JPH08299835A - Disposal method for waste brick from metal melting furnace - Google Patents

Disposal method for waste brick from metal melting furnace

Info

Publication number
JPH08299835A
JPH08299835A JP11140295A JP11140295A JPH08299835A JP H08299835 A JPH08299835 A JP H08299835A JP 11140295 A JP11140295 A JP 11140295A JP 11140295 A JP11140295 A JP 11140295A JP H08299835 A JPH08299835 A JP H08299835A
Authority
JP
Japan
Prior art keywords
brick
waste
steam
bricks
smelting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11140295A
Other languages
Japanese (ja)
Other versions
JP3292271B2 (en
Inventor
Chikayuki Suenaga
近志 末永
Takeshi Mitarai
毅 御手洗
Tetsuo Hirose
哲夫 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14560249&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08299835(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP11140295A priority Critical patent/JP3292271B2/en
Publication of JPH08299835A publication Critical patent/JPH08299835A/en
Application granted granted Critical
Publication of JP3292271B2 publication Critical patent/JP3292271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02W30/54

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To crush waste brick from a metal melting furnace simply to a small particle size by crushing the brick which is brought into contact with steam of specified pressure or more. CONSTITUTION: Base resisting refractory brick used in a metal melting furnace contains MgO and/or CaO as main components, and magnesium chloride brick and magnesia brick are used more preferably. Since MgO and CaO are reactive in a hydration reaction with water, waste brick from the furnace is brought into contact with steam of 2atm or more to be crushed. The temperature of steam is preferably 100-310 deg.C and more preferably 150-250 deg.C. The temperatures are reduced into saturated steam pressure to be 1.0-100atm. and more preferably 4.9-40atm. The treatment with steam is preferably carried out in an autoclave. The crushed waste brick is preferably melted in a copper melting furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属溶錬炉の修理又は
解体時等に発生する廃レンガを粉砕することにより処理
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating waste bricks by crushing waste bricks generated during repair or dismantling of a metal smelting furnace.

【0002】[0002]

【従来の技術】金属溶錬炉から発生する廃レンガを再利
用するためには廃レンガを粉砕することが必要になる。
2. Description of the Related Art In order to reuse waste bricks generated from a metal smelting furnace, it is necessary to crush the waste bricks.

【0003】例えば、銅製錬において自溶炉、反射炉及
び転炉等で使用されているマグネシア−クロム焼成レン
ガ(通称「マグクロレンガ」)は、これらの炉の修理・
解体時には、多量の廃レンガの発生源となるが、炉内で
高温の溶湯と接触しているためにマット(銅−鉄硫化
物)や金属銅を多量に含んでいる。一方、加熱炉などの
廃レンガにはこのようなマットや金属銅が含浸していな
いので、廃レンガは炉材メーカーにおいて機械的に粉砕
された後にスタンプ材として再利用されている。しか
し、溶錬炉の廃レンガはマットや金属銅を含浸している
ため、銅含有率は10〜20重量%にも達し、粉砕法に
より得られた粉末又は塊材も多量のマット等を含有して
いるので、これらを炉材としての再利用することができ
ない。
For example, magnesia-chromium fired bricks (commonly called "magcro bricks") used in flash smelting furnaces, reverberatory furnaces, converters and the like in copper smelting are used for repairing these furnaces.
When dismantled, it becomes a source of a large amount of waste bricks, but since it is in contact with the high temperature molten metal in the furnace, it contains a large amount of matte (copper-iron sulfide) and metallic copper. On the other hand, since waste bricks such as a heating furnace are not impregnated with such a mat or metallic copper, the waste bricks are mechanically crushed by a furnace material maker and then reused as a stamp material. However, since the waste bricks of the smelting furnace are impregnated with matte and metallic copper, the copper content reaches 10 to 20% by weight, and the powder or lump obtained by the pulverization method also contains a large amount of matte etc. Therefore, these cannot be reused as furnace materials.

【0004】一方マットや金属銅は有価物であるため、
マットや金属銅を含浸した廃レンガを機械的に粉砕して
再度溶錬炉に繰返し溶解させることにより、廃レンガ中
の銅分を溶湯に回収することが一般に行われている。し
かし、マットや金属銅を含んだ廃レンガは粉砕性が悪い
上、溶錬炉に繰返して溶解することが可能な粒度、好ま
しくは10mm以下に廃レンガを粉砕するには、2〜3
段の機械粉砕及び分級の操作が必要となる。このため粉
砕コストが高くなる。
On the other hand, since mats and metallic copper are valuable materials,
It is generally practiced to mechanically pulverize a waste brick impregnated with a matte or metallic copper and then melt it again in a smelting furnace repeatedly to recover the copper content in the waste brick into a molten metal. However, waste bricks containing matte and metallic copper have poor grindability, and in order to grind waste bricks to a particle size that can be repeatedly melted in a smelting furnace, preferably 10 mm or less,
Mechanical crushing and classifying operations of stages are required. Therefore, the crushing cost becomes high.

【0005】鉄鋼製錬において使用済みとなったマグネ
シアレンガの再利用法が例えば特開平6−116617
号公報で提案されている。この方法では、使用済みマグ
ネシアレンガを粉砕機械(ジョークラッシャ)により2
0mm以下に粉砕し、これをMgOを主成分とする耐火
物を内張りした溶鋼製錬炉に繰り返して、溶解させるこ
とにより、スラグ中のMgO濃度を調整している。
A method for reusing magnesia bricks used in iron and steel smelting is disclosed in, for example, Japanese Patent Laid-Open No. 6-116617.
It has been proposed in the publication. In this method, used magnesia bricks are crushed by a crushing machine (jaw crusher).
The MgO concentration in the slag is adjusted by crushing to 0 mm or less and repeating this to a molten steel smelting furnace lined with a refractory containing MgO as a main component to dissolve the slag.

【0006】また、特開平6−92701号公報による
と、廃レンガを建築材料としてリサイクルするために、
20〜120mm程度の丸状物に粉砕する方法を提示し
ているが、この方法でもパイレン、ジョークラッシャ及
び角取り装置などの機械により廃レンガを粉砕してい
る。
Further, according to Japanese Patent Laid-Open No. 6-92701, in order to recycle waste brick as a building material,
Although a method of crushing a round material of about 20 to 120 mm is presented, this method also crushes waste bricks by a machine such as a pyrene, a jaw crusher, and a chamfering device.

【0007】以上のように、廃レンガを再使用処理する
ために粉砕する必要がある場合、粉砕機械を使って粉砕
することが一般的に行われている方法である。
As described above, when it is necessary to grind waste bricks for reuse, it is a generally practiced method to grind them using a grinding machine.

【0008】[0008]

【発明が解決しようとする課題】溶錬炉を解体又は修理
する際に発生する廃レンガの寸法は成型されたときの寸
法のものからこれより大きい塊まで様々である。そし
て、数百mm大の廃レンガも多く発生するので、これを
例えば20mm以下に粉砕しようとすると、2〜3段の
粉砕機及び分級設備が必要であるので設備費が大きく、
また2〜3段粉砕・分級は容易な作業ではない。よっ
て、より簡単に細かく粉砕する方法が望まれている。
The size of the waste bricks generated when disassembling or repairing the smelting furnace varies from the size of the as-molded bricks to larger chunks. And, since many waste bricks with a size of several hundred mm are also generated, if this is to be crushed to, for example, 20 mm or less, a crusher of 2 to 3 stages and classification equipment are required, so the equipment cost is large,
Also, crushing and classifying in two or three steps is not an easy task. Therefore, a method of easily and finely pulverizing is desired.

【0009】また、銅の溶錬炉から発生する廃レンガ中
の銅分は網目状にレンガの内部に浸透しているので、廃
レンガから確実に銅分を回収するには、廃レンガを溶錬
炉に繰り返した際に、レンガ部分に速やかに溶解できる
ように、粉砕粒度を可能な限り細かくすることが望まし
い。しかしながら、粉砕粒度をより細かくするために
は、さらに粉砕・分級段数が増加し、設備数及びランニ
ングコストが増大するという問題があった。
Further, since the copper content in the waste brick generated from the copper smelting furnace penetrates inside the brick in a mesh shape, the waste brick must be melted in order to surely recover the copper content from the waste brick. It is desirable to make the crushed particle size as fine as possible so that it can be quickly dissolved in the brick part when it is repeatedly used in the smelting furnace. However, in order to make the crushed particle size finer, there is a problem that the number of crushing / classifying stages is further increased, and the number of equipment and the running cost are increased.

【0010】[0010]

【課題を解決するための手段】本発明は、上述の問題点
を解決する方法であって、金属溶錬炉の使用済み廃レン
ガを2気圧以上の水蒸気と接触せしめることにより粉砕
することを特徴とする金属溶錬炉の廃レンガ処理方法を
提供する。以下、本発明の構成を説明する。
DISCLOSURE OF THE INVENTION The present invention is a method for solving the above-mentioned problems, characterized in that used waste bricks of a metal smelting furnace are crushed by bringing them into contact with steam of 2 atm or more. A method for treating waste bricks of a metal smelting furnace is provided. The configuration of the present invention will be described below.

【0011】本発明において廃レンガは金属の溶錬炉に
通常使用される塩基性耐火レンガであり、特にMgO及
び/又はCaOを主成分とし、より好ましくはマグクロ
レンガ、マグネシアレンガである。MgO及びCaOは
水との反応により水和反応(通称「スレーキング)を起
こすことが知られている。本発明においては、MgO等
を含む廃レンガでは水和反応がその塊の内部で起こっ
て、局部的に体積が膨張することを利用して、解体され
たままの廃レンガを粉状に破壊する。この反応と体積膨
張を廃レンガの破壊に有効に利用するためには水蒸気雰
囲気は圧力が2気圧以上であることが必要である。この
ように加圧条件で水蒸気処理を行うことにより強制的に
スレーキングを進行させ、廃レンガを細かく粉砕するこ
とができる。
In the present invention, the waste brick is a basic refractory brick that is usually used in a metal smelting furnace, and particularly contains MgO and / or CaO as a main component, and more preferably magcro brick and magnesia brick. It is known that MgO and CaO cause a hydration reaction (commonly referred to as “slaking”) by a reaction with water.In the present invention, in a waste brick containing MgO or the like, a hydration reaction occurs inside the mass, By utilizing the local volume expansion, the as-disassembled waste brick is destroyed into powder.To effectively utilize this reaction and volume expansion for destruction of the waste brick, the steam atmosphere must be It is necessary that the pressure is 2 atm or more, and thus, the steam treatment is performed under the pressurized condition to forcibly advance the slaking and the waste brick can be finely pulverized.

【0012】水蒸気の温度は100℃以上310℃以下
が好ましく、望ましくは150℃以上250℃以下であ
る。これらを飽和水蒸気圧力に換算すると1.0気圧以
上、100気圧以下望ましくは4.9気圧以上40気圧
以下である。一般的に言って、水蒸気圧力は高いほうが
水和反応の速度が大きく、粉砕が短時間で完了する。一
方、水蒸気圧を高くすると、反応装置の密閉性及び耐圧
性確保のために装置製作費用が高くなるので、必要以上
に圧力を高めるのは好ましくない。したがって好ましい
水蒸気圧力は上記範囲である。本発明が特徴とする水蒸
気による処理はオートクレーブ内で行うことが好まし
い。この場合標準的処理時間は8〜12時間である。
The temperature of the steam is preferably 100 ° C. or higher and 310 ° C. or lower, and more preferably 150 ° C. or higher and 250 ° C. or lower. When these are converted into saturated water vapor pressure, the pressure is 1.0 atm or more and 100 atm or less, and preferably 4.9 atm or more and 40 atm or less. Generally speaking, the higher the steam pressure, the higher the rate of hydration reaction, and the crushing is completed in a short time. On the other hand, if the water vapor pressure is increased, the manufacturing cost of the device is increased in order to secure the tightness and pressure resistance of the reaction device, so it is not preferable to increase the pressure more than necessary. Therefore, the preferable steam pressure is in the above range. The steam treatment, which is a feature of the present invention, is preferably performed in an autoclave. In this case, the standard processing time is 8 to 12 hours.

【0013】廃レンガは銅の溶錬炉のみならず鉄鋼その
他の金属の溶錬炉から発生するものであっても本方法に
より処理をすることが可能である。銅の溶錬炉の廃レン
ガは一般に有価成分として、Cu:10〜15重量%、
Au:30ppm,Ag:0.01重量%,Pb0.1
重量%,Zn:0.1%などを含有している。これらの
成分を含有する廃レンガは本発明法により粉砕した後に
銅の溶錬炉に繰り返して、有価金属を回収する。
Waste bricks can be treated by this method even if they are generated not only from copper smelting furnaces but also from steel and other metal smelting furnaces. Abandoned bricks in a copper smelting furnace are generally used as valuable components, and Cu: 10 to 15% by weight,
Au: 30 ppm, Ag: 0.01 wt%, Pb0.1
%, Zn: 0.1%, etc. are contained. Waste bricks containing these components are crushed by the method of the present invention and then repeatedly placed in a copper smelting furnace to recover valuable metals.

【0014】[0014]

【作用】上記の水和反応は、MgOの場合MgO+H2
O→Mg(OH)2 と表される。常温・常圧下では、こ
の水和反応は緩やかに進行するため、マグクロレンガ等
では、完全に粉砕するのに数日以上かかる。またマグク
ロレンガは常温の水に浸漬した場合では、14日間かけ
てもレンガに全く変化が生じない。さらに、105℃の
水蒸気(飽和水蒸気圧力≒1気圧)に20時間曝して
も、ようやく亀裂が生じる程度である。しかし、この水
和反応において水蒸気圧力を高めれば、反応速度が大き
くなり、短い時間で粉砕することが可能となる。以上M
gOについて説明したが、CaOの場合も同様に短時間
粉砕が可能である。以下、実施例によりさらに詳しく本
発明を説明する。
In the case of MgO, the above hydration reaction is MgO + H 2
It is represented as O → Mg (OH) 2 . Since this hydration reaction proceeds slowly at room temperature and atmospheric pressure, it takes several days or more to completely pulverize magcro bricks and the like. Further, when the magro brick is immersed in water at room temperature, the brick does not change even after 14 days. Further, even when exposed to steam at 105 ° C. (saturated steam pressure ≈1 atm) for 20 hours, cracks are finally generated. However, if the water vapor pressure is increased in this hydration reaction, the reaction rate will be increased and it will be possible to pulverize in a short time. Or more M
Although gO has been described, CaO can also be ground for a short time in the same manner. Hereinafter, the present invention will be described in more detail with reference to examples.

【0015】[0015]

【実施例】【Example】

実施例1 銅溶錬炉のマグクロ廃レンガを、A:金属銅浸入レンガ
及びB:銅硫化物(鉄分も含有)浸入レンガの2種類に
分別し、実験に供した。実験用のオ−トクレ−ブ(内容
積1.0リットル)を用いて、表1に示す3つの条件で
廃レンガA及びBの処理実験を行った。
Example 1 The maguro waste bricks of the copper smelting furnace were separated into two types, A: metallic copper infiltration bricks and B: copper sulfide (also containing iron) infiltration bricks, and used for the experiment. Using an experimental autoclave (internal volume of 1.0 liter), treatment experiments of waste bricks A and B were performed under the three conditions shown in Table 1.

【0016】[0016]

【表1】 温度(℃) 水蒸気圧(気圧) 保持時間(Hr ) 条件 i 225 28 7.0 条件 ii 200 17 7.0 条件 iii 150 5 7.0 [Table 1] Temperature (° C) Water vapor pressure (atmosphere) Holding time (Hr) Conditions i 225 28 7.0 Conditions ii 200 17 7.0 Conditions iii 150 5 7.0

【0017】その結果得られた粉砕程度を表2に示す。The pulverization degree obtained as a result is shown in Table 2.

【0018】[0018]

【表2】 廃レンガA 廃レンガB 条件 i 全壊(粉状) 全壊(粉状) 条件 ii 全壊(粉状) 全壊(一部粒状) 条件 iii 半壊(粒状) 半壊(粒状) [Table 2] Waste brick A Waste brick B Condition i Fully destroyed (powder) Completely destroyed (powder) Condition ii Completely destroyed (powder) Completely destroyed (partially granular) Condition iii Half destroyed (granular) Half destroyed (granular)

【0019】以上の結果から条件iii 以上の高温・高圧
であれば廃レンガを十分効率的に粉砕できることがわか
った。
From the above results, it was found that the waste bricks can be crushed sufficiently efficiently if the temperature and pressure are higher than the condition iii.

【0020】実施例2 銅溶錬炉から発生したマグクロ廃レンガで大半の大きさ
が120mm×150mm×250mm程度の長方体状
であり、最も小さいものでも1辺の長さが100mmの
立方体より大きい廃レンガを実操業用のオートクレーブ
(内容積3.8m3 )を用いて水蒸気処理した。実験条
件は、水蒸気圧力(最大)15.9気圧、最大圧力での
保持時間10時間であった。その結果、処理後の廃レン
ガも粒度分布を測定した結果を表3に示す。
Example 2 Most of magro waste bricks generated from a copper smelting furnace have a rectangular shape of about 120 mm × 150 mm × 250 mm, and even the smallest one has a side length of 100 mm. A large waste brick was steamed using an autoclave (internal volume 3.8 m 3 ) for actual operation. The experimental conditions were a water vapor pressure (maximum) of 15.9 atm and a holding time at the maximum pressure of 10 hours. As a result, Table 3 shows the result of measuring the particle size distribution of the treated waste bricks.

【0021】[0021]

【表3】 粒度 廃レンガA 廃レンガB +30mm − 5 −30/+10mm 7 8 −10/+3mm 15 11 −3mm 78 76 [Table 3] Grain size Waste brick A Waste brick B +30 mm -5 -30 / + 10 mm 7 8 -10 / + 3 mm 15 11 -3 mm 78 76

【0022】比較例1 常温の水に廃レンガA及びBを浸漬し、毎日外観と圧壊
強度を調べた。その結果、廃レンガA、Bともに14日
経過してもこれらの性質は全く変化が生じなかった。
Comparative Example 1 Waste bricks A and B were immersed in water at room temperature, and the appearance and crush strength were examined every day. As a result, the properties of the waste bricks A and B did not change even after 14 days.

【0023】比較例2 円筒容器内(内容積5リットル)に廃レンガ(80mm
角)を入れ、容器へ水蒸気(水蒸気圧=1気圧)を流し
続けた。その間、容器内の温度は100〜105℃で推
移した。20時間経過した後、容器から廃レンガを取り
出して調べたところ、幅1mm長さ3mm程度の亀裂が
発生した程度で、圧壊強度は変化しなかった。
Comparative Example 2 A waste brick (80 mm) was placed in a cylindrical container (internal volume: 5 liters).
Corner was put and steam (water vapor pressure = 1 atm) was continuously flown into the container. During that time, the temperature in the container was maintained at 100 to 105 ° C. After 20 hours, the waste brick was taken out from the container and examined. As a result, a crack having a width of 1 mm and a length of 3 mm was generated, and the crush strength did not change.

【0024】比較例3 粉砕機1:ジョークラッシャ(出力75kW)及び粉砕
機2:ハンマークラッシャ(出力55kW)を用いて、
機械による粉砕についても実験を行った。 実験条件 廃レンガ(B)の元々の大きさは200〜400m
m, 粉砕機1で1段目、粉砕機2で2段目の粉砕を行っ
た。 各粉砕機では噛み込み等のトラブルが起きない範囲
で、出来るだけ細かく粉砕した。その結果を表4(粉砕
後の寸法に対する割合(重量%))に示す。
Comparative Example 3 Using a crusher 1: jaw crusher (output 75 kW) and a crusher 2: hammer crusher (output 55 kW),
Experiments were also conducted on mechanical grinding. Experimental condition Original size of abandoned brick (B) is 200-400m
The first stage was pulverized by the pulverizer 1 and the second stage was pulverized by the pulverizer 2. Each crusher was crushed as finely as possible without causing problems such as biting. The results are shown in Table 4 (ratio (% by weight) to the size after crushing).

【0025】[0025]

【表4】 粉砕機1処理後 粉砕機2処理後 +100mm − −* −100/+80mm 4.8 −* −80/+50mm 22.2 −* −50/+30mm 38.7 38.5 −30/+10mm 25.9 41.4 −10/+5mm 4.3 8.3 −5mm 4.1 11.8 備考 *:粉砕機2では構造上50mmアンダーしか排出されない。[Table 4] After treatment with crusher 1 After treatment with crusher 2 +100 mm −− * −100 / + 80 mm 4.8 − * −80 / + 50 mm 22.2 − * −50 / + 30 mm 38.7 38.5 −30 / + 10 mm 25.9 41.4 −10 / + 5 mm 4.3 8.3 −5 mm 4.1 11.8 Remarks *: In the crusher 2, only 50 mm under is discharged due to the structure.

【0026】表4を実施例2の表3と比較すると、粉砕
後の粒度が粗いことが判る。機械による粉砕法で、実施
例2(高圧水蒸気によるスレーキング)と同等の粒度に
粉砕しようとすると、さらに追加で1〜2段の粉砕が必
要となる。
Comparison of Table 4 with Table 3 of Example 2 shows that the particle size after grinding is coarse. When it is attempted to grind to a particle size equivalent to that of Example 2 (slaking with high-pressure steam) by a mechanical grinding method, it is necessary to additionally grind 1 to 2 stages.

【0027】[0027]

【発明の結果】従来は、廃レンガを溶錬炉に繰り返す際
に前処理として、機械的粉砕を行なっていたが、本発明
では、化学反応すなわち酸化物の水和反応を利用して粉
砕するので、容易に細かく粉砕できる。細かく粉砕する
ことにより、廃レンガに含まれている有価物の回収が容
易となる。すなわち、細かく粉砕された廃レンガは、繰
り返された溶錬炉において確実に溶解し、銅分などの有
価物が溶湯に回収されレンガ分はスラグに移行する。
Results of the Invention Conventionally, mechanical crushing was carried out as a pretreatment when repeating waste bricks in a smelting furnace, but in the present invention, it is crushed by utilizing a chemical reaction, that is, a hydration reaction of oxides. Therefore, it can be easily finely ground. By pulverizing finely, it becomes easy to collect valuables contained in the waste brick. That is, the waste bricks finely crushed are reliably melted in the repeated smelting furnace, valuable materials such as copper are recovered in the molten metal, and the bricks are transferred to slag.

【0028】また、有価物の回収目的以外にも、産業廃
棄物として埋め立て等の処分が難しい廃レンガを溶錬炉
でスラグに溶解させ廃棄可能とする場合や、建築材料と
してリサイクルする場合などにも廃レンガの前処理(粉
砕)方法として有効である。
In addition to the purpose of recovering valuable materials, when waste bricks that are difficult to dispose of such as landfill as industrial waste are dissolved in slag in a smelting furnace for disposal, or when recycled as building materials, etc. Is also effective as a pretreatment (crushing) method for waste bricks.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属溶錬炉の使用済み廃レンガを2気圧
以上の水蒸気と接触させることにより粉砕することを特
徴とする金属溶錬炉の廃レンガ処理方法。
1. A method for treating waste bricks in a metal smelting furnace, which comprises crushing used waste bricks in the metal smelting furnace by bringing them into contact with steam having a pressure of 2 atm or more.
【請求項2】 前記接触処理をオートクレーブにて行う
ことを特徴とする請求項1記載の金属溶錬炉の廃レンガ
処理方法。
2. The method for treating waste bricks in a metal smelting furnace according to claim 1, wherein the contact treatment is performed in an autoclave.
【請求項3】 前記金属溶錬炉が銅の溶錬炉であること
を特徴とする請求項1又は2記載の金属溶錬炉の廃レン
ガ処理方法。
3. The method of treating waste bricks in a metal smelting furnace according to claim 1, wherein the metal smelting furnace is a copper smelting furnace.
【請求項4】 請求項3記載の方法により粉砕された廃
レンガを銅の溶錬炉にて溶解することを特徴とする金属
溶錬炉の廃レンガ処理方法。
4. A method for treating waste bricks in a metal smelting furnace, which comprises melting the waste bricks crushed by the method according to claim 3 in a copper smelting furnace.
JP11140295A 1995-05-10 1995-05-10 Waste brick treatment method for metal smelting furnace Expired - Lifetime JP3292271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11140295A JP3292271B2 (en) 1995-05-10 1995-05-10 Waste brick treatment method for metal smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11140295A JP3292271B2 (en) 1995-05-10 1995-05-10 Waste brick treatment method for metal smelting furnace

Publications (2)

Publication Number Publication Date
JPH08299835A true JPH08299835A (en) 1996-11-19
JP3292271B2 JP3292271B2 (en) 2002-06-17

Family

ID=14560249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11140295A Expired - Lifetime JP3292271B2 (en) 1995-05-10 1995-05-10 Waste brick treatment method for metal smelting furnace

Country Status (1)

Country Link
JP (1) JP3292271B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202196A (en) * 2010-03-24 2011-10-13 Sumitomo Metal Mining Co Ltd Method for processing acid-resistant waste brick
JPWO2023026802A1 (en) * 2021-08-27 2023-03-02

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202196A (en) * 2010-03-24 2011-10-13 Sumitomo Metal Mining Co Ltd Method for processing acid-resistant waste brick
JPWO2023026802A1 (en) * 2021-08-27 2023-03-02
WO2023026802A1 (en) * 2021-08-27 2023-03-02 Jfeスチール株式会社 Recycling method for magnesia carbon bricks

Also Published As

Publication number Publication date
JP3292271B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
KR100795288B1 (en) Scrap and/or sludge treatment method containing copper, precious metals
EP1727629B1 (en) Method of processing multicomponent, composite and combined materials and use of so separated components
JP6989844B2 (en) Friedel salt removal method and Friedel salt removal system
KR101109824B1 (en) Use of liquid crystal displays and method for the use thereof
CN111594856A (en) Aluminum ash harmless treatment method
JP4948429B2 (en) Processing system for combustible waste containing metals and chlorine
CN111618072A (en) Method for performing harmless treatment on hazardous waste collected dust
KR101191743B1 (en) Method for Leaching Magnesium from Ferronickel Slag
JP3292271B2 (en) Waste brick treatment method for metal smelting furnace
CN111519033A (en) Method for performing harmless treatment on hazardous waste raw material secondary aluminum ash
SK82595A3 (en) Method of treating and ecological acceptable use of asbestos- -cement products
JP5055852B2 (en) Recovery method of iron resources
JP2670417B2 (en) Recycling treatment method of incinerator ash of stalker type incinerator for waste
KR100227317B1 (en) Method for recovering reclaimed aluminum material from substances containing metallic aluminum
KR100307184B1 (en) Method for converting fragments of waste car into fuel
JPH09122617A (en) Treatment method for shredder dust of large-sized industrial waste
TW550292B (en) Method for conditioning steel-slag with steam in enclosed environment
JPH0471022B2 (en)
JPS644572B2 (en)
US5127943A (en) Treatment of reclamation baghouse dust
Kusuda et al. Treatment of Zinc Leaching Residue by Waelz Kiln
JPS5881932A (en) Recovery of scrap iron from incineration residue
JP2000233174A (en) Incineration residue treatment method and production of aggregate and solidifying material using incineration residue
JP2004305960A (en) Method and apparatus for treating dry distillation residue of combustible waste
KR100489196B1 (en) A method for preparing electro-fused Mg-Cr clinkers using refractory wastes