JPH08298093A - Scanning electron microscope and charged particle detecting method in scanning electron microscope - Google Patents

Scanning electron microscope and charged particle detecting method in scanning electron microscope

Info

Publication number
JPH08298093A
JPH08298093A JP10436695A JP10436695A JPH08298093A JP H08298093 A JPH08298093 A JP H08298093A JP 10436695 A JP10436695 A JP 10436695A JP 10436695 A JP10436695 A JP 10436695A JP H08298093 A JPH08298093 A JP H08298093A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
charged particles
scanning electron
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10436695A
Other languages
Japanese (ja)
Inventor
Yukio Hisayoshi
幸夫 久芳
Toshio Onodera
敏夫 小野寺
Satoko Hisayoshi
聡子 久芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP10436695A priority Critical patent/JPH08298093A/en
Publication of JPH08298093A publication Critical patent/JPH08298093A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To discriminate energy of charged particles without arranging specific devices within a sample chamber to obtain a good image by installing a voltage applying means for varying potential in the vicinity of a sample by applying voltage to a functional member. CONSTITUTION: A voltage applying means 7 is set, voltage is applied to a functional member 5 arranged in the vicinity of a sample 2 with the voltage applying means 7 to produce an electric field in the vicinity of the sample 2. When the electric field is produced in the vicinity of the sample 2, charged particles having specific energy of the charged particles generated from the sample 2 are detected with a charged particle detector 4. Since intensity of the electric field can be adjusted with voltage applied to the functional member 5, by adjusting the voltage, charged particles having desired energy can be detected. Charged particles having desired energy can be detected without arranging a specific energy discriminating device in a sample chamber. Drop in emitting efficiency of charged particles caused by a space charge is reduced, and an image contrast can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型電子顕微鏡及び走
査型電子顕微鏡における荷電粒子検出方法に係り、特に
電子線を試料に照射して、試料から放出される荷電粒子
を検出する荷電粒子検出器と、試料近傍に配置され、試
料観察ための特定機能を有する機能部材とを備えた走査
型電子顕微鏡および該走査型電子顕微鏡における荷電粒
子検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning electron microscope and a method for detecting charged particles in a scanning electron microscope, and more particularly, to detecting charged particles emitted from a sample by irradiating the sample with an electron beam. The present invention relates to a scanning electron microscope provided with a container and a functional member having a specific function for observing a sample, and a charged particle detection method in the scanning electron microscope.

【0002】[0002]

【従来の技術】一般に走査型電子顕微鏡は、試料に電子
線を走査しつつ照射し、試料からの荷電粒子を荷電粒子
検出装置で検出して、この荷電粒子検出装置の出力を上
記電子線の走査に同期して走査して表示することにより
観察画像を得ている。
2. Description of the Related Art Generally, a scanning electron microscope irradiates a sample while scanning it with an electron beam, detects charged particles from the sample with a charged particle detector, and outputs the output of the charged particle detector with the electron beam. An observation image is obtained by scanning and displaying in synchronization with scanning.

【0003】ここで、このような走査型電子顕微鏡とし
て、荷電粒子検出装置で検出する荷電粒子を荷電粒子弁
別装置に通過させて、試料からの荷電粒子のうち所望の
エネルギー強度の荷電粒子のみを観察するものがある。
In such a scanning electron microscope, charged particles detected by a charged particle detector are passed through a charged particle discriminator so that only charged particles having a desired energy intensity among charged particles from a sample are passed. There is something to observe.

【0004】このような走査型電子顕微鏡として図7に
示すものがある。図7に示す走査型電子顕微鏡30は、
荷電粒子検出器31を対物レンズ32の下に配置し、試
料33と荷電粒子検出器31との間に荷電粒子弁別装置
34を配置したものである。ここで35は試料室39内
の汚染防止装置であり、液体窒素37を冷媒容器中36
中に配置して、試料室39の試料近傍に設けた冷却フィ
ンを冷却するものである。
An example of such a scanning electron microscope is shown in FIG. The scanning electron microscope 30 shown in FIG.
The charged particle detector 31 is arranged below the objective lens 32, and the charged particle discriminating device 34 is arranged between the sample 33 and the charged particle detector 31. Here, 35 is a pollution control device in the sample chamber 39, and liquid nitrogen 37 is stored in the refrigerant container 36.
It is arranged inside to cool a cooling fin provided near the sample in the sample chamber 39.

【0005】そして、荷電粒子弁別装置34としては、
ウィーンフィルタあるいは静電型フィルタを使用するも
のとしている。ここでウィーンフィルタは、磁界と電界
とを互いに垂直になり、かつ磁界及び電界とが荷電粒子
に対して垂直になるように配置したものであり、両者が
粒子に及ぼす力を釣り合わせて所望のエネルギーの荷電
粒子を選別するものである。
As the charged particle discriminating device 34,
A Wien filter or an electrostatic filter is used. Here, the Wien filter is arranged such that the magnetic field and the electric field are perpendicular to each other, and the magnetic field and the electric field are perpendicular to the charged particles, and the forces exerted by the both on the particles are balanced to obtain a desired value. This is to sort out charged particles of energy.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述のよう
な従来の走査型電子顕微鏡にあっては、荷電粒子弁別装
置を試料と対物レンズ、荷電粒子検出器間に挿入する構
造であるため構造も複雑となる他、対物レンズの作動距
離も長くなり性能を悪くするという問題があった。
By the way, the conventional scanning electron microscope as described above has a structure in which the charged particle discriminating device is inserted between the sample, the objective lens and the charged particle detector. Besides being complicated, there is a problem that the working distance of the objective lens becomes long and the performance deteriorates.

【0007】また、上述したように、このような走査型
電子顕微鏡にあっては、試料の観察のため、様々な機能
を有する機能部材を配することがある。上述の例では機
能部材として、試料の汚染を防ぎ、また、試料近傍を高
真空に保つため汚染防止装置を設け、その冷却フィンを
試料直上に設置しているが、このような機能部材は上記
汚染防止装置の他さまざまな種類のものが用いられる。
Further, as described above, in such a scanning electron microscope, a functional member having various functions may be provided for observing a sample. In the above-mentioned example, as a functional member, a contamination prevention device is provided to prevent contamination of the sample and to maintain a high vacuum in the vicinity of the sample, and the cooling fins thereof are installed directly above the sample. In addition to pollution control devices, various types are used.

【0008】したがって、このように多種の部材を格納
した走査型電子顕微鏡の試料室の中へ上述したエネルギ
弁別装置を取り付けることは装置全体を複雑にしてしま
い、装置のコストを上昇させてしまうという問題があ
る。また、このような走査型電子顕微鏡にあっては、試
料上に電子線が照射されている場合には、試料面上に放
出された荷電粒子が空間中に滞留しており、マイナスの
電荷を持った粒子による空間電荷を形成することとな
る。このような状態では、試料から放出された二次電子
が試料面上でいわば飽和状態となるため、荷電粒子検出
装置で検出され難くなり、コントラストの明瞭な画像を
得ることができないという問題がある。
Therefore, mounting the above-mentioned energy discriminating device in the sample chamber of the scanning electron microscope in which various members are stored in this way complicates the entire device and increases the cost of the device. There's a problem. Further, in such a scanning electron microscope, when the sample is irradiated with an electron beam, the charged particles emitted onto the surface of the sample stay in the space, and a negative charge is generated. Space particles are formed by the particles that they have. In such a state, the secondary electrons emitted from the sample are in a saturated state on the surface of the sample, so that it is difficult for the charged particle detector to detect the secondary electrons, and there is a problem that an image with clear contrast cannot be obtained. .

【0009】そこで本発明は、試料室内に特別の装置を
配置することなく、荷電粒子のエネルギの弁別を行える
ようにして良好な画像を得られるようにし、また、試料
面上で二次電子が飽和状態となったとしても良好なコン
トラストの画像を得ることができる走査型電子顕微鏡及
び走査型電子顕微鏡における荷電粒子検出方法を提供す
ることを目的とする。
Therefore, according to the present invention, it is possible to obtain a good image by discriminating the energy of the charged particles without disposing a special device in the sample chamber, and the secondary electrons are generated on the sample surface. An object of the present invention is to provide a scanning electron microscope capable of obtaining an image with good contrast even in a saturated state, and a charged particle detection method in the scanning electron microscope.

【0010】[0010]

【課題を解決するための手段】本発明において、上記の
課題を解決するための第1の手段は走査型電子顕微鏡に
かかり、図1に示すように、電子線1を試料2に照射し
て、試料2から放出される荷電粒子3を検出する荷電粒
子検出器4と、試料1近傍に配置され、試料観察ための
特定機能を有する機能部材5とを備えた走査型電子顕微
鏡6において、上記機能部材5に接続され、機能部材5
に電圧を印加して試料2近傍の電位を変化させる電圧印
加手段7を設けたことである。
In the present invention, the first means for solving the above problems is applied to a scanning electron microscope, and an electron beam 1 is irradiated onto a sample 2 as shown in FIG. In the scanning electron microscope 6, the charged particle detector 4 for detecting the charged particles 3 emitted from the sample 2 and the functional member 5 arranged in the vicinity of the sample 1 and having a specific function for observing the sample, The functional member 5 is connected to the functional member 5.
That is, the voltage applying means 7 for applying a voltage to change the potential in the vicinity of the sample 2 is provided.

【0011】また、本発明の第2の手段は、走査型電子
顕微鏡における荷電粒子検出方法にかかり、電子線1を
試料1に照射して、試料2から放出される荷電粒子3を
検出する荷電粒子検出器4と、試料2近傍に配置され、
試料観察のための特定機能を有する機能部材5とを備え
た走査型電子顕微鏡において、試料2及び試料近傍の電
位を変化させるべく、上記機能部材5に電圧を印加し
て、荷電粒子検出器で荷電粒子3を検出することであ
る。
The second means of the present invention relates to a method for detecting charged particles in a scanning electron microscope, which irradiates a sample 1 with an electron beam 1 to detect charged particles 3 emitted from the sample 2. Placed near the particle detector 4 and the sample 2,
In a scanning electron microscope equipped with a functional member 5 having a specific function for observing a sample, a voltage is applied to the functional member 5 to change the potential of the sample 2 and the vicinity of the sample, and a charged particle detector is used. It is to detect the charged particles 3.

【0012】また、上記各手段において、上記機能部材
5を、試料室の汚染防止装置の冷却部材とすることがで
きる。
Further, in each of the above-mentioned means, the functional member 5 can be used as a cooling member of the contamination preventing device for the sample chamber.

【0013】さらに、上記各手段において、上記機能部
材5を、カソードルミネッセンス検出用の反射鏡とする
ことができる。
Further, in each of the above means, the functional member 5 may be a reflecting mirror for detecting cathodoluminescence.

【0014】[0014]

【作用】本発明によれば、電圧印加手段により、上記試
料の近傍に配置される機能部材に電圧が印加されると、
試料近傍には電場が生じる。そして、試料近傍に電場が
生じると、試料から発生する荷電粒子のうち特定のエネ
ルギーを有する荷電粒子が荷電粒子検出装置で検出され
ることとなる。この電場の強さは機能部材に印加する電
圧により調整でき、この電圧を調整することにより、所
望のエネルギーの荷電粒子を検出することができる。し
たがって試料室内に特別なエネルギー弁別装置を設ける
ことなく所望のエネルギーの荷電粒子を検出することが
できる。
According to the present invention, when a voltage is applied to the functional member arranged in the vicinity of the sample by the voltage applying means,
An electric field is generated near the sample. Then, when an electric field is generated in the vicinity of the sample, the charged particles having a specific energy among the charged particles generated from the sample will be detected by the charged particle detection device. The strength of this electric field can be adjusted by the voltage applied to the functional member, and by adjusting this voltage, charged particles having a desired energy can be detected. Therefore, it is possible to detect charged particles of desired energy without providing a special energy discriminating device in the sample chamber.

【0015】また、機能部材にプラスの電圧を印加する
と空間電荷が一掃され、二次電子等の荷電粒子の放出効
率を向上させることができ、良好なコントラストの画像
を得ることができ、さらに、試料表面のプラスのチャー
ジアップを促進して画像コントラストを向上させること
ができる。
Further, when a positive voltage is applied to the functional member, space charges are swept away, the emission efficiency of charged particles such as secondary electrons can be improved, and an image with good contrast can be obtained. The image charge can be improved by promoting positive charge-up on the sample surface.

【0016】[0016]

【実施例】以下本発明にかかる走査型電子顕微鏡及び走
査型電子顕微鏡における荷電粒子検出方法の実施例を説
明する。
EXAMPLES Examples of a scanning electron microscope and a method for detecting charged particles in the scanning electron microscope according to the present invention will be described below.

【0017】図2は、本発明にかかる走査型電子顕微鏡
の構成を示すものである。本実施例において、走査型電
子顕微鏡は図2に示すように、鏡筒9の試料室10中の
対物レンズ8の下側に試料2を配置している。そしてこ
の対物レンズ8の上側に試料からの荷電粒子を検出する
荷電粒子検出装置4を設けてなる。
FIG. 2 shows the configuration of the scanning electron microscope according to the present invention. In this embodiment, as shown in FIG. 2, in the scanning electron microscope, the sample 2 is arranged below the objective lens 8 in the sample chamber 10 of the lens barrel 9. A charged particle detector 4 for detecting charged particles from the sample is provided above the objective lens 8.

【0018】また、本実施例では、上記試料2と対物レ
ンズ8との間には、試料室10内の汚染を防止し、真空
度を高めるための汚染防止装置11の冷却フィン14を
配置している。本実施例ではこの汚染防止装置11は、
上述した各手段における機能部材に相当する。
Further, in this embodiment, a cooling fin 14 of a pollution control device 11 is arranged between the sample 2 and the objective lens 8 to prevent contamination in the sample chamber 10 and increase the degree of vacuum. ing. In this embodiment, the pollution control device 11 is
It corresponds to the functional member in each means described above.

【0019】この汚染防止装置11は、従来例で説明し
たものと同様に、液体窒素13を冷媒容器12中に配置
して、冷却フィン14を冷却して構成している他、本実
施例では、電圧印加手段としての電源装置15を接続し
て、冷却フィン14にプラス/マイナスの任意の電圧を
印加できるものとしている。
As in the case of the conventional example, the pollution preventing device 11 is constructed by arranging liquid nitrogen 13 in the refrigerant container 12 and cooling the cooling fins 14, and in the present embodiment. A power supply device 15 as a voltage applying means is connected to the cooling fin 14 so that an arbitrary plus / minus voltage can be applied.

【0020】従って、本実施例にかかる走査型電子顕微
鏡によれば、試料室内に特別なエネルギー弁別装置を設
けることなく、試料近傍に所望の電場を形成することが
でき、これにより所望のエネルギーの荷電粒子を検出す
ることができる。
Therefore, according to the scanning electron microscope of the present embodiment, it is possible to form a desired electric field in the vicinity of the sample without providing a special energy discriminating device in the sample chamber. Charged particles can be detected.

【0021】たとえば、試料の一部が−Vボルトの電位
を持っている場合、図3に示すように二次電子の放出エ
ネルギの分布が、0ボルトのとき(図3中曲線Aで示し
た)に比べて高い方にシフトした分布となる(図3中曲
線Bで示した)。
For example, when a part of the sample has a potential of -V volt, the secondary electron emission energy distribution is 0 volt as shown in FIG. 3 (shown by the curve A in FIG. 3). ), The distribution is shifted to the higher side (shown by the curve B in FIG. 3).

【0022】ここで、冷却フィン14にマイナスの電位
を印加すると、エネルギー弁別装置を設けた場合と同様
に、図3中Cで示したエネルギー以上の荷電粒子のみ
(図3中斜線で示した)が荷電粒子検出装置で検出さ
れ、全ての荷電粒子を検出するときにくらべてより明確
なコントラストを得ることができる。
Here, when a negative potential is applied to the cooling fins 14, only charged particles having an energy equal to or higher than the energy indicated by C in FIG. 3 are shown (hatched in FIG. 3), as in the case where the energy discriminating device is provided. Is detected by the charged particle detector, and a clearer contrast can be obtained as compared with the case where all charged particles are detected.

【0023】また、本実施例によれば、冷却フィン14
にマイナスの電圧を印加することにより、試料を加熱し
て観察して観察する場合に、試料から発生する熱電子を
抑制して、荷電粒子検出器で検出できないようにするこ
とにより、画像のコントラストを向上させることができ
る。
Further, according to this embodiment, the cooling fins 14 are
When a sample is heated and observed by applying a negative voltage to, the thermo-electrons generated from the sample are suppressed so that they cannot be detected by the charged particle detector, thereby improving the image contrast. Can be improved.

【0024】一方、冷却フィン14をプラスに印加する
と、試料面2上に放出された荷電粒子の滞留による空間
電荷に起因する荷電粒子の放出効率の低下を軽減するこ
とができる。
On the other hand, when the cooling fins 14 are positively applied, it is possible to reduce the decrease in the charged particle emission efficiency due to the space charge due to the retention of the charged particles emitted on the sample surface 2.

【0025】また、試料表面のプラスのチャージアップ
を促進して画像コントラストを向上させることができ、
導体上の絶縁物のパターンの観察を容易にすることがで
きる。
Further, the image contrast can be improved by promoting positive charge-up on the sample surface,
The pattern of the insulator on the conductor can be easily observed.

【0026】すなわち、一般に、入射する電子線の加速
電圧の大きさと、出射する荷電粒子の放出効率を比較す
ると図5に示すようになる。即ち、低加速電圧の電子線
を照射させた場合に放出される荷電粒子の放出効率は、
100%を越えることがある。なお、ここでは、放出さ
れる荷電粒子の効率のみを問題としており、エネルギ保
存則は満たされている。
That is, generally, the magnitude of the acceleration voltage of the incident electron beam and the emission efficiency of the charged particles to be emitted are compared as shown in FIG. That is, the emission efficiency of charged particles emitted when an electron beam with a low acceleration voltage is irradiated is
It may exceed 100%. Note that here, only the efficiency of the discharged charged particles is a problem, and the energy conservation law is satisfied.

【0027】このような場合において、例えば図4に示
すように、集積回路20を試料として、この集積回路2
0が基板21上に電極23を配置し酸化層22からなる
絶縁物パターンを形成しているような場合においては、
導体である電極23から放出される二次電子や反射電子
等の荷電粒子はマイナス電荷の粒子であるため、絶縁体
である酸化層22にプラスの電荷を残留し、試料上の酸
化層22がプラス電荷のチャージアップをすることがあ
る。
In such a case, as shown in FIG. 4, for example, the integrated circuit 20 is used as a sample and the integrated circuit 2 is used.
In the case where 0 forms the insulator pattern composed of the oxide layer 22 by disposing the electrode 23 on the substrate 21,
Charged particles such as secondary electrons and backscattered electrons emitted from the electrode 23 which is a conductor are particles of negative charge, so positive charges remain in the oxide layer 22 which is an insulator, and the oxide layer 22 on the sample is The positive charge may be charged up.

【0028】このような状態で、冷却フィン14にプラ
スの電圧を印加すると、電極23からのマイナス電荷を
持った粒子の放出の効率が上がり、酸化層22のプラス
の帯電量が増加してプラス電荷が増加する。すると、画
像上ではプラス領域が暗い部分でマイナス領域が明るい
部分となるため、コントラストがさらに明瞭になり、酸
化層22と電極23のパターンの観察が容易になる。
When a positive voltage is applied to the cooling fin 14 in such a state, the efficiency of releasing particles having a negative charge from the electrode 23 is increased, and the positive charge amount of the oxide layer 22 is increased to increase the positive charge. The charge increases. Then, on the image, the plus area becomes a dark portion and the minus area becomes a bright portion, so that the contrast becomes clearer and the pattern of the oxide layer 22 and the electrode 23 becomes easy to observe.

【0029】図6は本発明にかかる走査型電子顕微鏡の
第2の実施例を示すものである。本実施例において、走
査型電子顕微鏡には、電子線の照射により試料が発光す
る現象であるカソードルミネッセンス(CL)の解析を
行なうことができるものである。この走査型電子顕微鏡
においては、反射鏡16を試料の直上に設けて、電子線
が照射された微細領域から発生する光を分光器18に入
射するものとしている。本実施例ではこの汚染防止装置
11は、上述した各手段における機能部材に相当するも
のとし、この反射鏡16に電圧印加手段としての電源装
置18を接続して、反射鏡16にプラス/マイナスの任
意の電圧を印加できるものとしている。
FIG. 6 shows a second embodiment of the scanning electron microscope according to the present invention. In the present embodiment, the scanning electron microscope is capable of analyzing cathodoluminescence (CL), which is a phenomenon in which a sample emits light when irradiated with an electron beam. In this scanning electron microscope, the reflecting mirror 16 is provided immediately above the sample, and the light generated from the fine region irradiated with the electron beam is incident on the spectroscope 18. In the present embodiment, the pollution prevention device 11 corresponds to the functional member in each of the above-mentioned means, and a power supply device 18 as a voltage applying means is connected to the reflecting mirror 16 so that the reflecting mirror 16 is provided with plus / minus. An arbitrary voltage can be applied.

【0030】従って、本実施例によれば、上記第1の実
施例と同様に、試料室内に特別なエネルギー弁別装置を
設けることなく所望のエネルギーの荷電粒子を検出する
ことができる他、空間電荷による荷電粒子の放出効率の
低下を軽減することができ、また、試料表面のプラスの
チャージアップを促進して画像コントラストを向上させ
ることができる。
Therefore, according to the present embodiment, similarly to the first embodiment, it is possible to detect charged particles having a desired energy without providing a special energy discriminating device in the sample chamber, and the space charge can be detected. It is possible to reduce the decrease in the discharge efficiency of the charged particles due to, and to promote the positive charge-up on the sample surface to improve the image contrast.

【0031】尚、上記実施例では、電圧を印加する機能
部材として、汚染防止装置及び反射鏡を例として説明し
たが、試料近傍に配置される機能部材であれば他の部材
例えば、反射電子検出器であってもよい。
In the above embodiments, the pollution preventing device and the reflecting mirror are described as the functional members for applying the voltage, but other functional members arranged near the sample, for example, backscattered electron detection. It may be a container.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、走
査型電子顕微鏡の試料近傍に配置した機能部材に電圧を
印加して試料近傍の電位を変化させるものとしたから、
試料室内に特別なエネルギー弁別装置を設けることな
く、低コストで、所望のエネルギーの荷電粒子を検出す
ることができる他、空間電荷による荷電粒子の放出効率
の低下を軽減することができ、さらに、試料表面のプラ
スのチャージアップを促進して画像コントラストを向上
させることができるという効果を奏する。
As described above, according to the present invention, the potential near the sample is changed by applying the voltage to the functional member arranged near the sample of the scanning electron microscope.
It is possible to detect charged particles of desired energy at low cost without providing a special energy discriminating device in the sample chamber, and it is possible to reduce the decrease in the emission efficiency of charged particles due to space charge. The effect that the positive charge-up on the sample surface can be promoted and the image contrast can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる走査型電子顕微鏡の原理を示す
図である。
FIG. 1 is a diagram showing the principle of a scanning electron microscope according to the present invention.

【図2】本発明にかかる走査型電子顕微鏡の第1の実施
例の構成を示す要部断面図である。
FIG. 2 is a cross-sectional view of essential parts showing the configuration of the first embodiment of the scanning electron microscope according to the present invention.

【図3】図2に示した走査型電子顕微鏡で冷却フィンを
マイナスに印加したときの荷電粒子の検出の状態を示す
図である。
FIG. 3 is a diagram showing a state of detection of charged particles when a cooling fin is applied to the negative in the scanning electron microscope shown in FIG.

【図4】図2に示した走査型電子顕微鏡で冷却フィンを
プラスに印加したときの試料からの荷電粒子の放出の状
態を示す図である。
FIG. 4 is a diagram showing a state in which charged particles are released from a sample when a cooling fin is positively applied in the scanning electron microscope shown in FIG.

【図5】電子線の加速電圧と、入射電子に対する試料か
ら放出される荷電粒子の効率を示す図である。
FIG. 5 is a diagram showing the acceleration voltage of an electron beam and the efficiency of charged particles emitted from a sample with respect to incident electrons.

【図6】本発明にかかる走査型電子顕微鏡の第2の実施
例の構成を示す要部断面図である。
FIG. 6 is a cross-sectional view of essential parts showing the configuration of a second embodiment of the scanning electron microscope according to the present invention.

【図7】従来の走査型電子顕微鏡の構成を示す要部断面
図である。
FIG. 7 is a cross-sectional view of essential parts showing the configuration of a conventional scanning electron microscope.

【符号の説明】[Explanation of symbols]

1 電子線 2 試料 3 荷電粒子 4 荷電粒子検出器 5 機能部材 6 走査型電子顕微鏡 7 電圧印加手段 DESCRIPTION OF SYMBOLS 1 Electron beam 2 Sample 3 Charged particle 4 Charged particle detector 5 Functional member 6 Scanning electron microscope 7 Voltage application means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電子線(1)を試料(2)に照射して、
試料(2)から放出される荷電粒子(3)を検出する荷
電粒子検出器(4)と、試料(1)近傍に配置され、試
料観察ための特定機能を有する機能部材(5)とを備え
た走査型電子顕微鏡(6)において、 上記機能部材(5)に接続され、機能部材(5)に電圧
を印加して試料(2)近傍の電位を変化させる電圧印加
手段(7)を設けた走査型電子顕微鏡。
1. A sample (2) is irradiated with an electron beam (1),
A charged particle detector (4) for detecting charged particles (3) emitted from the sample (2) and a functional member (5) arranged near the sample (1) and having a specific function for observing the sample. In the scanning electron microscope (6), a voltage applying means (7) connected to the functional member (5) and applying a voltage to the functional member (5) to change the potential in the vicinity of the sample (2) is provided. Scanning electron microscope.
【請求項2】 電子線(1)を試料(1)に照射して、
試料(2)から放出される荷電粒子(3)を検出する荷
電粒子検出器(4)と、試料(2)近傍に配置され、試
料観察のための特定機能を有する機能部材(5)とを備
えた走査型電子顕微鏡において、 試料(2)及び試料近傍の電位を変化させるべく、上記
機能部材(5)に電圧を印加して、荷電粒子検出器で荷
電粒子(3)を検出する走査型電子顕微鏡における荷電
粒子の検出方法。
2. A sample (1) is irradiated with an electron beam (1),
A charged particle detector (4) for detecting charged particles (3) emitted from the sample (2) and a functional member (5) arranged near the sample (2) and having a specific function for observing the sample. In a scanning electron microscope provided, a scanning type in which a voltage is applied to the functional member (5) in order to change the potential of the sample (2) and the vicinity of the sample, and the charged particle detector detects the charged particles (3). A method for detecting charged particles in an electron microscope.
【請求項3】 上記機能部材(5)は、試料室の汚染防
止装置の冷却部材である請求項1記載の走査型電子顕微
鏡または請求項2記載の走査型電子顕微鏡における荷電
粒子の検出方法。
3. The method for detecting charged particles in a scanning electron microscope according to claim 1 or a scanning electron microscope according to claim 2, wherein the functional member (5) is a cooling member of a contamination preventing device for a sample chamber.
【請求項4】 上記機能部材(5)は、カソードルミネ
ッセンス検出用の反射鏡である請求項1記載の走査型電
子顕微鏡または請求項2記載の走査型電子顕微鏡におけ
る荷電粒子の検出方法。
4. The method for detecting charged particles in a scanning electron microscope according to claim 1 or a scanning electron microscope according to claim 2, wherein the functional member (5) is a reflecting mirror for detecting cathodoluminescence.
JP10436695A 1995-04-27 1995-04-27 Scanning electron microscope and charged particle detecting method in scanning electron microscope Pending JPH08298093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10436695A JPH08298093A (en) 1995-04-27 1995-04-27 Scanning electron microscope and charged particle detecting method in scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10436695A JPH08298093A (en) 1995-04-27 1995-04-27 Scanning electron microscope and charged particle detecting method in scanning electron microscope

Publications (1)

Publication Number Publication Date
JPH08298093A true JPH08298093A (en) 1996-11-12

Family

ID=14378825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10436695A Pending JPH08298093A (en) 1995-04-27 1995-04-27 Scanning electron microscope and charged particle detecting method in scanning electron microscope

Country Status (1)

Country Link
JP (1) JPH08298093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004161A (en) * 2007-06-20 2009-01-08 Ebara Corp Method of removing foreign matter on sample surface and charged particle apparatus
US9194826B2 (en) 2007-04-16 2015-11-24 Ebara Corporation Electron beam apparatus and sample observation method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194826B2 (en) 2007-04-16 2015-11-24 Ebara Corporation Electron beam apparatus and sample observation method using the same
JP2009004161A (en) * 2007-06-20 2009-01-08 Ebara Corp Method of removing foreign matter on sample surface and charged particle apparatus

Similar Documents

Publication Publication Date Title
JP4616938B2 (en) Environmental scanning electron microscope and detector
JP4236742B2 (en) Scanning electron microscope
JP3434165B2 (en) Scanning electron microscope
US7276694B1 (en) Defect detection using energy spectrometer
JP3836519B2 (en) Electron detector
US7977632B2 (en) Scanning electron microscope
JP4176159B2 (en) Environmentally controlled SEM using magnetic field for improved secondary electron detection
US6236053B1 (en) Charged particle detector
JP2005539359A5 (en)
US6667478B2 (en) Particle beam apparatus
CN111108579B (en) Scanning electron microscope
JP2001110351A5 (en)
Egerton et al. The scanning electron microscope
US6025593A (en) Scanning electron microscope
US7233008B1 (en) Multiple electrode lens arrangement and a method for inspecting an object
JP4066078B2 (en) Mapping electron microscope
JP2004513477A (en) SEM with adjustable final electrode for electrostatic objective
KR101041661B1 (en) Scanning electron microscope having multiple detectors and a method for multiple detector based imaging
JPH08298093A (en) Scanning electron microscope and charged particle detecting method in scanning electron microscope
JPS5835854A (en) Secondary electron detection unit
JP2002025492A (en) Method and apparatus for imaging sample using low profile electron detector for charged particle beam imaging system containing electrostatic mirror
JP6754780B2 (en) Condensing mirror unit for sample analyzer and sample analyzer
JP3965691B2 (en) Scanning electron microscope
JPH03295141A (en) Detector
JP3494208B2 (en) Scanning electron microscope