JPH08304144A - Liquid level gage - Google Patents

Liquid level gage

Info

Publication number
JPH08304144A
JPH08304144A JP11462595A JP11462595A JPH08304144A JP H08304144 A JPH08304144 A JP H08304144A JP 11462595 A JP11462595 A JP 11462595A JP 11462595 A JP11462595 A JP 11462595A JP H08304144 A JPH08304144 A JP H08304144A
Authority
JP
Japan
Prior art keywords
liquid level
liquid
sound
level gauge
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11462595A
Other languages
Japanese (ja)
Inventor
Hiroshi Kubota
浩 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDOUTAI TSUSHIN SENTAN GIJUTSU
IDOUTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Original Assignee
IDOUTAI TSUSHIN SENTAN GIJUTSU
IDOUTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDOUTAI TSUSHIN SENTAN GIJUTSU, IDOUTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK filed Critical IDOUTAI TSUSHIN SENTAN GIJUTSU
Priority to JP11462595A priority Critical patent/JPH08304144A/en
Publication of JPH08304144A publication Critical patent/JPH08304144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE: To prevent the heat inflow from the outside surely at the time of liquid level measurement. CONSTITUTION: A storing container 1 contains a freezing mixture L, whose liquid surface is in the boiling and evaporating state. A pressure sensor 2 is provided at the top wall of the storing container 1 so as to face a gaseous space S in the storing container 1 and detects the boiling/evaporating sound generated from the freezing mixture L. These parts are provided. A CPU in a main body 3 of a liquid level gage performs the frequency analysis of the sound pressure signal outputted from the pressure sensor 2, sets the frequency, at which the sound pressure indicates the maximum value, as the resonant frequency, computes the position of the liquid level of the freezing mixture L based on the frequency and indicates the position on an indicator 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、容器内に貯蔵された液
体ヘリウム、液体窒素等の寒剤の液面位置を測定するの
に適した液面計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid level gauge suitable for measuring the liquid level position of a cryogen such as liquid helium or liquid nitrogen stored in a container.

【0002】[0002]

【従来の技術】超伝導材は電力消費の低減を図る従来の
強電回路での使用に加えて、近年においては、抵抗雑音
の低減を図る目的で通信等の種々の弱電回路における使
用が拡大している。このような超伝導材の超伝導状態を
発現し維持するには、これを所定の絶対温度以下に冷却
する必要がある。
2. Description of the Related Art Superconducting materials have been widely used in various weak electric circuits such as communication for the purpose of reducing resistance noise in addition to the conventional use in strong electric circuits for reducing power consumption. ing. In order to develop and maintain such a superconducting state of the superconducting material, it is necessary to cool the superconducting material below a predetermined absolute temperature.

【0003】ところで、超伝導材を使用した電気回路
(以下、超伝導回路という)は、スターリングサイクル
を利用した気体ヘリウム冷却機等を使用して液体窒素の
気化温度程度にまで冷却される。前記超伝導回路は、通
常、真空雰囲気内に置かれるが、回路基板を支持する支
持部や信号取出し線を経て常温の外周雰囲気中から熱が
流入する。したがって、この流入熱量を正確に測定する
ことが、前記冷却機の能力設計をするに際して極めて重
要となる。
By the way, an electric circuit using a superconducting material (hereinafter referred to as a superconducting circuit) is cooled to about the vaporization temperature of liquid nitrogen by using a gas helium cooler utilizing a Stirling cycle. The superconducting circuit is usually placed in a vacuum atmosphere, but heat is introduced from the ambient atmosphere at room temperature through a support portion that supports the circuit board and a signal extraction line. Therefore, accurate measurement of this inflowing heat amount is extremely important when designing the capacity of the cooling machine.

【0004】流入熱量の測定法としてはボイル・オフ・
カロリメトリー法が知られており、これは冷却機の熱交
換パイプ内に、熱交換器に代えて液体窒素等の寒剤を注
入して、気化熱により上記熱交換パイプを所定温度に冷
却し、この状態で、寒剤の気化ガス量より熱交換パイプ
への流入熱量を知るものである。この場合、熱交換パイ
プ内に寒剤を注入し過ぎると、その液位が高くなって低
温領域が増大し、実際に冷却機を使用した場合の温度分
布との相違が大きくなって、正確な流入熱量を知ること
ができない。したがって、注入時に寒剤の液位を適正に
測定する必要がある。
Boil-off
Calorimetry method is known, in which a cooling agent such as liquid nitrogen is injected into the heat exchange pipe of the cooler in place of the heat exchanger, and the heat exchange pipe is cooled to a predetermined temperature by the heat of vaporization, In this state, the amount of heat flowing into the heat exchange pipe is known from the amount of vaporized gas of the cryogen. In this case, if too much cryogen is injected into the heat exchange pipe, the liquid level rises and the low-temperature region increases, causing a large difference from the temperature distribution when actually using the cooler, resulting in an accurate inflow. I cannot know the amount of heat. Therefore, it is necessary to properly measure the liquid level of the cryogen at the time of injection.

【0005】寒剤の液面位置を測定する液面計として
は、従来、液面に浮かべたフロートの上下動を電磁気的
あるいは機械的に検出するもの、二重円筒の電極を寒剤
に浸して、液位の上下に伴う電極間の静電容量変化を検
出するもの、超伝導線を垂直方向へ張って、寒剤に浸さ
れて抵抗零となる超伝導部分が、液位の上下に伴い増減
することによる超伝導線の抵抗値変化を検出するもの等
が知られている。
Conventionally, as a liquid level gauge for measuring the liquid level position of a cryogen, one which electromagnetically or mechanically detects the vertical movement of a float floated on the liquid level, a double cylinder electrode is immersed in a cryogen, Detects capacitance change between electrodes due to rise and fall of liquid level, superconducting wire is stretched in the vertical direction, and the superconducting part where resistance is zero when immersed in cryogen increases and decreases with rise and fall of liquid level There are known ones that detect a change in resistance value of a superconducting wire.

【0006】[0006]

【発明が解決しようとする課題】しかし、外部に通じる
機構部を有するフロートや、外部信号線が接続された電
極等を寒剤中に浸すと、これら機構部等を経て外部雰囲
気中から熱が流入するため、液位を管理したことによっ
て却って流入熱量の測定に誤差を生じるという問題があ
る。また、前記従来の液面計では、その保守点検時に寒
剤を貯蔵容器外へ排出する必要があって、手間を要する
という問題もある。
However, when a float having a mechanism portion communicating with the outside or an electrode or the like to which an external signal line is connected is immersed in a cryogen, heat flows from the outside atmosphere through the mechanism portion or the like. Therefore, there is a problem that the control of the liquid level causes an error in the measurement of the inflowing heat quantity. Further, the conventional liquid level gauge has a problem that it is necessary to discharge the cryogen to the outside of the storage container at the time of maintenance and inspection, which is troublesome.

【0007】本発明はこのような課題を解決するもの
で、液位測定時の外部からの熱流入を確実に防止して寒
剤等の液位を正確に測定できるとともに、保守点検の手
間も要しない液面計を提供することを目的とする。
The present invention solves such a problem, and can reliably prevent the inflow of heat from the outside at the time of measuring the liquid level to accurately measure the liquid level of a cryogen and the like, and also requires the trouble of maintenance and inspection. The purpose is to provide a liquid level gauge that does not.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するため、請求項1に記載の発明においては、貯蔵容器
(1)内に収納されて液面が沸騰蒸発状態にある液体の
液位を測定する液面計であって、前記貯蔵容器内の、液
面上方の気体空間に面して設けられ、前記液体から発せ
られる沸騰蒸発音を検出する音検出手段(2)と、検出
された前記沸騰蒸発音の共鳴周波数を抽出し、これに基
づいて前記液体の液面位置を算出する液面算出手段
(3、103、104)とを設けている。
In order to achieve the above object, the present invention provides a liquid according to claim 1 in which a liquid is contained in a storage container (1) and has a liquid level in a boiling evaporation state. A liquid level meter for measuring the position, the sound detecting means (2) provided facing the gas space above the liquid level in the storage container, for detecting the boiling evaporation sound emitted from the liquid; Liquid level calculation means (3, 103, 104) for extracting the resonance frequency of the boiled vaporization sound thus generated and calculating the liquid level position of the liquid based on the extracted resonance frequency is provided.

【0009】請求項2に記載の発明においては、前記液
体は、液体ヘリウムや液体窒素等の寒剤である。請求項
3に記載の発明においては、前記音検出手段(2)は、
前記沸騰蒸発音の音圧を検出するものである。請求項4
に記載の発明においては、前記液面算出手段(3)は、
前記音検出手段より出力される音圧信号を周波数解析し
て、音圧が極大を示す周波数を前記共鳴周波数とするも
のである。
In the invention described in claim 2, the liquid is a cryogen such as liquid helium or liquid nitrogen. In the invention according to claim 3, the sound detecting means (2) is
The sound pressure of the boiling evaporation sound is detected. Claim 4
In the invention described in (1), the liquid level calculation means (3) is
The sound pressure signal output from the sound detecting means is subjected to frequency analysis, and the frequency at which the sound pressure has a maximum is set as the resonance frequency.

【0010】請求項5に記載の発明においては、前記貯
蔵容器(1)は、ボイル・オフ・カロリメトリー法によ
り流入熱量が測定される冷却装置の熱交換パイプであ
る。なお、上記各手段のカッコ内の符号は、後述する実
施例記載の具体的手段との対応関係を示すものである。
In the invention according to claim 5, the storage container (1) is a heat exchange pipe of a cooling device whose inflowing heat quantity is measured by a boil-off calorimetry method. The reference numerals in parentheses of the above-mentioned means indicate the correspondence with the concrete means described in the embodiments described later.

【0011】[0011]

【発明の作用効果】請求項1に記載の発明によれば、液
体の沸騰蒸発音は液面上方の気体空間で共鳴し、その共
鳴周波数は気体空間の容積に応じて変化する。すなわ
ち、液面が上昇して気体空間の容積が小さくなると共鳴
周波数は高くなり、一方、液面が下降して気体空間の容
積が大きくなると共鳴周波数は低くなる。したがって、
音検出手段により検出される沸騰蒸発音より共鳴周波数
を抽出すれば、液面位置が正確に知られる。
According to the invention described in claim 1, the boiling evaporation sound of the liquid resonates in the gas space above the liquid surface, and the resonance frequency thereof changes according to the volume of the gas space. That is, when the liquid level rises and the volume of the gas space decreases, the resonance frequency increases, while when the liquid level descends and the volume of the gas space increases, the resonance frequency decreases. Therefore,
The liquid level position can be accurately known by extracting the resonance frequency from the boiling evaporation sound detected by the sound detecting means.

【0012】本発明の液面計では、音検出手段が、液外
の気体空間に面する貯蔵容器の容器壁に設けられるか
ら、寒剤を容器外へ排出することなく容易に保守作業を
行うことができる。そして、請求項2に記載の発明によ
れば、液面計が、従来のような寒剤中に浸される液位検
出部を有しないから、この液位検出部を介して外部から
熱が流入して、寒剤の過度な沸騰蒸発を促すという問題
は生じない。
In the liquid level gauge of the present invention, since the sound detecting means is provided on the container wall of the storage container facing the gas space outside the liquid, maintenance work can be easily performed without discharging the cryogen. You can Further, according to the invention of claim 2, the liquid level gauge does not have a liquid level detection unit which is immersed in a cryogen as in the conventional case, so that heat flows from the outside through the liquid level detection unit. Then, the problem of promoting excessive boiling evaporation of the cryogen does not occur.

【0013】請求項5に記載の発明によれば、液面計か
らの熱流入がないから、ボイル・オフ・カロリメトリー
法による熱交換パイプへの流入熱量の測定を高精度で行
うことができる。
According to the fifth aspect of the invention, since there is no heat inflow from the liquid level gauge, it is possible to measure the inflow heat quantity into the heat exchange pipe by the boil-off calorimeter method with high accuracy.

【0014】[0014]

【実施例】以下、本発明を図に示す実施例について説明
する。図1には冷却状態での超伝導回路基板への流入熱
量を、ボイル・オフ・カロリメトリー法で測定する場合
を示し、冷却装置4は実際の使用時とは上下が逆になっ
ている。冷却装置4の筒状ハウジング41は密閉されて
内部が真空となっており、このハウジング41内にはこ
れと同心状に支持筒42が垂設されるとともに、支持筒
42の中心を上下に貫通して熱交換パイプ1が位置して
いる。この熱交換パイプ1内には実際の使用時には気体
ヘリウムの熱交換器が設けられる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a case where the amount of heat flowing into the superconducting circuit board in the cooled state is measured by the boil-off calorimetry method, and the cooling device 4 is upside down from the actual use. The cylindrical housing 41 of the cooling device 4 is hermetically sealed and has a vacuum inside, and a support cylinder 42 is hung concentrically with the inside of the housing 41, and the center of the support cylinder 42 is vertically penetrated. Then, the heat exchange pipe 1 is located. In this heat exchange pipe 1, a gas helium heat exchanger is provided in actual use.

【0015】上記熱交換パイプ1の、閉鎖された下端面
に接して超伝導回路の基板5が設けてある。前記支持筒
42の下端開口縁にはリング状のターミナル板6が設け
てあり、このターミナル板6の左右位置には、ハウジン
グ41の側壁を貫通し前記支持筒42の外周に沿って下
方へ屈曲した同軸ケーブル62、63が保持されてい
る。そして、これら同軸ケーブル62、63の先端はそ
れぞれ上方へ反転して前記超伝導回路基板5に接続され
ている。
A substrate 5 for a superconducting circuit is provided in contact with the closed lower end surface of the heat exchange pipe 1. A ring-shaped terminal plate 6 is provided at the lower end opening edge of the support cylinder 42, and the left and right positions of the terminal plate 6 penetrate the side wall of the housing 41 and bend downward along the outer periphery of the support cylinder 42. The coaxial cables 62 and 63 are held. The tips of the coaxial cables 62 and 63 are turned upside down and connected to the superconducting circuit board 5.

【0016】熱交換パイプ1の下端部内には液体窒素L
が所定の高さまで注入されて、超伝導回路基板5を実際
の使用時とほぼ同一の温度(液体窒素の気化温度)に冷
却するとともに、熱交換パイプ1の上下方向へ実際の使
用時と同様の温度勾配を生じさせている。これにより、
前記基板5には主に上記熱交換パイプ1と同軸ケーブル
62、63を経て、常温の外部雰囲気より熱が流入し、
この流入熱量に応じて、所定の気化熱を有する前記液体
窒素が沸騰蒸発する。
Liquid nitrogen L is provided in the lower end of the heat exchange pipe 1.
Is injected to a predetermined height to cool the superconducting circuit board 5 to almost the same temperature (vaporization temperature of liquid nitrogen) as in actual use, and in the vertical direction of the heat exchange pipe 1 as in actual use. Causing a temperature gradient of. This allows
Heat flows from the outside atmosphere at room temperature into the substrate 5 mainly through the heat exchange pipe 1 and the coaxial cables 62 and 63,
The liquid nitrogen having a predetermined heat of vaporization is boiled and evaporated according to the amount of inflow heat.

【0017】このようにして気化し、熱交換パイプ1の
上端開口から流出する窒素ガスはガス流出管71に設け
たガスメータ72でガス量が計測され、このガス量より
超伝導回路基板5への流入熱量が知られる。なお、窒素
ガスはガスメータ72の直前で公知の方法により所定温
度、圧力に調整される。さて、図1において、前記熱交
換パイプ1の上端開口を閉鎖するカバー体43には、熱
交換パイプ1の気体空間Sに面して本発明の液面計を構
成する圧力センサ2が設置されて、これより信号ケーブ
ル21が延出している。この圧力センサ2は、熱交換パ
イプ1の下端部内で沸騰蒸発している液体窒素が発する
音を検出して、その音圧に比例した信号を出力する。
The nitrogen gas thus vaporized and flowing out from the upper end opening of the heat exchange pipe 1 is measured in gas amount by the gas meter 72 provided in the gas outflow pipe 71, and the gas amount to the superconducting circuit board 5 is measured from this gas amount. The heat input is known. The nitrogen gas is adjusted to a predetermined temperature and pressure just before the gas meter 72 by a known method. Now, in FIG. 1, the pressure sensor 2 constituting the liquid level gauge of the present invention is installed on the cover body 43 that closes the upper end opening of the heat exchange pipe 1 so as to face the gas space S of the heat exchange pipe 1. The signal cable 21 extends from this. The pressure sensor 2 detects a sound emitted by liquid nitrogen boiling and evaporating in the lower end portion of the heat exchange pipe 1, and outputs a signal proportional to the sound pressure.

【0018】図2には液面計の機器構成を示す。図にお
いて、前記熱交換パイプ1は密閉筒状の貯蔵容器として
簡略的に描いてある。この貯蔵容器1の頂壁に設けた前
記圧力センサ2から延びる信号ケーブル21が延びて液
面計の本体3に至っている。液面計本体3内には後述す
る各電気回路が収納されるとともに、その前面パネル3
aには表示器31が設けられている。
FIG. 2 shows the equipment structure of the liquid level gauge. In the figure, the heat exchange pipe 1 is schematically depicted as a closed cylindrical storage container. A signal cable 21 extending from the pressure sensor 2 provided on the top wall of the storage container 1 extends to reach the main body 3 of the liquid level gauge. Each of the electric circuits described later is housed in the liquid level gauge main body 3 and its front panel 3
A display 31 is provided in a.

【0019】液面計本体3内には図3に示すような各電
気回路32〜35が収納されている。すなわち、圧力セ
ンサ2から出力された音圧信号は、増幅回路32でフィ
ルタリングされ、増幅された後、A/Dコンバータ33
へ入力してデジタルデータに変換されて、CPU34に
入力する。CPU34では後述する手順で液位が算出さ
れ、この液位データは出力インターフェース回路35を
経て表示器31上に表示される。
Inside the liquid level gauge main body 3, electric circuits 32 to 35 as shown in FIG. 3 are housed. That is, the sound pressure signal output from the pressure sensor 2 is filtered and amplified by the amplifier circuit 32, and then the A / D converter 33.
Is input to the CPU 34, converted into digital data, and input to the CPU 34. The CPU 34 calculates the liquid level by the procedure described later, and the liquid level data is displayed on the display 31 via the output interface circuit 35.

【0020】図4には、前記CPU34内での信号処理
手順を示す。ステップ101では一定時間毎に所定数の
音圧データをサンプリングし、続くステップ102でこ
れら音圧データを高速フーリエ変換する。ステップ10
3では、この変換結果より音圧が極大を示す周波数、す
なわち共振(共鳴)周波数を抽出する。音圧が極大を示
す理由は、液体窒素から発せられる沸騰蒸発音が液体窒
素上方の気体空間S内で共鳴することによるもので、前
記共振周波数は気体空間Sの容積、すなわち、貯蔵容器
1内の液体窒素Lの液位に一対一に対応している。
FIG. 4 shows a signal processing procedure in the CPU 34. In step 101, a predetermined number of sound pressure data are sampled at regular time intervals, and in subsequent step 102, these sound pressure data are subjected to fast Fourier transform. Step 10
In 3, the frequency at which the sound pressure has a maximum, that is, the resonance frequency is extracted from the conversion result. The reason why the sound pressure shows the maximum is that the boiling evaporation sound emitted from the liquid nitrogen resonates in the gas space S above the liquid nitrogen, and the resonance frequency is the volume of the gas space S, that is, the inside of the storage container 1. There is a one-to-one correspondence with the liquid level of the liquid nitrogen L.

【0021】そこで、ステップ104では、予め従来の
液面計を使用して得た、液体窒素の液位とこの時の音圧
共振周波数のマップデータを参照し、抽出された共振周
波数に対応する液体窒素の液位を補間計算によって求め
る。続くステップ105では、計算された液体窒素の液
位を表示器31へ出力する。液体窒素Lの液位と、この
液位に対応する5次高調波の共振周波数についての実験
結果を、図5に示す。この場合の貯蔵容器1は、内径が
12.7φ、深さが185mmである。図より知られる
ように、共振周波数と液体窒素の液位は一義的な関係を
有して変化しており、共振周波数より液位が知られる。
なお、図中、A、B、Cの各点の液位と共振周波数は以
下の通りである。
Therefore, in step 104, the liquid level of the liquid nitrogen and the map data of the sound pressure resonance frequency at this time, which are obtained in advance by using the conventional liquid level gauge, are referred to, and the extracted resonance frequency is corresponded. The liquid level of liquid nitrogen is calculated by interpolation calculation. In the following step 105, the calculated liquid level of liquid nitrogen is output to the display unit 31. FIG. 5 shows the experimental results on the liquid level of the liquid nitrogen L and the resonance frequency of the fifth harmonic corresponding to this liquid level. In this case, the storage container 1 has an inner diameter of 12.7φ and a depth of 185 mm. As is known from the figure, the resonance frequency and the liquid level of liquid nitrogen change with a unique relationship, and the liquid level is known from the resonance frequency.
The liquid levels and resonance frequencies at points A, B, and C in the figure are as follows.

【0022】 上記実施例では、熱交換パイプ先端に設けた超伝導回路
基板への流入熱量を、ボイル・オフ・カロリメトリー法
で測定する際の液面計の使用例について説明したが、本
発明の液面計は液位検出部が液中に浸漬されないという
特質を有することから、外部からの熱流入による過度な
沸騰蒸発を防止する必要がある寒剤の液位測定に広く使
用することができる。
[0022] In the above examples, the amount of heat flowing into the superconducting circuit board provided at the tip of the heat exchange pipe was described as an example of using the liquid level gauge when measuring by the boil-off calorimetry method, but the liquid level gauge of the present invention Since the liquid level detector has the property that it is not immersed in the liquid, it can be widely used for measuring the liquid level of a cryogen that needs to prevent excessive boiling evaporation due to heat input from the outside.

【0023】さらに、本発明の液面計は、液面が沸騰状
態にある通常液体の液位測定に使用することも、もちろ
ん可能である。この場合、液面は常時沸騰状態にある必
要はなく、間欠的に沸騰するものであっても良い。上記
実施例における圧力センサに代えて、市販のマイクロフ
ォンを使用しても良い。
Further, the liquid level gauge of the present invention can of course be used for measuring the liquid level of a normal liquid whose liquid level is in a boiling state. In this case, the liquid surface does not always have to be in a boiling state, and may boil intermittently. A commercially available microphone may be used instead of the pressure sensor in the above embodiment.

【0024】なお、上記実施例のフローチャートにおけ
る各ステップは、それぞれ、機能実行手段としてハード
ロジック構成により実現するようにしてもよい。
Each step in the flow chart of the above embodiment may be realized by a hardware logic structure as a function executing means.

【図面の簡単な説明】[Brief description of drawings]

【図1】ボイル・オフ・カロリメトリー法により流入熱
量の測定がなされる超伝導回路の冷却装置の断面図であ
る。
FIG. 1 is a cross-sectional view of a cooling device for a superconducting circuit in which an inflowing heat quantity is measured by a boil-off calorimetry method.

【図2】液面計の機器構成を示す斜視図である。FIG. 2 is a perspective view showing a device configuration of a liquid level gauge.

【図3】液面計の電気回路ブロック構成図である。FIG. 3 is a block diagram of an electric circuit of the liquid level gauge.

【図4】CPUにおける処理フローチャートてある。FIG. 4 is a processing flowchart in a CPU.

【図5】液位と共振周波数の関係を示すグラフである。FIG. 5 is a graph showing the relationship between liquid level and resonance frequency.

【符号の説明】[Explanation of symbols]

1…熱交換パイプ、2…圧力センサ、3…液面計本体、
34…CPU
1 ... Heat exchange pipe, 2 ... Pressure sensor, 3 ... Liquid level gauge main body,
34 ... CPU

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 貯蔵容器内に収納されて液面が沸騰蒸発
状態にある液体の液位を測定する液面計であって、 前記貯蔵容器内の、液面上方の気体空間に面して設けら
れ、前記液体から発せられる沸騰蒸発音を検出する音検
出手段と、 検出された前記沸騰蒸発音の共鳴周波数を抽出し、これ
に基づいて前記液体の液面位置を算出する液面算出手段
とを設けたことを特徴とする液面計。
1. A level gauge for measuring the liquid level of a liquid contained in a storage container and having a liquid level in a boiling evaporation state, the liquid level gauge facing a gas space above the liquid level in the storage container. A sound detecting means provided for detecting a boiling evaporation sound emitted from the liquid, and a liquid level calculating means for extracting the resonance frequency of the detected boiling evaporation sound and calculating the liquid surface position of the liquid based on the resonance frequency. And a liquid level gauge.
【請求項2】 前記液体は液体ヘリウム、液体窒素等の
寒剤であることを特徴とする請求項1に記載の液面計。
2. The liquid level gauge according to claim 1, wherein the liquid is a cryogen such as liquid helium or liquid nitrogen.
【請求項3】 前記音検出手段は、前記沸騰蒸発音の音
圧を検出するものであることを特徴とする請求項1又は
2に記載の液面計。
3. The liquid level gauge according to claim 1, wherein the sound detecting means detects a sound pressure of the boiling evaporation sound.
【請求項4】 前記液面算出手段は、前記音検出手段よ
り出力される音圧信号を周波数解析して、音圧が極大を
示す周波数を前記共鳴周波数とするものであることを特
徴とする請求項3に記載の液面計。
4. The liquid level calculating means frequency-analyzes the sound pressure signal output from the sound detecting means, and sets the frequency at which the sound pressure has a maximum as the resonance frequency. The liquid level gauge according to claim 3.
【請求項5】 前記貯蔵容器は、ボイル・オフ・カロリ
メトリー法により流入熱量が測定される冷却装置の熱交
換パイプであることを特徴とする請求項2ないし4のい
ずれか一つに記載の液面計。
5. The liquid according to claim 2, wherein the storage container is a heat exchange pipe of a cooling device whose inflowing heat quantity is measured by a boil-off calorimetry method. Face gauge.
JP11462595A 1995-05-12 1995-05-12 Liquid level gage Pending JPH08304144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11462595A JPH08304144A (en) 1995-05-12 1995-05-12 Liquid level gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11462595A JPH08304144A (en) 1995-05-12 1995-05-12 Liquid level gage

Publications (1)

Publication Number Publication Date
JPH08304144A true JPH08304144A (en) 1996-11-22

Family

ID=14642545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11462595A Pending JPH08304144A (en) 1995-05-12 1995-05-12 Liquid level gage

Country Status (1)

Country Link
JP (1) JPH08304144A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058862A (en) * 2000-12-30 2002-07-12 이계안 A test device of deciding the capacity of a reservoir tank
CN108431564A (en) * 2015-12-21 2018-08-21 皇家飞利浦有限公司 Heat flow transducer
CN118067221A (en) * 2024-04-24 2024-05-24 山东理工大学 High-precision liquid level monitoring method based on internal resonance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058862A (en) * 2000-12-30 2002-07-12 이계안 A test device of deciding the capacity of a reservoir tank
CN108431564A (en) * 2015-12-21 2018-08-21 皇家飞利浦有限公司 Heat flow transducer
US10866147B2 (en) 2015-12-21 2020-12-15 Koninklijke Philips N.V. Heat-flow sensor
CN118067221A (en) * 2024-04-24 2024-05-24 山东理工大学 High-precision liquid level monitoring method based on internal resonance

Similar Documents

Publication Publication Date Title
Goellner et al. Thermodynamic properties of liquid 3 He-4 He mixtures near the tricritical point. I. Vapor pressure measurements and their thermodynamic analysis
JPS62223640A (en) System for detecting leakage in liquid storage tank
CN100470211C (en) Buoyancy-type low temperature level meter
CN105299462A (en) High-precision liquid nitrogen liquid-level measurement system
US5018387A (en) Cryogenic liquid level measuring apparatus
JPH08304144A (en) Liquid level gage
Gardner et al. Osmotic coefficients of some aqueous sodium chloride solutions at high temperature
US3280619A (en) Leak detection
Hilic et al. Simultaneous measurement of the solubility of gases in polymers and of the associated volume change
CN105043501A (en) Liquid level detecting device for low-temperature liquid nitrogen and detecting method thereof
CN208155402U (en) A kind of low-temp. liquid-level meter
CN108426621B (en) Low-temperature liquid level meter
US11280750B2 (en) Boiling point water activity measurement
CN214426794U (en) Intelligent liquid level meter
CN220819686U (en) Comprehensive test device for low-temperature performance of gasket
Shields et al. Measurement of fountain pressure and other thermal properties in superfluid 3 He
CN217542728U (en) Liquid nitrogen dropping device based on dead volume constant technology
Quadt et al. Response of an oscillating superleak transducer to a pointlike heat source
CN209512998U (en) A kind of fuel charger metering and calibrating device
CN116296873A (en) Comprehensive test device for low-temperature performance of gasket
CN216877874U (en) Evaporator
JPH02126196A (en) Device for monitoring leakage in pressure vessel of high-pressure
JPH08285716A (en) Method and apparatus for measuring degree of vacuum in vacuum case for infrared detector
Walker et al. Preliminary Assessment of an Ultrasonic Level Sensor for the Calorimetric Measurement of AC Losses in Superconducting Devices
JPH0392726A (en) Method and apparatus for measuring liquid level