を前記筒軸芯方向に出退駆動自在な出退駆動
機構Tと、推進用ヘッド4の計画線Kに対する鉛直方向
の姿勢角のずれθv (図3a参照)を検出する姿勢角検
出手段の一例である公知の加速度センサーC1と、前記
軸芯周りの先導体7の回転角、結果的には受圧面7aの
回転角を計測する回転角計測手段の一例である回転角検
出センサーC2とを内装してある。一方、前記ヘッド本
体4aの外周部には、推進用ヘッド4の位置計測のため
用いられる発信コイルC3を設けてある。この発信コイ
ルC3からの電磁波は地上で位置検出手段の一例である
公知の電磁波検出ユニットC4によって受信され、処理
されることによって、推進用ヘッド4の位置を算出する
ことができ、その結果から、推進経路の計画線Kに対す
る推進用ヘッド4の鉛直方向の位置ずれ量Dv (図3a
参照)と水平方向の位置ずれ量Dh (図3b参照)が決
定される。尚、各方向の位置ずれ量とは、推進用ヘッド
4の軸芯と前記傾斜受圧面7aとの交点部分が、計画線
Kからそれぞれの方向に関して離間している距離を云
う。前記加速度センサーC1と回転角検出センサーC2
と電磁波検出ユニットC4は、後で詳しく述べる推進ヘ
ッド4のための制御ユニット50に接続されており、そ
れらのデータはファジィ理論を利用した推進ヘッド4の
操舵制御に用いられる。前記先導体7の傾斜受圧面7a
は、ヘッド本体4aの筒軸芯に対して傾斜させて形成し
てあるので、曲線推進時には、前記傾斜受圧面7aが、
推進カーブ外方側へ向くように前記回転駆動機構Rによ
って先導体7を筒軸芯周りに回転駆動操作し、その状態
で前記先導体7を前方へ押し進めると、前記傾斜受圧面
7aに作用する土圧によって、推進用ヘッド4を推進カ
ーブ方向へ誘導することができる。ここに言う推進ヘッ
ド4の操舵制御とは傾斜受圧面7aの操作方向、及び、
その操作方向での推進操作量を決定して、所定のストロ
ークで推進用ヘッド4を押し進めることである。
In the head body 4a, a rotary drive mechanism R for rotationally driving the fitting cylinder member 4b and the front conductor 7 fixed to the fitting cylinder member 4 around the cylinder axis, and the fitting cylinder member 4b.
An advance / retreat drive mechanism T that can freely drive the lead conductor 7 in the axial direction of the cylinder, and an attitude angle that detects a deviation θv (see FIG. 3a) in the vertical attitude angle of the propulsion head 4 with respect to the planned line K. A known acceleration sensor C1 that is an example of a detection unit, and a rotation angle detection sensor that is an example of a rotation angle measurement unit that measures the rotation angle of the front conductor 7 around the axis, and consequently the rotation angle of the pressure receiving surface 7a. The interior is equipped with C2. On the other hand, a transmission coil C3 used for measuring the position of the propulsion head 4 is provided on the outer peripheral portion of the head body 4a. The electromagnetic wave from the transmitting coil C3 is received and processed on the ground by a known electromagnetic wave detecting unit C4 which is an example of a position detecting means, whereby the position of the propulsion head 4 can be calculated. A vertical displacement amount Dv of the propulsion head 4 with respect to the planned line K of the propulsion path (Fig. 3a).
(Refer to FIG. 3) and the horizontal positional deviation amount Dh (refer to FIG. 3B) are determined. The positional deviation amount in each direction means the distance at which the intersection of the axial center of the propulsion head 4 and the inclined pressure receiving surface 7a is separated from the planned line K in each direction. The acceleration sensor C1 and the rotation angle detection sensor C2
The electromagnetic wave detection unit C4 is connected to a control unit 50 for the propulsion head 4, which will be described in detail later, and the data thereof is used for steering control of the propulsion head 4 using the fuzzy theory. Inclined pressure receiving surface 7a of the leading conductor 7
Is formed so as to be inclined with respect to the cylinder axis of the head body 4a, the inclined pressure receiving surface 7a is
When the front conductor 7 is rotationally driven around the cylinder axis by the rotary drive mechanism R so as to face the outer side of the propulsion curve, and when the front conductor 7 is pushed forward in that state, it acts on the inclined pressure receiving surface 7a. The propulsion head 4 can be guided in the propulsion curve direction by the earth pressure. The steering control of the propulsion head 4 referred to here means the operation direction of the inclined pressure receiving surface 7a, and
The propulsion operation amount in the operation direction is determined, and the propulsion head 4 is pushed forward with a predetermined stroke.

【0009】図4には、推進ヘッド4の操舵制御を行う
制御ユニット50の構成が示されている。制御ユニット
50は、前記加速度センサーC1と回転角検出センサー
C2と電磁波検出ユニットC4と接続された入力インタ
ーフェース51と、この入力インターフェース51から
送られた情報から鉛直方向に関する制御量を出力する鉛
直方向ファジィ推論部52及び水平方向に関する制御量
を出力する水平方向ファジィ推論部53と、この両ファ
ジィ推論部52、53からの出力結果を合成して受圧面
の制御方向と制御量を決定する信号合成部54と、この
信号合成部54からの制御信号を入力して回転駆動機構
Rと推進装置2に動作信号を出力するドライバ55とか
ら構成されている。鉛直方向ファジィ推論部52は、入
力インターフェース51から、鉛直方向に関する姿勢角
のずれθv と、このずれθv の変化量Δθv と、位置ず
れ量Dv と、さらに鉛直方向ファジィ推論部52で決定
された前回の制御量pUv とが入力され、鉛直方向制御
用ファジィルールを用いて鉛直方向に関する制御量Uv
を決定する。水平方向ファジィ推論部53は、入力イン
ターフェース51から、水平方向の姿勢角のずれθh
と、このずれθh の変化量Δθh と、この水平方向の位
置ずれ量Dh とが入力され、水平方向制御用ファジィル
ールを用いて水平方向に関する制御量Uh を決定する。
鉛直方向制御のための基本ファジィルールは以下のよう
な9つのルールからなっている; if Dv =NB and θv =NB then Uv =PB if Dv =ZR and θv =NB then Uv =PM if Dv =PB and θv =NB then Uv =ZR if Dv =NB and θv =ZR then Uv =PM if Dv =ZR and θv =ZR then Uv =ZR if Dv =PB and θv =ZR then Uv =NM if Dv =NB and θv =PB then Uv =ZR if Dv =ZR and θv =PB then Uv =NM if Dv =PB and θv =PB then Uv =NB さらに、姿勢角のずれθv の変化量Δθv 、つまり一回
のストロークでの姿勢角の変化が大きい場合に上記基本
ルールに優先して働く以下の優先ファジィルールがあ
る; if Δθv =PB and Dv =PB then Uv =NB if Δθv =PB and Dv =ZR then Uv =NM if Δθv =NB and Dv =NB then Uv =PB if Δθv =NB and Dv =ZR then Uv =PM また、曲がった推進計画線に沿って前記推進用ヘッドを
推進するカーブ推進時には直線推進時のルールだけでは
うまく適応できないことも生じるので、これを解消する
ため、カーブ推進時に優先して用いられるカーブ推進用
ファジィルールも追加されている。このルールは前回実
行された前記受圧面に対する制御量pUv と姿勢角のず
れθv の変化量Δθv とを前件部としている; if pUv =PB and Δθv =NB then Uv =PB if pUv =PB and Δθv =ZR then Uv =PB if pUv =NB and Δθv =PB then Uv =NB if pUv =NB and Δθv =ZR then Uv =NB 上記の記号を使って表現されたファジィルールにおい
て、PBは正の大きな値、PMは正の中ぐらい、ZRは
およそゼロ、NBは負の大きな値、NMは負の中ぐら
い、であり、正と負の意味は図3aと図3bに示す通り
である。このことから、例えば上記基本ファジィルール
の一番上のルールを自然な文章で表現すると、『もし推
進ヘッド4が計画線に対して下にずれており、かつその
姿勢が下方を向いているならば、推進ヘッド4を上方に
操舵すべく受圧面を下向きにする制御量を大きくする』
となり、上記優先ファジィルールの一番上のルールを自
然な文章で表現すると、『もし推進ヘッド4の姿勢角変
化が上向きに大きく、かつ計画線に対して上にずれてい
るならば、推進ヘッド4を下方に操舵すべく受圧面を上
向きにする制御量を大きくする』となり、上記カーブ推
進用ファジィルールの一番上のルールを自然な文章で表
現すると、『もし前回推進ヘッド4を上方に操舵すべく
受圧面を下向きにする制御量を大きくしており、かつそ
の推進ヘッド4の姿勢角変化が下向きに大きいならば、
推進ヘッド4を上方に操舵すべく受圧面を下向きにする
制御量を大きくする』となる。同様なファジィルールが
水平方向制御のためにも用意されているが、その基本ル
ールは、 if Dh =NB and θh =NB then Uh =PB if Dh =ZR and θh =NB then Uh =PM if Dh =PB and θh =NB then Uh =ZR if Dh =NB and θh =ZR then Uh =PM if Dh =ZR and θh =ZR then Uh =ZR if Dh =PB and θh =ZR then Uh =NM if Dh =NB and θh =PB then Uh =ZR if Dh =ZR and θh =PB then Uh =NM if Dh =PB and θh =PB then Uh =NB であり、姿勢角の変化が大きい場合の優先ファジィルー
ルは、 if Δθh =PB and Dh =PB then Uh =NB if Δθh =PB and Dh =ZR then Uh =NM if Δθh =NB and Dh =NB then Uh =PB if Δθh =NB and Dh =ZR then Uh =PM であり、カーブ推進時に優先して用いられるカーブ推進
用ファジィルールは、 if pUh =PB and Δθh =NB then Uh =PB if pUh =PB and Δθh =ZR then Uh =PB if pUh =NB and Δθh =PB then Uh =NB if pUh =NB and Δθh =ZR then Uh =NB である。例えば、水平方向制御に関しても、上記基本フ
ァジィルールの一番上のルールを自然な文章で表現する
と、『もし推進ヘッド4が計画線に対して右にずれてお
り、かつその姿勢が右を向いているならば、推進ヘッド
4を左方向に操舵すべく受圧面を右向きにする制御量を
大きくする』となり、上記優先ファジィルールの一番上
のルールを自然な文章で表現すると、『もし推進ヘッド
4の姿勢角変化が左向きに大きく、かつ計画線に対して
左にずれているならば、推進ヘッド4を右方に操舵すべ
く受圧面を左向きにする制御量を大きくする』となり、
上記カーブ推進用ファジィルールの一番上のルールを自
然な文章で表現すると、『もし前回推進ヘッド4を左方
に操舵すべく受圧面を右向きにする制御量を大きくして
おり、かつその推進ヘッド4の姿勢角変化が右向きに大
きいならば、推進ヘッド4を左方に操舵すべく受圧面を
右向きにする制御量を大きくする』となる。このファジ
ィ推論において用いられるメンバーシップ関数は図5a
から図5dに表されている。図5aは位置ずれに関する
メンバーシップ関数であり、図5bは姿勢ずれに関する
メンバーシップ関数であり、図5cは姿勢ずれの変動に
関するメンバーシップ関数であり、いずれも三角形型の
ファジィ変数を用いており、この実施例では鉛直方向と
水平方向のために兼用されている。図5dは制御量に関
するメンバーシップ関数であり、シングルトンとなって
いる。各ファジィ推論部52、53は、入力インターフ
ェース51によって与えられた入力値を各ファジィルー
ルの前件部にマッチングさせ、後件部のメンバーシップ
関数から該当方向の制御量を推論する。この各ファジィ
ルールの推論結果は合成されて最終的な推論結果として
制御量Uv とUh が出力される。このファジィ推論部に
おけるマッチングと合成に関しては公知のファジィ制御
理論に基づいているためここでは詳しい説明を省略する
が、例えば、このファジィ推論部52と53は入力イン
ターフェース51から送られたデータを用いてファジィ
ルールの前件部の各変数の値とマッチングするグレード
値を図5a、5b、5cで示したメンバーシップ関数に
基づいて求め、その内の小さい方のグレード値をとり、
後件部の処理においてそのグレード値を図5dのメンバ
ーシップ関数(シングルトン)から求められる制御量と
掛け合わせ(例えばグレート値が0.5のNMなら、
0.5×(−0.5)=−0.25となる)、そのファ
ジィルールの制御量とする。このようにして求められた
各ファジィルールの制御の総和をとることで(もちろ
ん、この総和値に所定値を加算したり、乗算してもよ
い)、最終的な各方向の制御量Uv 又はUh が決定され
る。なお、このルールマッチングの際、姿勢角のずれθ
v の変化量Δθv が大きい場合には上述したように優先
ファジィルールが採用されるし、カーブ推進時には上述
したカーブ推進用ファジィルール優先して採用される。
FIG. 4 shows the configuration of a control unit 50 for controlling the steering of the propulsion head 4. The control unit 50 includes an input interface 51 connected to the acceleration sensor C1, the rotation angle detection sensor C2, and the electromagnetic wave detection unit C4, and a vertical fuzzy circuit that outputs a control amount related to the vertical direction from the information sent from the input interface 51. The inference unit 52 and the horizontal direction fuzzy inference unit 53 that outputs the control amount in the horizontal direction, and the signal synthesizing unit that determines the control direction and the control amount of the pressure receiving surface by synthesizing the output results from both the fuzzy inference units 52 and 53. 54, and a driver 55 that inputs a control signal from the signal synthesizer 54 and outputs an operation signal to the rotary drive mechanism R and the propulsion device 2. The vertical direction fuzzy inference unit 52 receives, from the input interface 51, the deviation θv of the posture angle in the vertical direction, the change amount Δθv of the deviation θv, the positional deviation amount Dv, and the previous fuzzy inference unit 52. The control amount pUv of the vertical direction is input and the fuzzy rule for vertical control is used to control the control amount Uv in the vertical direction.
To decide. The horizontal fuzzy inference unit 53 uses the input interface 51 to shift the horizontal posture angle θh.
Then, the change amount Δθh of the deviation θh and the position deviation amount Dh in the horizontal direction are input, and the fuzzy rule for horizontal direction control is used to determine the control amount Uh in the horizontal direction.
The basic fuzzy rule for vertical control consists of nine rules as follows: if Dv = NB and θv = NB then Uv = PB if Dv = ZR and θv = NB then Uv = PM if Dv = PB and θv = NB then Uv = ZR if Dv = NB and θv = ZR then Uv = PM if Dv = ZR and θv = ZR then Uv = ZR if N = DV = NV nd Nv = NV Uv = ZR if Dv = PB and θv = NV Uv = ZR if Dv = PB then Uv = ZR if Dv = ZR and θv = PB then Uv = NM if Dv = PB and θv = PB then Uv = NB Furthermore, the change Δθv in the attitude angle deviation θv, that is, in one attitude stroke. The following priority fuzzy rules that take precedence over the above basic rules when the change in angle is large If Δθv = PB and Dv = PB then Uv = NB if Δθv = PB and Dv = ZR then Uv = NM if Δθv = NB and Dv = Zv Uv = Pv = Nv = Nv = Ud = Nv = Uv = PB and Uv = PB and Uv = PB and Uv = PB and Dv = PB and Uv = PB and Dv = Nd In addition, in the case of curve promotion in which the above-mentioned propulsion head is promoted along a curved propulsion plan line, it may not be possible to apply well only with the rules for straight-line propulsion. Fuzzy rules for promotion have also been added. In this rule, the control amount pUv and the change amount Δθv of the posture angle deviation θv with respect to the pressure receiving surface executed last time are the antecedent parts; if pUv = PB and Δθv = NB then Uv = PB if pUv = PB and Δθv = ZR then Uv = PB if pUv = NB and Δθv = PB then Uv = NB if pUv = NB and Δθv = ZR then Uv = NB In the fuzzy rule expressed using the above symbols, PB is a positive value, and PB is a positive value. PM is medium positive, ZR is approximately zero, NB is large negative value, NM is medium negative, and the meanings of positive and negative are as shown in FIGS. 3a and 3b. From this, for example, the top rule of the above basic fuzzy rules is expressed in a natural sentence: "If the propulsion head 4 is displaced downward with respect to the planned line and its posture is downward. For example, increase the control amount that makes the pressure receiving surface face down to steer the propulsion head 4 upward. ”
When the top rule of the above priority fuzzy rules is expressed in a natural sentence, “If the attitude angle change of the propulsion head 4 is large upward and deviates upward from the planned line, 4 increase the amount of control to turn the pressure receiving surface upward so as to steer downwards. ”When the top rule of the above-mentioned fuzzy rules for curve propulsion is expressed in a natural sentence,“ If the previous propulsion head 4 was moved upward, If the control amount for lowering the pressure receiving surface to steer is large and the change in the attitude angle of the propulsion head 4 is large downward,
The control amount for lowering the pressure receiving surface in order to steer the propulsion head 4 upward is increased. " A similar fuzzy rule is prepared for horizontal control, but its basic rule is: if Dh = NB and θh = NB then Uh = PB if Dh = ZR and θh = NB then Uh = PM if Dh = PB and θh = NB then Uh = ZR if Dh = NB and θh = ZR then Uh = PM if Dh = ZR and θh = ZR then Uh = ZR if Nh = PB and NU dN = ZR if Nh = PB and Nh = N. θh = PB then Uh = ZR if Dh = ZR and θh = PB then Uh = NM if Dh = PB and θh = PB then Uh = NB, and the priority fuzzy rule when the attitude angle changes is h = if Δ PB and Dh = PB then Uh = NB if Δθh = PB and Dh = ZR t en Uh = NM if Δθh = NB and Dh = NB then Uh = PB if Δθh = NB and Dh = ZR then Uh = PM, and the fuzzy rule for curve propulsion that is preferentially used during curve propulsion is ifB pUh. and Δθh = NB then Uh = PB if pUh = PB and Δθh = ZR then Uh = PB if pUh = NB and Δθh = PB then Uh = NB if pUh = NB and Uh = NB en Rh and NB en Rh. For example, regarding the horizontal direction control, if the top rule of the above basic fuzzy rules is expressed by a natural sentence, "If the propulsion head 4 is displaced to the right with respect to the planned line, and its posture is directed to the right. If so, increase the control amount that turns the pressure receiving surface to the right to steer the propulsion head 4 to the left. ”If the top rule of the above priority fuzzy rule is expressed in a natural sentence,“ If propulsion If the change in the attitude angle of the head 4 is large to the left and deviates to the left with respect to the planned line, the control amount for turning the pressure receiving surface to the left in order to steer the propulsion head 4 to the right is increased ”.
If the top rule of the above-mentioned fuzzy rules for curb promotion is expressed in a natural sentence, "If the propulsion head 4 was steered to the left in the previous time, the control amount for turning the pressure receiving surface to the right is large and If the change in the attitude angle of the head 4 is large in the right direction, the control amount for turning the pressure receiving surface to the right in order to steer the propulsion head 4 to the left is increased. The membership function used in this fuzzy reasoning is shown in Figure 5a.
To FIG. 5d. FIG. 5a is a membership function related to positional deviation, FIG. 5b is a membership function related to attitude deviation, and FIG. 5c is a membership function related to fluctuation of attitude deviation, both of which use a fuzzy triangular triangle variable. In this embodiment, both the vertical direction and the horizontal direction are used. FIG. 5d shows the membership function related to the controlled variable, which is a singleton. Each fuzzy inference unit 52, 53 matches the input value given by the input interface 51 with the antecedent part of each fuzzy rule, and infers the control amount in the corresponding direction from the membership function of the consequent part. The inference results of these fuzzy rules are combined and the control quantities Uv and Uh are output as the final inference results. Since the matching and combining in the fuzzy inference unit is based on a known fuzzy control theory, detailed description thereof will be omitted here. For example, the fuzzy inference units 52 and 53 use data sent from the input interface 51. The grade value that matches the value of each variable in the antecedent part of the fuzzy rule is obtained based on the membership function shown in FIGS. 5a, 5b, and 5c, and the smaller grade value is taken,
In the processing of the consequent part, the grade value is multiplied by the control amount obtained from the membership function (singleton) of FIG. 5d (for example, if the great value is NM,
0.5 × (−0.5) = − 0.25), which is the control amount of the fuzzy rule. By taking the total sum of the control of each fuzzy rule thus obtained (of course, a predetermined value may be added to or multiplied by this total sum value), the final control amount Uv or Uh in each direction may be obtained. Is determined. At the time of this rule matching, the posture angle deviation θ
When the variation amount Δv of v is large, the priority fuzzy rule is adopted as described above, and during the curve propulsion, the above-mentioned curve propulsion fuzzy rule is preferentially adopted.

【0010】鉛直方向ファジィ推論部52から出力され
た鉛直方向制御量Uv と水平方向ファジィ推論部53か
ら出力された水平方向制御量Uh とは信号合成部54で
合成され、操舵部材としての受圧面7aに対する制御方
向と制御量が決定される。この合成の方法は、図6に模
式的に示されている。図6では、縦軸に鉛直方向制御量
Uv が、横軸に水平方向制御量Uh がとられており、入
力された鉛直方向制御量Uv と水平方向制御量Uh は、
図5dから理解できるように、1から−1の値をとる。
図の例では、Uv =−0.2、Uh =−0.2である。
ここで、Uv の値をもつ垂直なベクトルとUh の値をも
つ水平なベクトルとの和であるベクトルRを受圧面7a
に対する制御方向と制御量とする。つまりこの例では、
制御方向Ψは135度(真上を0度とする)、制御量は
0.28となる。この制御方向Ψと受圧面7aの向きと
の関係はちょうど180度反対の方向となるので、この
例では、受圧面7aの向きを右上方(315度)に調節
することになる。この推進ヘッド4では受圧面7a自身
の傾斜面角度は変更できないことから方向修正能力は一
定であるため、制御量に応じた能力調整はできない。こ
のため、1ストロークの推進中(通常300mm)に制
御された方向に進む動作とその方向と180度逆の方向
に進む動作を制御量に応じて比例配分し、つまりストロ
ークが分割され、擬似的に制御量に応じた制御を行って
いる。この比例配分の例が図7に示されている。図7に
従うと、上記の例では制御量は0.28なので、受圧面
を右上方(315度)に向けて200mmの分割ストロ
ークで推進させ、受圧面を180度反転させた向き(1
35度)で100mmの分割ストロークで推進させるこ
とになる。以上のような受圧面の向きと推進ストローク
の決定はドライバ55により行われ、動作信号に変換さ
れた後、回転駆動機構Rと推進装置2へ送られる。
The vertical direction control amount Uv output from the vertical direction fuzzy reasoning unit 52 and the horizontal direction control amount Uh output from the horizontal direction fuzzy reasoning unit 53 are combined by a signal combining unit 54, and a pressure receiving surface as a steering member. The control direction and control amount for 7a are determined. The method of this synthesis is shown schematically in FIG. In FIG. 6, the vertical axis represents the vertical control amount Uv, and the horizontal axis represents the horizontal control amount Uh. The input vertical control amount Uv and horizontal input amount Uh are
As can be seen from Fig. 5d, it takes values from 1 to -1.
In the example of the figure, Uv = -0.2 and Uh = -0.2.
Here, the vector R, which is the sum of the vertical vector having the value of Uv and the horizontal vector having the value of Uh, is taken as the pressure receiving surface 7a.
The control direction and control amount with respect to. So in this example,
The control direction Ψ is 135 degrees (0 degree immediately above), and the control amount is 0.28. Since the relationship between the control direction Ψ and the direction of the pressure receiving surface 7a is exactly 180 degrees opposite, in this example, the direction of the pressure receiving surface 7a is adjusted to the upper right (315 degrees). In this propulsion head 4, since the angle of the inclined surface of the pressure receiving surface 7a itself cannot be changed, the direction correction ability is constant, and therefore the ability adjustment according to the control amount cannot be performed. For this reason, the operation of advancing in a controlled direction during the propulsion of one stroke (normally 300 mm) and the operation of advancing in a direction 180 degrees opposite to that direction are proportionally distributed according to the control amount, that is, the stroke is divided, and the pseudo movement is performed. Is controlled according to the control amount. An example of this proportional distribution is shown in FIG. According to FIG. 7, since the control amount is 0.28 in the above example, the pressure receiving surface is propelled in the divided stroke of 200 mm toward the upper right (315 degrees), and the pressure receiving surface is rotated 180 degrees in the direction (1
(35 degrees) will be propelled in 100 mm divided strokes. The determination of the direction of the pressure receiving surface and the propulsion stroke as described above is performed by the driver 55, converted into an operation signal, and then sent to the rotary drive mechanism R and the propulsion device 2.

【0011】なお、特許請求の範囲の項に、図面との対
照を便利にするために符号を記すが、各記入により本発
明は添付図面の構成に限定されるものではない。
It should be noted that although reference numerals are given in the claims for convenience of comparison with the drawings, the present invention is not limited to the structures of the accompanying drawings by each entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による制御システムを採用した推進工法
の実施状況を示す側面視断面図
FIG. 1 is a side sectional view showing a state of implementation of a propulsion method employing a control system according to the present invention.

【図2】推進体の側面図[Figure 2] Side view of the propulsion unit

【図3】推進計画線に対する推進ヘッドのづれを説明す
る説明図
FIG. 3 is an explanatory diagram for explaining the deviation of the propulsion head with respect to the propulsion planning line.

【図4】本発明による制御システムを模式的に示すブロ
ック図
FIG. 4 is a block diagram schematically showing a control system according to the present invention.

【図5】ファジィ推論部で用いられるメンバーシップ関
数を示す図
FIG. 5 is a diagram showing a membership function used in a fuzzy inference unit.

【図6】信号合成部における垂直方向制御量と水平方向
制御量との合成処理を説明する説明図
FIG. 6 is an explanatory diagram illustrating a combining process of a vertical direction control amount and a horizontal direction control amount in a signal combining unit.

【図7】制御量に応じた推進ストロークの分割を示す図FIG. 7 is a diagram showing division of a propulsion stroke according to a control amount.

【符号の説明】[Explanation of symbols]

4 推進用ヘッド C1 姿勢検出手段 C4 位置検出手段 52,53 ファジィ推論部 55 ドライバー 4 Propulsion head C1 Attitude detection means C4 Position detection means 52,53 Fuzzy inference section 55 Driver

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 後方から押圧力を受けて土中を推進する
推進管の先端側に連結された推進用ヘッドに土中推進に
伴って土中からの反力を受けるように設けられた受圧面
の方向を変更することによって前記推進用ヘッド(4)
の推進方向を制御する制御システムにおいて、 推進計画線に対する前記推進用ヘッド(4)自身の水平
方向と垂直方向の位置と水平姿勢を検出する位置姿勢検
出手段(C4)と、前記推進用ヘッド自身の垂直姿勢を
検出する姿勢検出手段(C1)と、前記位置検出手段
(C4)からの位置情報と前記姿勢検出手段(C1)か
らの姿勢情報とを入力値とし前記受圧面に対する制御方
向と制御量を出力値とする複数のファジィルールを有す
るファジィ推論部(52,53)とが備えられている、
推進用ヘッドのための制御システム。
1. A pressure receiving member provided to a propulsion head connected to a tip end side of a propulsion pipe that receives a pressing force from the rear side to propel it in the soil so as to receive a reaction force from the soil accompanying the underground propulsion. The propulsion head (4) by changing the direction of the surface
In the control system for controlling the propulsion direction of the head, the position / orientation detecting means (C4) for detecting the horizontal and vertical positions and the horizontal attitude of the propulsion head (4) itself with respect to the propulsion planning line, and the propulsion head itself. Control means (C1) for detecting the vertical attitude of the robot, position information from the position detection means (C4) and attitude information from the attitude detection means (C1) as input values, and a control direction and control for the pressure receiving surface. And a fuzzy inference unit (52, 53) having a plurality of fuzzy rules whose output values are quantities.
Control system for propulsion head.
【請求項2】 さらに前記ファジィ推論部(52,5
3)は前記推進用ヘッド自身の姿勢の単位推進当たりの
変化率が大きい場合に優先して用いられる複数の優先フ
ァジィルールを有しており、この優先ファジィルールは
前記位置情報と前記姿勢の単位推進当たりの変化率とを
入力値とし前記受圧面に対する制御方向と制御量を出力
値とする請求項1に記載の推進用ヘッドのための制御シ
ステム。
2. The fuzzy inference unit (52, 5)
3) has a plurality of priority fuzzy rules that are used preferentially when the rate of change of the attitude of the propulsion head itself per unit propulsion is large, and this priority fuzzy rule has the position information and the unit of the attitude. The control system for a propulsion head according to claim 1, wherein a change rate per propulsion is an input value, and a control direction and a control amount for the pressure receiving surface are output values.
【請求項3】 さらに前記ファジィ推論部(52,5
3)は曲がった推進計画線に沿って前記推進用ヘッドが
推進するカーブ推進時に優先して用いられる複数のカー
ブ推進用ファジィルールを有しており、このカーブ推進
用ファジィルールは前回実行された前記受圧面に対する
制御方向と制御量と、前記姿勢の単位推進当たりの変化
率とを入力値とし前記受圧面に対する制御方向と制御量
を出力値とする請求項1又は2に記載の推進用ヘッドの
ための制御システム。
3. The fuzzy inference unit (52, 5)
3) has a plurality of curve propulsion fuzzy rules that are used preferentially during curve propulsion by the propulsion head along a curved propulsion planning line. This curve propulsion fuzzy rule was executed last time. The propulsion head according to claim 1, wherein a control direction and a control amount with respect to the pressure receiving surface and a change rate of the posture per unit propulsion are input values, and a control direction and the control amount with respect to the pressure receiving surface are output values. Control system for.
【請求項4】 前記推進管を所定ストローク毎断続的に
推進させる推進駆動信号と前記受圧面を前記ファジィ推
論部の結果に応じて方向変更させる方向変更信号を作り
出すドライバー(55)が、前記ファジィ推論部によっ
て決定された制御量の大きさに応じて前記所定ストロー
クを分割し、一方の分割ストロークを前記ファジィ推論
部によって決定された制御方向でもって実行し、他方の
分割ストロークを前記決定された制御方向とは逆の方向
でもって実行するように前記推進駆動信号と方向変更信
号を作り出す請求項1〜3のいずれかに記載の推進用ヘ
ッドのための制御システム。
4. A driver (55) for generating a propulsion drive signal for intermittently propelling the propulsion pipe at predetermined strokes and a direction change signal for changing the direction of the pressure receiving surface according to the result of the fuzzy inference unit, the driver (55) The predetermined stroke is divided according to the magnitude of the control amount determined by the inference unit, one divided stroke is executed in the control direction determined by the fuzzy inference unit, and the other divided stroke is determined. 4. A control system for a propulsion head according to any one of claims 1 to 3, wherein the propulsion drive signal and the direction change signal are generated so as to execute in a direction opposite to the control direction.
【請求項5】 前記ファジィ推論部(52,53)は、
前記推進計画線に対する鉛直方向の制御と水平方向の制
御とに分けて構成されており、このファジィ推論部によ
り決定された鉛直方向の制御量と水平方向の制御量はベ
クトルとして合成され、その合成ベクトルの方向が前記
受圧面に対する制御方向として、その合成ベクトルの大
きさが制御量として用いられる請求項1〜4のいずれか
に記載の推進用ヘッドのための制御システム。
5. The fuzzy inference unit (52, 53) comprises:
It is configured by dividing it into vertical control and horizontal control for the propulsion planning line, and the vertical control amount and the horizontal control amount determined by the fuzzy inference unit are combined as a vector, and the combination thereof is obtained. The control system for a propulsion head according to any one of claims 1 to 4, wherein a vector direction is used as a control direction with respect to the pressure receiving surface, and a magnitude of a combined vector is used as a control amount.
JP7111583A 1995-05-10 1995-05-10 Control system for jacking head Pending JPH08305407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111583A JPH08305407A (en) 1995-05-10 1995-05-10 Control system for jacking head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111583A JPH08305407A (en) 1995-05-10 1995-05-10 Control system for jacking head

Publications (1)

Publication Number Publication Date
JPH08305407A true JPH08305407A (en) 1996-11-22

Family

ID=14565057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111583A Pending JPH08305407A (en) 1995-05-10 1995-05-10 Control system for jacking head

Country Status (1)

Country Link
JP (1) JPH08305407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169465A (en) * 2019-04-02 2020-10-15 清水建設株式会社 Control information output device and control information output method
CN113339583A (en) * 2021-06-18 2021-09-03 湖北地建集团神龙市政建设工程有限公司 Pipe joint deflection and jacking force transmission state monitoring system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169465A (en) * 2019-04-02 2020-10-15 清水建設株式会社 Control information output device and control information output method
CN113339583A (en) * 2021-06-18 2021-09-03 湖北地建集团神龙市政建设工程有限公司 Pipe joint deflection and jacking force transmission state monitoring system and method
CN113339583B (en) * 2021-06-18 2022-11-15 湖北地建集团神龙市政建设工程有限公司 Pipe joint deflection and jacking force transmission state monitoring system and method

Similar Documents

Publication Publication Date Title
JP3241564B2 (en) Control device and method for motion control of normal wheel type omnidirectional mobile robot
US5854987A (en) Vehicle steering control system using navigation system
EP0806336B1 (en) Steering assist system in a vehicle
US9594376B2 (en) Method and system for driving a mining and/or construction machine in a safe manner without the risk of collision
JP4865727B2 (en) Method for maneuvering vehicle in parking area and parking assist device
JP3056211B2 (en) An autonomous robot vehicle that tracks a path consisting of a series of directed straight lines and directed arcs using position feedback and continuous curvature and its control method
Gómez-Bravo et al. Continuous curvature path generation based on β-spline curves for parking manoeuvres
EP2173599B1 (en) Active steering controller
CN106909144A (en) For the unpiloted field obstacle-avoiding route planning of agricultural machinery and its control method
JP3569587B2 (en) Vehicle steering system
US5934407A (en) Steering Assist System for vehicles
JP2007501735A (en) Ways to assist the driver during parking operation
JP6941189B2 (en) Driving support device, driving support method and driving support system
JP2010202030A (en) Driving support device and driving support method for vehicle
US20240227793A1 (en) Adaptive path following algorithm for heavy-duty vehicles
Sekhavat et al. Motion planning and control for Hilare pulling a trailer: experimental issues
CN112109732A (en) Intelligent driving self-adaptive curve pre-aiming method
JP3706669B2 (en) Vehicle steering system
JPH08305407A (en) Control system for jacking head
JP2008526621A (en) Method for controlling vehicle rear wheel orientation
JP7386757B2 (en) Autonomous driving system for work vehicles
JP3566802B2 (en) Vehicle steering system
JPH08226296A (en) Control method for head for propulsion
CN113721454B (en) Articulated vehicle path tracking control method
JPH08303180A (en) Control method for head for propulsion