JPH08304179A - Spectral colorimeter - Google Patents

Spectral colorimeter

Info

Publication number
JPH08304179A
JPH08304179A JP7113212A JP11321295A JPH08304179A JP H08304179 A JPH08304179 A JP H08304179A JP 7113212 A JP7113212 A JP 7113212A JP 11321295 A JP11321295 A JP 11321295A JP H08304179 A JPH08304179 A JP H08304179A
Authority
JP
Japan
Prior art keywords
light
light receiving
measurement
lens
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7113212A
Other languages
Japanese (ja)
Inventor
Noriyuki Yamamoto
昇志 山本
Koji Hattori
幸治 服部
Masahito Kaneko
雅仁 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7113212A priority Critical patent/JPH08304179A/en
Publication of JPH08304179A publication Critical patent/JPH08304179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE: To save the man power by performing a feedback control, reducing the loss rate of a product being measured, improving the productivity, and reducing the labor required for the measurement. CONSTITUTION: 45 deg. reflection light at a light reception part is received by each lens 6 and each optical fiber 3 and is guided to an interference filter 4 of a light guidance part as it is for spectral analysis. On the other hand, light is transduced into electricity by a number of light reception elements 5 at a photoelectric conversion part and a number of colors are instantly measured without deteriorating measurement accuracy to increase the speed. A capacitor for accumulating electric charge is added to each light reception element 5, electric charge is accumulated simultaneously for each wavelength as soon as the measurement is started, and the accumulated amount is read out speedily after the measurement. By adjusting the capacity of the added capacitor for the sensitivity of a photodiode, the output voltage at each wavelength is made uniform, thus improving the accuracy of a spectral colorimeter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、対象物(例えば印刷
物)からの分光反射率を計測する分光測色装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrocolorimeter for measuring the spectral reflectance of an object (eg, printed matter).

【0002】[0002]

【従来の技術】図10は、対象物(例えば印刷物)から
の分光反射率を計測する分光測色装置の受光部の従来例
を示している。この受光部は、JIS8277により定
義されているが、最も効率よく受光できる構造は、垂直
照明45°受光である。その理由は、図11からも判る
ように45°方向の全ての光を使えるためであって、西
独特許第2600604号明細書や特開昭56−586
40号公報に記載のものも、この方法を用いている。そ
して受光部で受光後の光を受光器(まはた光ファイバ
ー)により1箇所に集めて、分光する前に再び分けると
いう作業を行うようにしている。
2. Description of the Related Art FIG. 10 shows a conventional example of a light receiving portion of a spectrocolorimeter for measuring a spectral reflectance from an object (eg, printed matter). This light receiving part is defined by JIS8277, but the structure that can receive light most efficiently is vertical illumination of 45 °. The reason is that, as can be seen from FIG. 11, all the light in the 45 ° direction can be used, and it is described in West German Patent No. 2660604 and JP-A-56-586.
The one described in Japanese Patent No. 40 also uses this method. Then, the light received by the light receiving section is collected by a light receiving device (or an optical fiber) at one place, and is divided again before being dispersed.

【0003】なお図11の21は光源、22は投光レン
ズ、23はミラー、24は集光レンズ、25は受光器
(まはた光ファイバー)である。
In FIG. 11, reference numeral 21 is a light source, 22 is a light projecting lens, 23 is a mirror, 24 is a condenser lens, and 25 is a light receiver (or optical fiber).

【0004】[0004]

【発明が解決しようとする課題】前記従来の分光測色装
置では、対象物(例えば印刷物)に光を一定角度で照射
し、一定角度で反射した拡散光を受光する方法について
記述しているものの、受光後の光の処理については詳し
く触れていない。一方、現実の問題としては重要なの
は、受光後の光の処理そのものよりも、受光後の光の処
理速度であり、前記色計測装置では、高速で生産してい
る機械に色計測結果をフイードバックして機械を制御す
るのが不可能である。即ち、1点の計測に2〜3秒かか
るため、印刷物のカラースケールなどを計測する場合に
は、2秒×200点=400秒もかかってしまい、色計
測装置が評価装置としてだけの価値しかなくて、高速で
生産している機械に色計測結果をフイードバックして制
御するのが不可能である。
In the conventional spectral colorimetric device described above, a method of irradiating an object (for example, a printed material) with light at a constant angle and receiving diffused light reflected at a constant angle is described. The details of the processing of light after receiving light are not mentioned in detail. On the other hand, as a practical problem, what is more important is the processing speed of the light after it is received, rather than the processing of the light after it is received.In the color measuring device, the color measurement results are fed back to the machine that is producing at high speed. It is impossible to control the machine. That is, since it takes 2 to 3 seconds to measure one point, it takes 2 seconds × 200 points = 400 seconds to measure a color scale of a printed matter, and the color measuring device is only valuable as an evaluation device. Without it, it is impossible to feed back and control the color measurement results to a machine that is producing at high speed.

【0005】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、フィードバック制御で
き、測定中の生産物損失率を低減できて、生産性を向上
でき、測定に必要な労力を大幅に減少できて、省力化
を達成できる分光測色装置を提供しようとする点にあ
る。
The present invention has been proposed in view of the above problems, and the object of the present invention is to perform feedback control, reduce the product loss rate during measurement, improve productivity, and improve measurement efficiency. It is intended to provide a spectrocolorimeter that can significantly reduce the labor and achieve labor saving.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の分光測色装置は、受光部の中央部に垂直
照射光用結像レンズを配設し、同垂直照射光の45°反
射光を受光する多数のレンズを環状に配置し、同各レン
ズのそれぞれに光ファイバーを接続して、受光部を構成
している(請求項1)。
In order to achieve the above object, the spectral colorimetric apparatus of the present invention has an image forming lens for vertical irradiation light disposed in the center of a light receiving portion, and A large number of lenses for receiving the 45 ° reflected light are arranged in an annular shape, and an optical fiber is connected to each of the lenses to form a light receiving section (claim 1).

【0007】前記請求項1記載の分光測色装置におい
て、各光ファイバーの後端部側に干渉フイルタと受光素
子とをその順に接続して、導光部を構成してもよい(請
求項2)。前記請求項1記載の分光測色装置において、
各受光素子のそれぞれに2つのスイッチを並列に接続
し、一方のスイッチを電荷蓄積用コンデンサを介してア
ースに接続し、他方のスイッチをアースに接続して、光
電変換部を構成してもよい(請求項3)。
In the spectral colorimetric apparatus according to claim 1, the interference filter and the light receiving element may be connected in this order to the rear end side of each optical fiber to form a light guide section (claim 2). . The spectral colorimetric apparatus according to claim 1,
The photoelectric conversion unit may be configured by connecting two switches in parallel to each of the light receiving elements, connecting one switch to the ground via the charge storage capacitor, and connecting the other switch to the ground. (Claim 3).

【0008】前記請求項1乃至3記載の分光測色装置に
おいて、受光部の光ファイバーと光電変換部の電荷蓄積
用コンデンサとを接続してもよい(請求項4)。前記請
求項1乃至3記載の分光測色装置において、光電変換部
の電荷蓄積用コンデンサを可変にしてもよい(請求項
5)。
In the spectrocolorimetric apparatus according to any one of claims 1 to 3, the optical fiber of the light receiving section and the charge storage capacitor of the photoelectric conversion section may be connected (claim 4). In the spectral colorimetric apparatus according to any one of claims 1 to 3, the charge storage capacitor of the photoelectric conversion unit may be variable (claim 5).

【0009】[0009]

【作用】本発明の分光測色装置は前記のように構成され
ており、光源からの垂直照射光が垂直照射光用結像レン
ズを介して対象物(例えば印刷物)に照射され、同対象
物からの45°反射光が環状に配置した多数のレンズに
より受光される。このとき、同各レンズの結像性能から
一定範囲以外の光は採光されない。上記各レンズにより
集めた光は、各光ファイバーにより導光部へ導かれ、同
導光部では、再びレンズにより集光され、それぞれの波
長に分離する干渉フイルタを通過した後、フォトダイオ
ードなどの受光素子により受光され、同受光素子では、
光に応じて電荷が発生する。この電荷の蓄積と出力とが
各受光素子に設置した一方及び他方のスイッチにより制
御される。即ち、測定開始前は、一方のスイッチ(リセ
ットスイッチ)が開いており、電荷が蓄積されない。測
定開始とともに一方のスイッチが閉じられ、それと略同
時に他方のスイッチ(ゲートスイッチ)が開かれて、受
光素子に発生した電荷が電荷蓄積用コンデンサに蓄えら
れる。測定終了後(蓄積終了後)、他方のスイッチが閉
じられることにより、電荷蓄積用コンデンサに蓄えられ
た電荷が保持され、高速マルチプレクサにより順次出力
される。この順次出力された電荷は、一旦、電流電圧変
換素子により電圧に変換された後、増幅器、フイルタな
どを通過することにより、波形整形され、サンプルホー
ルド、A/D変換器によりディジタル信号に変換され
る。これらのタイミングは、制御換算回路により制御さ
れているので、高速且つ正確に処理が行われる。
The spectral colorimetric apparatus of the present invention is configured as described above, and the vertical irradiation light from the light source is applied to the object (for example, printed matter) through the image forming lens for the vertical irradiation light, and the object is the same. The 45 ° reflected light from is received by a large number of lenses arranged in a ring. At this time, light other than a certain range is not collected due to the image forming performance of each lens. The light collected by each lens is guided to each light guide section by each optical fiber. In the same light guide section, the light is condensed again by the lens, and after passing through the interference filter for separating each wavelength, it is received by the photodiode or the like. The light is received by the element, and the light receiving element
Electric charges are generated in response to light. The accumulation and output of this electric charge are controlled by one and the other switch provided in each light receiving element. That is, one switch (reset switch) is open before the start of measurement, and no charge is accumulated. When the measurement is started, one switch is closed, and at the same time, the other switch (gate switch) is opened, and the charge generated in the light receiving element is stored in the charge storage capacitor. After the measurement is completed (after the accumulation is completed), the other switch is closed so that the charges accumulated in the charge accumulating capacitor are held and sequentially output by the high speed multiplexer. This sequentially output electric charge is once converted into a voltage by a current-voltage conversion element, and then passed through an amplifier, a filter, etc., so that the waveform is shaped and converted into a digital signal by a sample hold and an A / D converter. It Since these timings are controlled by the control conversion circuit, high-speed and accurate processing is performed.

【0010】[0010]

【実施例】次に本発明の分光測色装置を図1〜図9に示
す一実施例により説明する。図1は、同分光測色装置の
全体を示す斜視図、図2は、受光部を示す縦断側面図、
図3は、導光部を示す縦断側面図、図4は、光電変換電
気回路を示す系統図、図5は、同時蓄積の回路例を示す
系統図、図6(a)は、受光部のレンズ(小型レンズ)
の配置例を示す縦断側面図、図6(b)は、同受光部の
レンズ(小型レンズ)の配置例を示す底面図、図7は、
受光部のレンズ(小型レンズ)の光線軌跡を示す説明
図、図8(a)は、導光部にレンズ(小型レンズ)がな
い場合の作用説明図、図8(b)は、導光部にレンズ
(小型レンズ)がある場合の作用説明図、図9(a)
は、光電変換部で同時蓄積されない場合の作用説明図、
図9(b)は、光電変換部で同時蓄積される場合の作用
説明図である。
EXAMPLE A spectral colorimetric apparatus of the present invention will be described below with reference to an example shown in FIGS. 1 is a perspective view showing the whole of the spectrocolorimetric apparatus, FIG. 2 is a vertical sectional side view showing a light receiving section,
3 is a vertical side view showing the light guide portion, FIG. 4 is a system diagram showing a photoelectric conversion electric circuit, FIG. 5 is a system diagram showing an example of a circuit for simultaneous storage, and FIG. Lens (small lens)
6B is a bottom side view showing an example of the arrangement of the lenses (small lenses) of the light receiving section, and FIG.
FIG. 8A is an explanatory view showing a ray trace of a lens (small lens) of the light receiving portion, FIG. 8A is an operation explanatory view when the light guiding portion does not have a lens (small lens), and FIG. 8B is a light guiding portion. FIG. 9 (a) is an explanatory view of the operation when there is a lens (small lens) in FIG.
Is an operation explanatory view in the case where the photoelectric conversion units are not simultaneously stored,
FIG. 9B is an operation explanatory diagram in the case of simultaneous accumulation in the photoelectric conversion unit.

【0011】これらの図1〜図9において、1が光源、
2が受光部の中央部に配設した垂直照射光用結像レン
ズ、3が多数の光ファイバー、4が干渉フイルター、5
が受光素子、6が45°反射光を受光する多数のレンズ
(小型レンズ)、7が受光部筺体、8が電荷蓄積用コン
デンサ、9が高速マルチプレクサ、10が電流電圧変換
素子、11が増幅器、12がフィルタ、13がサンプル
ホールド、14がA/D変換器、15が制御演算回路、
16が一方のスイッチ(リセットスイッチ)、17が他
方のスイッチ(ゲートスイッチ)である。
1 to 9, 1 is a light source,
2 is an imaging lens for vertical irradiation light arranged in the center of the light receiving part, 3 is a large number of optical fibers, 4 is an interference filter, 5
Is a light receiving element, 6 is a large number of lenses (small lenses) for receiving 45 ° reflected light, 7 is a light receiving unit housing, 8 is a charge storage capacitor, 9 is a high-speed multiplexer, 10 is a current-voltage conversion element, 11 is an amplifier, 12 is a filter, 13 is a sample hold, 14 is an A / D converter, 15 is a control arithmetic circuit,
16 is one switch (reset switch) and 17 is the other switch (gate switch).

【0012】次に前記図1〜図9に示す分光測色装置の
作用を具体的に説明する。光源1からの垂直照射光が垂
直照射光用結像レンズ2を介して対象物(例えば印刷
物)に照射され、同対象物からの45°反射光が環状に
配置した多数のレンズ(小型レンズ)6により受光され
る。このとき、色情報を持つ対象物からの拡散光(反射
光)は、45°で、図6に示すように環状に配置された
各レンズ6の結像性能から一定範囲以外の光は採光され
ない。
Next, the operation of the spectral colorimetric apparatus shown in FIGS. 1 to 9 will be specifically described. Vertically radiated light from the light source 1 is radiated to an object (for example, a printed matter) via the vertically radiated light imaging lens 2, and 45 ° reflected light from the object is annularly arranged in a large number of lenses (small lenses). It is received by 6. At this time, diffused light (reflected light) from the object having color information is 45 °, and light other than a certain range is not collected due to the image forming performance of each lens 6 arranged annularly as shown in FIG. .

【0013】上記各レンズ6により集めた光は、各光フ
ァイバー3により図8(b)に示す導光部へ導かれ、同
導光部では、再びレンズ6により集光され、それぞれの
波長に分離する干渉フイルタ4を通過した後、フォトダ
イオードなどの受光素子5により受光される。ここで図
8(a)に示すようにレンズ6を使用しなかった場合、
光ファイバー3からの光の全てが受光素子5に導かれな
い。
The light collected by each lens 6 is guided by each optical fiber 3 to the light guide portion shown in FIG. 8B, where it is condensed again by the lens 6 and separated into respective wavelengths. After passing through the interference filter 4, the light is received by the light receiving element 5 such as a photodiode. Here, when the lens 6 is not used as shown in FIG.
Not all the light from the optical fiber 3 is guided to the light receiving element 5.

【0014】同受光素子5では、光に応じて電荷が発生
する。この電荷の蓄積と出力とが各受光素子5に設置し
た一方及び他方のスイッチにより制御される。即ち、測
定開始前は、一方のスイッチ(リセットスイッチ)16
が開いており、電荷が蓄積されない。測定開始とともに
一方のスイッチ16が閉じられ、それと略同時に他方の
スイッチ(ゲートスイッチ)17が開かれて、受光素子
5に発生した電荷が電荷蓄積用コンデンサ8に蓄えられ
る。
In the light receiving element 5, charges are generated according to light. The accumulation and output of this electric charge are controlled by one and the other switch provided in each light receiving element 5. That is, before starting the measurement, one switch (reset switch) 16
Is open and no charge is accumulating. When the measurement is started, one switch 16 is closed, and at the same time, the other switch (gate switch) 17 is opened, and the charge generated in the light receiving element 5 is stored in the charge storage capacitor 8.

【0015】測定終了後(蓄積終了後)、他方のスイッ
チ17が閉じられることにより、電荷蓄積用コンデンサ
8に蓄えられた電荷が保持され、高速マルチプレクサ9
により順次出力される。なお同時蓄積により、測定精度
を落とさずに多数の色が瞬時に測定されて、高速化が可
能になる。なお実際の電荷は、受光素子5の端子間容量
と電荷蓄積用コンデンサ8容量とにより決まるので、電
荷蓄積用コンデンサ8の容量を変化させることにより、
出力感度を制御できるので、各受光素子5毎の出力を均
等に調整することが可能である。
After the measurement is completed (after the accumulation is completed), the other switch 17 is closed so that the charge accumulated in the charge accumulating capacitor 8 is held and the high speed multiplexer 9
Are sequentially output by. By the simultaneous accumulation, a large number of colors can be measured instantaneously without lowering the measurement accuracy, and the speed can be increased. Since the actual charge is determined by the inter-terminal capacitance of the light receiving element 5 and the capacitance of the charge storage capacitor 8, the capacitance of the charge storage capacitor 8 is changed to
Since the output sensitivity can be controlled, the output of each light receiving element 5 can be adjusted evenly.

【0016】この順次出力された電荷は、一旦、電流電
圧変換素子10により電圧に変換された後、増幅器1
1、フイルタ12などを通過することにより、波形整形
され、サンプルホールド13、A/D変換器14により
ディジタル信号に変換される。これらのタイミングは、
制御換算回路15により制御されているので、高速且つ
正確に処理が行われる。
The sequentially output charges are once converted into a voltage by the current-voltage conversion element 10, and then the amplifier 1
1, the waveform is shaped by passing through the filter 12 and the like, and converted into a digital signal by the sample hold 13 and the A / D converter 14. These timings are
Since it is controlled by the control conversion circuit 15, processing can be performed accurately at high speed.

【0017】なお図11に示す従来の分光測色装置で
は、受光後の光を受光器(まはた光ファイバー)により
1箇所に集めて、分光する前に再び分けるという作業を
行っており、この点で光量のロスが多いが、本発明の分
光測色装置では、受光部の45°反射光を各レンズ6及
び各光ファイバー3により受光し、これをそのまま導光
部の干渉フイルタ4へ導いて分光することにより、光を
有効に使う。この場合、分光の際の光量のロスは少なく
なるが、45°反射光を円周方向の全てで集光できない
ので、図2に示すように各光ファイバー3の先端部側に
多数のレンズ6を環状に設置して、前記従来の分光測色
装置(特開昭56−58640号公報に記載のもの)と
略同等かそれ以上の光を集めて、総合的には、より多く
の光量を得る。また上記のように多数のレンズ6を環状
に設置することにより、図7に示すように採光範囲を限
定して、照明光学系を簡易化する。
In the conventional spectrocolorimeter shown in FIG. 11, the received light is collected by a light receiver (or an optical fiber) at one place and divided before being separated again. In the spectrocolorimeter of the present invention, the 45 ° reflected light of the light receiving section is received by each lens 6 and each optical fiber 3, and is guided to the interference filter 4 of the light guiding section as it is. The light is effectively used by separating the light. In this case, although the loss of the amount of light at the time of splitting is small, the 45 ° reflected light cannot be condensed in the entire circumferential direction. Therefore, as shown in FIG. 2, a large number of lenses 6 are provided on the tip side of each optical fiber 3. It is installed in an annular shape and collects light that is substantially equal to or more than that of the conventional spectral colorimetric device (described in Japanese Patent Application Laid-Open No. 56-58640) to obtain a larger amount of light as a whole. . Further, by providing a large number of lenses 6 in a ring shape as described above, the illumination range is limited as shown in FIG. 7, and the illumination optical system is simplified.

【0018】一方、導光部にも図3に示すようにレンズ
(小型レンズ)6を使用して、光ファイバー3から出射
される光の殆どを受光できるようにしている。光学的に
は、上記のように構成しているが、光電変換部では、多
数のフォトダイオードなどの受光素子5により光電変換
して、測定精度を落とさずに多数の色が瞬時に測定し
て、高速化を可能にしている。
On the other hand, a lens (small lens) 6 is also used in the light guide section as shown in FIG. 3 so that most of the light emitted from the optical fiber 3 can be received. Although it is optically configured as described above, in the photoelectric conversion unit, a large number of colors are instantaneously measured by photoelectrically converting it with a large number of light receiving elements 5 such as photodiodes without lowering measurement accuracy. , Speeding up is possible.

【0019】通常、多数のフォトダイオードにより光電
変換するとき、図9(a)に示すように順次蓄積して、
個々の出力を読み出してゆくが、この場合、波長個数だ
けの蓄積、読み出し作業を必要とし、測定を完了するま
でに多くの時間を要するか、蓄積時間を短縮せざるを得
ない。そこで本発明の分光測色装置では、図5に示すよ
うに各フォトダイオードに電荷蓄積用コンデンサ8を付
加し、測定開始とともに全波長同時蓄積を行い(図9
(b)参照)、測定後、高速で読み出す。この手段を用
いると、蓄積時間を有効利用でき、結果として高速測定
が可能になる。
Normally, when photoelectric conversion is carried out by a large number of photodiodes, they are sequentially accumulated as shown in FIG.
Each output is read out, but in this case, it is necessary to store and read out only the number of wavelengths, and it takes a long time to complete the measurement or the storage time must be shortened. Therefore, in the spectrocolorimeter of the present invention, a charge storage capacitor 8 is added to each photodiode as shown in FIG.
(See (b)), and read out at high speed after measurement. By using this means, the accumulation time can be effectively used, and as a result, high speed measurement can be performed.

【0020】また一定の電荷に対して発生電圧は、V=
Q÷Cで表されるので、コンデンサ容量により出力電圧
をコントロールすることが可能になる。付加したコンデ
ンサの容量をフォトダイオードの感度に対して調整する
ことにより、各波長での出力電圧を均一にして、分光測
色装置の精度を向上させることも可能になる。
For a constant charge, the generated voltage is V =
Since it is represented by Q / C, the output voltage can be controlled by the capacitance of the capacitor. By adjusting the capacitance of the added capacitor with respect to the sensitivity of the photodiode, it is possible to make the output voltage at each wavelength uniform and improve the accuracy of the spectrocolorimeter.

【0021】[0021]

【発明の効果】本発明の分光測色装置は前記のように構
成されており、測定精度を落とさずに多数の色を瞬時に
測定できる。例えば200点測定に400秒かかってい
た測定を約5秒で測定できる。この時間は、マシンが稼
働している状態でも充分にフィードバック制御可能な時
間であり、フィードバック制御でき、測定中の生産物損
失率を低減できて、生産性を向上できる。
The spectrocolorimeter of the present invention is constructed as described above and can measure a large number of colors instantly without lowering the measurement accuracy. For example, a measurement that took 400 seconds to measure 200 points can be measured in about 5 seconds. This time is a time during which the feedback control can be sufficiently performed even when the machine is operating, feedback control can be performed, the product loss rate during measurement can be reduced, and productivity can be improved.

【0022】また本発明の分光測色装置を走査装置と組
み合わせることにより、測定に必要な労力を大幅に減少
できて、省力化を達成できる。
Further, by combining the spectral colorimetric apparatus of the present invention with a scanning apparatus, the labor required for measurement can be greatly reduced and labor saving can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分光測色装置の一実施例の全体を示す
斜視図である。
FIG. 1 is a perspective view showing an entire embodiment of a spectrocolorimeter of the present invention.

【図2】同分光測色装置の受光部を示す縦断側面図であ
る。
FIG. 2 is a vertical sectional side view showing a light receiving portion of the spectral colorimetric apparatus.

【図3】同分光測色装置の導光部を示す縦断側面図であ
る。
FIG. 3 is a vertical cross-sectional side view showing a light guide section of the spectral colorimetric apparatus.

【図4】同分光測色装置の光電変換電気回路を示す系統
図である。
FIG. 4 is a system diagram showing a photoelectric conversion electric circuit of the spectral colorimetric apparatus.

【図5】同分光測色装置の同時蓄積の回路例を示す系統
図である。
FIG. 5 is a system diagram showing an example of a circuit for simultaneous storage of the same spectrocolorimeter.

【図6】(a)は、受光部のレンズ(小型レンズ)の配
置例を示す縦断側面図、(b)は、同受光部のレンズ
(小型レンズ)の配置例を示す底面図である。
FIG. 6A is a vertical cross-sectional side view showing an arrangement example of lenses (small lenses) of the light receiving section, and FIG. 6B is a bottom view showing an arrangement example of lenses (small lenses) of the light receiving section.

【図7】受光部のレンズ(小型レンズ)の光線軌跡を示
す説明図である。
FIG. 7 is an explanatory diagram showing a ray trace of a lens (small lens) of a light receiving unit.

【図8】(a)は、導光部にレンズ(小型レンズ)がな
い場合の作用説明図、(b)は、導光部にレンズ(小型
レンズ)がある場合の作用説明図である。
FIG. 8A is an explanatory view of the operation when the light guide unit has no lens (small lens), and FIG. 8B is an explanatory view of the operation when the light guide unit has a lens (small lens).

【図9】(a)は、光電変換部で同時蓄積されない場合
の作用説明図、(b)は、光電変換部で同時蓄積される
場合の作用説明図である。
FIG. 9A is an operation explanatory diagram when the photoelectric conversion units do not simultaneously accumulate, and FIG. 9B is an operation explanatory diagram when the photoelectric conversion units simultaneously accumulate.

【図10】(a)は、従来の分光測色装置の受光部の4
5°照明垂直受光状態を示す説明図、(b)は垂直照明
45°受光状態を示す説明図である。
FIG. 10A is a view of a light receiving unit of a conventional spectrocolorimeter.
FIG. 5 is an explanatory diagram showing a 5 ° illumination vertical light receiving state, and FIG. 7B is an explanatory diagram showing a vertical illumination 45 ° light receiving state.

【図11】従来の分光測色装置の受光部を示す縦断側面
図である。
FIG. 11 is a vertical cross-sectional side view showing a light receiving portion of a conventional spectrocolorimeter.

【符号の説明】[Explanation of symbols]

1 光源 2 垂直照射光用結像レンズ 3 光ファイバー 4 干渉フイルター 5 受光素子 6 45°反射光を受光する多数のレンズ(小型レ
ンズ) 7 受光部筺体 8 電荷蓄積用コンデンサ 9 高速マルチプレクサ 10 電流電圧変換素子 11 増幅器 12 フィルタ 13 サンプルホールド 14 A/D変換器 15 制御演算回路 16 一方のスイッチ(リセットスイッチ) 17 他方のスイッチ(ゲートスイッチ)
1 Light source 2 Image forming lens for vertical irradiation light 3 Optical fiber 4 Interference filter 5 Light receiving element 6 45 ° Many lenses (small lenses) that receive reflected light 7 Light receiving unit housing 8 Charge storage capacitor 9 High speed multiplexer 10 Current voltage conversion element 11 Amplifier 12 Filter 13 Sample Hold 14 A / D Converter 15 Control Operation Circuit 16 One Switch (Reset Switch) 17 The Other Switch (Gate Switch)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 受光部の中央部に垂直照射光用結像レン
ズを配設し、同垂直照射光の45°反射光を受光する多
数のレンズを環状に配置し、同各レンズのそれぞれに光
ファイバーを接続して、受光部を構成したことを特徴と
する分光測色装置。
1. An image forming lens for vertical irradiation light is arranged in the center of a light receiving portion, and a large number of lenses for receiving 45 ° reflected light of the same vertical irradiation light are arranged in an annular shape. A spectral colorimetric device characterized in that an optical fiber is connected to form a light receiving section.
【請求項2】 前記各光ファイバーの後端部側に干渉フ
イルタと受光素子とをその順に接続して、導光部を構成
した請求項1記載の分光測色装置。
2. The spectral colorimetric apparatus according to claim 1, wherein an interference filter and a light receiving element are connected in this order to the rear end side of each of the optical fibers to form a light guide section.
【請求項3】 前記各受光素子のそれぞれに2つのスイ
ッチを並列に接続し、一方のスイッチを電荷蓄積用コン
デンサを介してアースに接続し、他方のスイッチをアー
スに接続して、光電変換部を構成した請求項1記載の分
光測色装置。
3. A photoelectric conversion unit in which two switches are connected in parallel to each of the light receiving elements, one switch is connected to ground via a charge storage capacitor, and the other switch is connected to ground. The spectral colorimetric apparatus according to claim 1, which is configured as follows.
【請求項4】 前記受光部の光ファイバーと前記光電変
換部の電荷蓄積用コンデンサとを接続した請求項1乃至
3記載の分光測色装置。
4. The spectrocolorimeter according to claim 1, wherein the optical fiber of the light receiving section and the charge storage capacitor of the photoelectric conversion section are connected.
【請求項5】 前記光電変換部の電荷蓄積用コンデンサ
を可変にした請求項3記載の分光測色装置。
5. The spectral colorimetric apparatus according to claim 3, wherein the charge storage capacitor of the photoelectric conversion unit is variable.
JP7113212A 1995-05-11 1995-05-11 Spectral colorimeter Pending JPH08304179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7113212A JPH08304179A (en) 1995-05-11 1995-05-11 Spectral colorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7113212A JPH08304179A (en) 1995-05-11 1995-05-11 Spectral colorimeter

Publications (1)

Publication Number Publication Date
JPH08304179A true JPH08304179A (en) 1996-11-22

Family

ID=14606413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7113212A Pending JPH08304179A (en) 1995-05-11 1995-05-11 Spectral colorimeter

Country Status (1)

Country Link
JP (1) JPH08304179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564954A (en) * 2010-12-09 2012-07-11 苏州生物医学工程技术研究所 Multi-channel photoelectric detection device for dry type chemical analysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162134U (en) * 1979-05-09 1980-11-20
JPS625138A (en) * 1985-07-01 1987-01-12 Yoshiki Kogyo Kk Color-analyzing sensor
JPH01276024A (en) * 1988-04-28 1989-11-06 Minolta Camera Co Ltd Safety mechanism for colorimeter
JPH02265362A (en) * 1989-04-05 1990-10-30 Fuji Xerox Co Ltd Contact type image sensor
JPH04357423A (en) * 1990-08-30 1992-12-10 Fuji Electric Co Ltd Photosensor circuit
JPH05244411A (en) * 1992-02-26 1993-09-21 Olympus Optical Co Ltd Signal converter for photo sensor array
JPH0697414A (en) * 1992-09-11 1994-04-08 Hitachi Ltd Solid-state image sensing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162134U (en) * 1979-05-09 1980-11-20
JPS625138A (en) * 1985-07-01 1987-01-12 Yoshiki Kogyo Kk Color-analyzing sensor
JPH01276024A (en) * 1988-04-28 1989-11-06 Minolta Camera Co Ltd Safety mechanism for colorimeter
JPH02265362A (en) * 1989-04-05 1990-10-30 Fuji Xerox Co Ltd Contact type image sensor
JPH04357423A (en) * 1990-08-30 1992-12-10 Fuji Electric Co Ltd Photosensor circuit
JPH05244411A (en) * 1992-02-26 1993-09-21 Olympus Optical Co Ltd Signal converter for photo sensor array
JPH0697414A (en) * 1992-09-11 1994-04-08 Hitachi Ltd Solid-state image sensing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564954A (en) * 2010-12-09 2012-07-11 苏州生物医学工程技术研究所 Multi-channel photoelectric detection device for dry type chemical analysis

Similar Documents

Publication Publication Date Title
US4076421A (en) Spectrophotometer with parallel sensing
EP0456813B1 (en) Multichannel optical monitoring system
US5424826A (en) Wideband optical micro-spectrometer system
JPH09126888A (en) Light source device
US4330209A (en) Spectrophotometer receiving a variable quantity of light
CN105628671A (en) Apparatus and method for obtaining Raman scattering spectrum
US20100328661A1 (en) Apparatus and method for laser induced breakdown spectroscopy using a multiband sensor
US4758086A (en) Apparatus for measuring spectral power of a light beam
JPH08304179A (en) Spectral colorimeter
CN105973829A (en) Double-light-beam infrared spectrophotometer with double infrared detectors
JP2004077212A (en) Device for measuring wavelength and waveform of optical signal
JP2003227754A (en) Acquisition method for data from multielement detector in infrared image apparatus
CN115165762A (en) Chip with spectrum distinguishing function
JP5206322B2 (en) Spectrophotometer
CN210036964U (en) High-speed spectrometer
JPS62282245A (en) Apparatus for measuring concentration of chlorophyll of community
WO2022026053A1 (en) Multiplexed sensor network using swept source raman spectroscopy
JPH08184495A (en) Spectrophotometer
KR100241235B1 (en) Multi-wavelength radiation temperature measuring method and apparatus thereof
CN113533232B (en) Full-range fiber bragg grating piezoelectric tuning multi-gas sensing system and spectrum analysis method
JP2012198119A (en) Photometric device and photometric method
US5118926A (en) Device for separating a beam of white light into a plurality of elementary beams of particular color
JP4035765B2 (en) Fourier transform infrared spectrometer
RU2051338C1 (en) Atom-emission multichannel spectrometer
CN1015658B (en) Quick detector of colour

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020305