JPH0829933B2 - Method for producing spherical silica - Google Patents

Method for producing spherical silica

Info

Publication number
JPH0829933B2
JPH0829933B2 JP62097692A JP9769287A JPH0829933B2 JP H0829933 B2 JPH0829933 B2 JP H0829933B2 JP 62097692 A JP62097692 A JP 62097692A JP 9769287 A JP9769287 A JP 9769287A JP H0829933 B2 JPH0829933 B2 JP H0829933B2
Authority
JP
Japan
Prior art keywords
reaction
tetraalkoxysilane
growth
added
silica particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62097692A
Other languages
Japanese (ja)
Other versions
JPS63265806A (en
Inventor
康生 小栗
英次 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP62097692A priority Critical patent/JPH0829933B2/en
Publication of JPS63265806A publication Critical patent/JPS63265806A/en
Publication of JPH0829933B2 publication Critical patent/JPH0829933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粒度分布が狭く、分散の良好な球状のシリカ
粒子をより大粒径として得る方法に関する。本発明によ
って得られるシリカ粒子はセラミックス原料及び各種分
野の充填材として利用される。
TECHNICAL FIELD The present invention relates to a method for obtaining spherical silica particles having a narrow particle size distribution and good dispersion as a larger particle size. The silica particles obtained by the present invention are used as a ceramic raw material and a filler in various fields.

(従来技術とその問題点) 珪素のアルコキサイドを塩基性触媒の存在下で加水分
解・重合すると、粒度分布が狭く、かつ分散の良好なシ
リカ粒子が得られることは従来より知られている。(W.
Stober,Journal of Colloid and Interfase Science 2
6,62(1968))。
(Prior art and its problems) It is conventionally known that silica particles having a narrow particle size distribution and good dispersion can be obtained by hydrolyzing and polymerizing alkoxide of silicon in the presence of a basic catalyst. (W.
Stober, Journal of Colloid and Interfase Science 2
6,62 (1968)).

そして、この加水分解・重合法を粒子成長法と組合せ
てより大粒子化することも提案されている。(昭和61年
窯業協会年会講演予稿集P.245〜246) しかしながら、この成長反応の繰返しにおいては、あ
る程度回数を重ねた以降では新たな結晶の析出を回避で
きることが示唆されているが、初期段階の成長反応で新
たな結晶の析出を防止できず、それが次回以降の成長反
応における種晶となる為に結局、多数回の成長反応を繰
返した後では、およそ3点に分断された大きく異なる粒
径の分布となり均一な粒径を有する大粒子化は未だ成功
に到っていない難点を有している。
It has also been proposed to combine this hydrolysis / polymerization method with a particle growth method to obtain larger particles. (Proceedings of the Annual Meeting of the Ceramic Society of 1986, P.245-246) However, it has been suggested that precipitation of new crystals can be avoided after a certain number of repetitions of this growth reaction. It is not possible to prevent the precipitation of a new crystal in the growth reaction in stages, and it becomes a seed crystal in the growth reaction after the next time, so after all, after repeating the growth reaction many times, it is divided into about 3 points. Larger particles having different particle size distributions and uniform particle diameters have the drawback that they have not yet been successful.

(問題点を解決するための手段) 本発明者等は、上記問題点に鑑み鋭意検討を重ねた結
果、このような、加水分解・粒子成長法においては、加
水分解・重合反応を特定条件に維持すると共にアルコキ
サイドの供給を特定方法で繰返し行なうならば、単分散
を維持しながら球状のシリカ粒子を成長反応の初期段階
においても新たな種晶の析出を防止してほゞ完全に均一
な大粒子として成長させられることを見出し、本発明に
到達した。
(Means for Solving Problems) The inventors of the present invention have conducted extensive studies in view of the above problems, and as a result, in such a hydrolysis / particle growth method, hydrolysis / polymerization reaction is performed under specific conditions. If it is maintained and the alkoxide is repeatedly supplied by a specific method, spherical silica particles can be prevented from precipitating new seed crystals even in the initial stage of the growth reaction while maintaining monodispersion, and a substantially uniform and large size can be obtained. They have found that they can be grown as particles and have reached the present invention.

本発明の目的は、特定のアルコキサイド及び溶媒の系
で粒子成長反応を多数回くり返し比較的大粒径でかつ粒
度分布の狭いシリカ粒子を得ることにある。
An object of the present invention is to obtain a silica particle having a relatively large particle size and a narrow particle size distribution by repeating the particle growth reaction a number of times in a specific alkoxide and solvent system.

しかして、かゝる本発明の目的は反応溶媒中にてテト
ラアルコキシシランと水とを塩基性触媒の存在下に撹拌
処理してテトラアルコキシシランの加水分解・重合反応
を行ってシリカ粒子を生成させ、次いで、該シリカ粒子
を種晶として含む反応液にテトラアルコキシシランを添
加して成長反応を繰返し行う方法から成り、 (a) 前記成長反応は、前回の反応で得られたシリカ
粒子を種晶として繰返し行い、 (b) 各回の成長反応は、最初の種晶シリカ生成反応
における反応液1に対し水が1〜20モル、塩基性触媒
が0.1〜10モル、テトラアルコキシシランが0.01〜1モ
ルに相当する量の範囲で行い、 (c) 各回の成長反応におけるテトラアルコキシシラ
ンの添加は、被添加内容物の撹拌下に一時に全量添加す
ることによって容易に達成される。
Therefore, the object of the present invention is to subject tetraalkoxysilane and water to stirring in the presence of a basic catalyst in a reaction solvent to carry out hydrolysis / polymerization reaction of tetraalkoxysilane to produce silica particles. Then, a tetraalkoxysilane is added to a reaction solution containing the silica particles as a seed crystal, and the growth reaction is repeated. (A) The growth reaction is performed by seeding the silica particles obtained in the previous reaction. (B) 1 to 20 mol of water, 0.1 to 10 mol of basic catalyst, and 0.01 to 1 of tetraalkoxysilane are added to the reaction liquid 1 in the first seed crystal silica formation reaction in each growth reaction. (C) Addition of tetraalkoxysilane in each growth reaction can be easily achieved by adding the total amount at once while stirring the content to be added.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明に使用するテトラアルコキシシランは、メトキ
サイド、エトキサイド、イソプロポキサイド、ブトキサ
イドなどが代表的な化合物である。また、使用する溶媒
はメタノール、エタノール、イソプロパノール、ブタノ
ール等があげられアルコキシシランと溶媒の組合せは任
意に選択することができる。加水分解・重合の触媒はア
ンモニア・アミン、苛性アルカリなどの塩基性触媒が使
用できるが、通常、アンモニアが最も普通に用いられ
る。
Typical examples of the tetraalkoxysilane used in the present invention include methoxide, ethoxide, isopropoxide, butoxide and the like. The solvent used may be methanol, ethanol, isopropanol, butanol or the like, and the combination of the alkoxysilane and the solvent can be arbitrarily selected. As the catalyst for hydrolysis / polymerization, basic catalysts such as ammonia / amine and caustic can be used, but ammonia is usually most commonly used.

まず、本発明方法では、溶媒に水及び塩基性触媒をそ
れぞれ溶解し、これにアルコキシシランを添加して加水
分解・重合反応を行わせて種晶となるシリカ粒子を得
る。この際、反応系中の水を1〜20モル/、触媒を0.
1〜10モル/、テトラアルコキシシランを0.01〜1モ
ル/の各濃度範囲に相当する量を用いる必要がある。
反応は、撹拌下恒温槽中にて−20〜40℃の温度に維持し
ながら実施されるが、水および触媒を溶解した溶媒中に
テトラアルコキシシランの全量を一時に加えることが重
要である。数分以内に単分散かつ球状のシリカ粒子が生
成して反応液は白濁し、該加水分解・重合発熱反応に
より溶液温度は上昇するが、さらに恒温槽中で撹拌を継
続し充分に加水分解・重合を行なう。次に本発明の成長
反応においては、アルコキシシランの塩基性触媒存在下
における加水分解物が種晶表面に析出することによって
粒子を成長させるので、アルコキシシランを添加するく
り返し反応においては、アルコキシシランの添加によっ
て新たな核が生成しないことが肝要である。そのための
種晶としては一般に上述の通り種晶生成を行えば良い
が、より好ましい種晶の条件としては反応溶液単位容量
当り種晶数が1011個/cm3以上でかつ種晶表面積が103cm2
/cm3以上である。次に本発明方法では、前述の要件で調
整した反応液を第1次反応液とし、これに、この第1次
反応液の単位容量当り(以下同じ)0.01〜1モル/の
所定温度のテトラアルコキシシランを被添加内容物(第
1回目は上記第1次反応液を意味する。)の撹拌下、一
時に全量添加して加水分解・重合反応を行なうことによ
り、単分散のまま均一成長した球状のシリカ粒子が得ら
れる。さらに、これを第2次反応液とし、以下、同様の
操作を順次くり返すことにより、単分散を維持したまま
球状シリカ粒子の成長を続けることができる。
First, in the method of the present invention, water and a basic catalyst are respectively dissolved in a solvent, and alkoxysilane is added to the solution to carry out a hydrolysis / polymerization reaction to obtain silica particles to be seed crystals. At this time, 1 to 20 mol of water in the reaction system and 0.
It is necessary to use an amount corresponding to each concentration range of 1 to 10 mol / tetraalkoxysilane and 0.01 to 1 mol /.
The reaction is carried out in a constant temperature bath under stirring while maintaining the temperature at -20 to 40 ° C, but it is important to add all of the tetraalkoxysilane to the solvent in which water and the catalyst are dissolved at a time. Within a few minutes, monodispersed and spherical silica particles are formed and the reaction solution becomes cloudy, and the solution temperature rises due to the hydrolysis / polymerization exothermic reaction, but further stirring is continued in a thermostatic bath to sufficiently hydrolyze the solution. Polymerize. Next, in the growth reaction of the present invention, the hydrolyzate of the alkoxysilane in the presence of a basic catalyst causes the particles to grow by depositing on the surface of the seed crystal. It is important that no new nuclei are generated by the addition. As a seed crystal for that purpose, generally seed crystals may be generated as described above, but more preferable seed crystal conditions are that the number of seed crystals per unit volume of the reaction solution is 10 11 / cm 3 or more and the seed crystal surface area is 10 3 cm 2
/ cm 3 or more. Next, in the method of the present invention, the reaction solution adjusted according to the above-mentioned requirements is used as a primary reaction solution, and a tetrahydrate having a predetermined temperature of 0.01 to 1 mol / per unit volume of the primary reaction solution (hereinafter the same) is added thereto. Alkoxysilane was added all at once while stirring the content to be added (the first time means the above-mentioned first reaction liquid), and the hydrolysis / polymerization reaction was carried out, resulting in uniform growth in a monodispersed state. Spherical silica particles are obtained. Further, by using this as a secondary reaction liquid and repeating the same operation in the following, the growth of spherical silica particles can be continued while maintaining the monodispersion.

このように本発明では、テトラアルコキシシランの加
水分解・重合反応の単位操作を順次くり返すがテトラア
ルコキシシランの加水分解・重合反応は次式で示される
ようにテトラアルコキシシランに対して2倍当量の水が
消費され反応系内の水濃度が変化する。
As described above, in the present invention, the unit operation of the hydrolysis / polymerization reaction of the tetraalkoxysilane is sequentially repeated, but the hydrolysis / polymerization reaction of the tetraalkoxysilane is twice equivalent to the tetraalkoxysilane as shown by the following formula. Water is consumed and the water concentration in the reaction system changes.

Si(OR)+2H2O→SiO2+4ROH 従って、前述の条件を維持するためには、適宜、水の
減少量を補うために水の添加を行なう。これによって初
期のテトラアルコキシシランに対する触媒および水濃度
が前述の最適範囲に制御され、初期の種晶の総数、総表
面積の条件およびテトラアルコキシシランの一時全量添
加の条件と相まって、以後も新粒子が発生することなし
に種晶のみが均一成長するくり返し操作が確保されるの
である。また、同様に以上の観点から、くり返し行う成
長反応のアルコキシシラン濃度条件を前述のように、第
1次反応液の容量を基準に規定するのである。また、本
発明方法では、いずれの各反応においてもアルコキシシ
ランの添加を一時全量添加によって行なうが、各反応の
終了は、例えば、アルコキシシラン添加後における反応
系内の温度推移によって確認することができる。
Si (OR) 4 + 2H 2 O → SiO 2 + 4ROH Therefore, in order to maintain the above-mentioned conditions, water is appropriately added to compensate for the decrease in water. By this, the catalyst and water concentration for the initial tetraalkoxysilane were controlled within the above-mentioned optimum range, and the initial total number of seed crystals, the condition of the total surface area, and the condition of the temporary total addition of tetraalkoxysilane were added, and the new particles continued to exist. A repeating operation is ensured in which only seed crystals grow uniformly without being generated. Similarly, from the above viewpoint, the alkoxysilane concentration condition for the repeated growth reaction is defined based on the volume of the first reaction liquid as described above. In addition, in the method of the present invention, the addition of the alkoxysilane is performed by temporarily adding the entire amount in any of the reactions, and the end of each reaction can be confirmed, for example, by the temperature transition in the reaction system after the addition of the alkoxysilane. .

本発明法における成長反応の繰返し回数は、目的とす
る任意のシリカ粒子の粒径に応じて自由に選択すること
ができ、所望の大きさの粒子を得ることができる。
The number of repetitions of the growth reaction in the method of the present invention can be freely selected according to the desired particle diameter of any desired silica particles, and particles having a desired size can be obtained.

具体的に製品原料その他として使用が期待できるシリ
カ粒子の大きさは、約0.1μm程度のものから1.0μm以
上のものまで様々であり、従って本発明法における成長
反応の繰返し回数も、原料アルコキシシランの種類にも
よるものであるが、1回の繰返しにより得られるものか
ら数十回に及ぶものまで有り、また今後の技術開発によ
る多種多様な要求が出てくることが予想され、本発明の
適用、応用範囲は更に拡がるであろうと思われる。
The size of silica particles that can be expected to be specifically used as a raw material for products and the like varies from about 0.1 μm to 1.0 μm or more. Therefore, the number of repetitions of the growth reaction in the method of the present invention also depends on the starting alkoxysilane. Although it depends on the type of the present invention, it can be obtained from one repetition to several tens of times, and it is expected that a wide variety of demands will come out in the future technical development. It seems that the application and range of application will be further expanded.

(実施例) 以下本発明を実施例により更に詳細に説明するが、本
発明は下記実施例によって限定されるものではない。
(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

実施例1 蒸溜精製したメタノール318.6gに蒸留水23.8gと28%
アンモニア水60.8gを溶解混合した反応液をフラスコに
入れ以後500rpmで撹拌しながら20℃の恒温槽中に保持し
た。次に蒸溜精製したテトラメトキシシラン7.6gを20℃
に調整した後、20℃に保持された前記反応液に一時に全
量添加した。約15秒後に反応液は白濁し、同時に反応液
の温度が22℃まで上昇した。該反応液中ではテトラメト
キシシラン添加1分後にすでに平均粒径=0.20μm、
幾何標準偏差1.05の均一な球状粒子が存在しており、そ
れ以後、粒径は変化しなかった。すなわちテトラメトキ
シシランの加水分解・重合反応は約1分で完了した。テ
トラメトキシシラン添加後、5分経過した時点で反応液
温度が20℃に下がったので、テトラメトキシシラン7.6g
の加水分解・重合で消費された相当量の水1.8gを添加し
て第1次反応液を得た。
Example 1 313.8 g of distilled and purified methanol, 23.8 g of distilled water and 28%
The reaction solution prepared by dissolving and mixing 60.8 g of ammonia water was placed in a flask and thereafter kept in a constant temperature bath at 20 ° C. while stirring at 500 rpm. Next, distillatively refined tetramethoxysilane 7.6g at 20 ℃
Then, the whole amount was added at once to the reaction solution kept at 20 ° C. After about 15 seconds, the reaction liquid became cloudy, and at the same time, the temperature of the reaction liquid rose to 22 ° C. In the reaction solution, one minute after the addition of tetramethoxysilane, the average particle size = 0.20 μm,
There were uniform spherical particles with a geometric standard deviation of 1.05, and the particle size did not change thereafter. That is, the hydrolysis / polymerization reaction of tetramethoxysilane was completed in about 1 minute. The reaction solution temperature dropped to 20 ° C 5 minutes after the addition of tetramethoxysilane.
The first reaction solution was obtained by adding 1.8 g of a considerable amount of water consumed by the hydrolysis / polymerization of the above.

次に、該第1次反応液を撹拌しながら、これに20℃に
調整したテトラメトキシシラン7.6gを一時に全量添加し
た後、5分経過して反応液温度が20℃になった時点で蒸
溜水1.8gを加えて第2次反応液とした。該工程を単位操
作として第1次反応液に対して40回くり返したところ平
均粒径=0.70μm、幾何標準偏差1.04の均一な球状シ
リカが得られた。得られた球状シリカの電子顕微鏡写真
を粒子構造として第1図に示す。イ)は倍率5,000倍、
ロ)は倍率10,000倍である。またこのときの粒子の成長
過程を第2図に示す。第2図には前記単位操作をくり返
して添加したテトラメトキシシランがすべてシリカとし
て各種晶表面に平均して析出すると仮定して求めた粒径
計算値を併せて示したが、走査型電子顕微鏡(SEM)に
よる粒径実測値と計算値は非常に良く一致した。これよ
り、第1次反応液中の種晶は前記単位操作のくり返しに
よっても新たな種晶を発生することなく、単分散を維持
したまま均一成長したことが判る。
Next, while stirring the primary reaction solution, 7.6 g of tetramethoxysilane adjusted to 20 ° C. was added all at once, and after 5 minutes, the temperature of the reaction solution reached 20 ° C. 1.8 g of distilled water was added to make a second reaction solution. By repeating this step as a unit operation for 40 times with respect to the first reaction liquid, uniform spherical silica having an average particle diameter of 0.70 μm and a geometric standard deviation of 1.04 was obtained. An electron micrograph of the obtained spherical silica is shown in FIG. 1 as a particle structure. B) is a magnification of 5,000 times,
B) is a magnification of 10,000 times. The grain growth process at this time is shown in FIG. FIG. 2 also shows the particle size calculation value obtained by assuming that all the tetramethoxysilane added by repeating the above unit operation is deposited as silica on various crystal surfaces evenly. The measured value and the calculated value of the particle size by SEM) were in good agreement. From this, it can be seen that the seed crystal in the primary reaction liquid did not generate a new seed crystal even if the unit operation was repeated, and uniformly grew while maintaining the monodispersion.

比較例1 蒸溜精製したメタノール318.6gに蒸留水23.8gと28%
アンモニア水60.8gを溶解混合した反応液をフラスコに
入れ以後500rpmで撹拌しながら20℃恒温槽中に保持し
た。次に蒸溜精製したテトラメトキシシラン7.6gを20℃
に調整した後、20℃に保持された前記反応液に一定速度
で滴下し5分で全量添加した。該反応液中には0.05μm
以下の微細な粒子を含む非常に分布の広い粒子が存在し
ており、実施例のごとく均一な球状粒子は生成しなかっ
た。
Comparative Example 1 313.8 g of distilled and purified methanol, 23.8 g of distilled water and 28%
The reaction solution prepared by dissolving and mixing 60.8 g of ammonia water was placed in a flask and thereafter kept in a 20 ° C. thermostat while stirring at 500 rpm. Next, distillatively refined tetramethoxysilane 7.6g at 20 ℃
After adjusting to 2, the reaction solution kept at 20 ° C. was added dropwise at a constant rate and the whole amount was added in 5 minutes. 0.05 μm in the reaction solution
There were very widely distributed particles including the following fine particles, and uniform spherical particles were not produced as in the example.

比較例2 実施例と同一条件で第1次反応液を得た後、該第1次
反応液に20℃に調整したテトラメトキシシラン7.6gを一
定速度で滴下し5分で全量添加した。該反応液中には成
長した種晶粒子の他に0.1μm以下の微細な粒子が新た
に生成しており、実施例のごとく種晶は単分散を維持し
たまま均一成長しなかった。
Comparative Example 2 After obtaining a primary reaction solution under the same conditions as in Example, 7.6 g of tetramethoxysilane adjusted to 20 ° C. was added dropwise to the primary reaction solution at a constant rate and the whole amount was added in 5 minutes. In addition to the grown seed crystal particles, fine particles of 0.1 μm or less were newly formed in the reaction solution, and the seed crystal did not grow uniformly while maintaining monodispersion as in the example.

(発明の効果) 本発明により比較的大粒径でかつ粒度の極めて均一な
シリカ粒子を得ることができる。
(Effect of the Invention) According to the present invention, silica particles having a relatively large particle size and a very uniform particle size can be obtained.

【図面の簡単な説明】[Brief description of drawings]

図1は実施例1で得られた球状シリカの粒子構造を示し
たもので、図2はこの時の粒子の成長反応の繰返し回数
−平均粒径曲線である。
FIG. 1 shows the particle structure of the spherical silica obtained in Example 1, and FIG. 2 is the number of repetitions of the particle growth reaction at this time-average particle diameter curve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】反応溶媒中にてテトラアルコキシシランと
水とを塩基性触媒の存在下に撹拌処理してテトラアルコ
キシシランの加水分解・重合反応を行ってシリカ粒子を
生成させ、次いで、該シリカ粒子を種晶として含む反応
液にテトラアルコキシシランを添加して成長反応を繰返
し行う方法から成り、 (a) 前記成長反応は、前回の反応で得られたシリカ
粒子を種晶としてくり返し行い、 (b) 各回の成長反応は、最初の種晶シリカ生成反応
における反応液1に対し、水が1〜20モル、塩基性触
媒が0.1〜10モル、テトラアルコキシシランが0.01〜1
モルに相当する量の範囲で行い、 (c) 各回の成長反応におけるテトラアルコキシシラ
ンの添加は、被添加内容物の撹拌下に一時に全量添加す
ることを特徴とする球状シリカの製造方法
1. Tetraalkoxysilane and water are stirred in a reaction solvent in the presence of a basic catalyst to hydrolyze and polymerize tetraalkoxysilane to produce silica particles, and then the silica particles are produced. The method comprises repeating the growth reaction by adding tetraalkoxysilane to a reaction liquid containing particles as seed crystals. (A) The growth reaction is repeated by using the silica particles obtained in the previous reaction as seed crystals, b) In each of the growth reactions, 1 to 20 mol of water, 0.1 to 10 mol of the basic catalyst, and 0.01 to 1 of tetraalkoxysilane relative to the reaction liquid 1 in the first seed crystal silica formation reaction
(C) Tetraalkoxysilane is added in each growth reaction in a range corresponding to the molar amount, and the total amount of tetraalkoxysilane is added all at once with stirring of the content to be added.
JP62097692A 1987-04-21 1987-04-21 Method for producing spherical silica Expired - Lifetime JPH0829933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097692A JPH0829933B2 (en) 1987-04-21 1987-04-21 Method for producing spherical silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097692A JPH0829933B2 (en) 1987-04-21 1987-04-21 Method for producing spherical silica

Publications (2)

Publication Number Publication Date
JPS63265806A JPS63265806A (en) 1988-11-02
JPH0829933B2 true JPH0829933B2 (en) 1996-03-27

Family

ID=14198998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097692A Expired - Lifetime JPH0829933B2 (en) 1987-04-21 1987-04-21 Method for producing spherical silica

Country Status (1)

Country Link
JP (1) JPH0829933B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512835B2 (en) * 1991-01-22 1996-07-03 宇部日東化成株式会社 Method for producing silica fine particles
JP2011173779A (en) 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd Silica particles, process for production of same, and resin composition containing same

Also Published As

Publication number Publication date
JPS63265806A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
US20030172868A1 (en) Method for preparing single crystalline zns powder for phosphor
JPS6374911A (en) Production of fine spherical silica
KR20110069025A (en) Method of producing silica sols with controllable broad size distribution and minimum particle size
WO1995007858A1 (en) Process for forming large silica spheres by low temperature nucleation
US20070034116A1 (en) Silica sols with controlled minimum particle size and preparation thereof
JPH0159974B2 (en)
JPH0829933B2 (en) Method for producing spherical silica
JP3330984B2 (en) Method for producing monodisperse spherical silica
JP3746301B2 (en) Method for producing spherical silica particles
JPH06316407A (en) Production of silica sol
JP4397981B2 (en) Method for producing polyorganosiloxane fine particles
JPH02288B2 (en)
JP3123652B2 (en) Method for producing spherical silica
JPH0789711A (en) Production of silica particles
JPH0477309A (en) Production of silica particles
JP3313771B2 (en) Method for producing inorganic oxide particles
JP2512835B2 (en) Method for producing silica fine particles
JPH03218915A (en) Production of silica powder
JPH08259217A (en) Production of silica particles
JPH0455125B2 (en)
JPH0421515A (en) Production of mono-dispersed silica particle
JP3556277B2 (en) Method for producing metal oxide particles
CN114436318B (en) Aqueous phase synthesis preparation of monodisperse Cu 2-x S nanocrystalline method
JPS63112411A (en) Production of silica particle
JP2003063819A (en) Method for producing vaterite-type spherical calcium carbonate and vaterite-type spherical calcium carbonate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 12