JPH08297374A - Formation of electrophotographic photoreceptive member - Google Patents

Formation of electrophotographic photoreceptive member

Info

Publication number
JPH08297374A
JPH08297374A JP10246295A JP10246295A JPH08297374A JP H08297374 A JPH08297374 A JP H08297374A JP 10246295 A JP10246295 A JP 10246295A JP 10246295 A JP10246295 A JP 10246295A JP H08297374 A JPH08297374 A JP H08297374A
Authority
JP
Japan
Prior art keywords
receiving member
forming
electrophotography
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10246295A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Akiyama
和敬 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10246295A priority Critical patent/JPH08297374A/en
Publication of JPH08297374A publication Critical patent/JPH08297374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To inexpensively and stably supply an electrophotographic photoreceptive member having excellent durability and excellent potential characteristics and image characteristics by suppressing the generation of spherical projections. CONSTITUTION: A vacuum vessel of which internal pressure can be reduced, has a gaseous raw material introducing means, a substrate having electrical conductivity, a microwave introducing means and an electrode in it. The gaseous raw materials introduced into the vacuum vessel are decomposed by using microwaves. While an AC electric field is impressed in a pulse state between the electrode 2114 and the substrate 2112, at least two layers that is, a photoconductive layer consisting of a non-single crystal material, and a surface layer, are formed on the substrate. The image characteristics and more particularly 'white dots', 'white drop-out' and 'flaws' of the electrophotographic photoreceptive member are effectively prevented by impressing the AC electric field in a pulse state thereon. Simultaneously, the interfacial characteristic is improved and an improvement in ghosts and photosensitivity can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光(ここでは広義の光
であって紫外線、可視光線、赤外線、x線、γ線などを
意味する。)の様な電磁波に対して感受性のある電子写
真用光受容部材の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron sensitive to electromagnetic waves such as light (light in a broad sense, ultraviolet rays, visible rays, infrared rays, x-rays, γ-rays, etc.). The present invention relates to a method for forming a light receiving member for photography.

【0002】[0002]

【従来の技術】像形成分野において、光受容部材におけ
る光受容層を形成する光導電材料としては、高感度で、
SN比〔光電流(Ip)〕/[暗電流(Id)]が高
く、照射する電磁波のスペクトル特性に適合した吸収ス
ペクトルを有すること、光応答性が早く、所望の暗抵抗
値を有すること、使用時において人体に対して無害であ
ること、等の特性が要求される。特に、事務機としてオ
フィスで使用される電子写真装置内に組み込まれる電子
写真用光受容部材の場合には、上記の使用時における無
公害性は重要な点である。
2. Description of the Related Art In the field of image formation, a photoconductive material for forming a light receiving layer in a light receiving member has high sensitivity,
The SN ratio [photocurrent (Ip)] / [dark current (Id)] is high, the absorption spectrum is adapted to the spectral characteristics of the electromagnetic wave irradiated, the photoresponsiveness is fast, and the desired dark resistance value is obtained. Characteristics such as being harmless to the human body when used are required. Particularly, in the case of an electrophotographic light receiving member incorporated in an electrophotographic apparatus used in an office as an office machine, the pollution-free property at the time of use is an important point.

【0003】このような点に立脚して最近注目されてい
る光導電材料にアモルファスシリコンがあり、その一部
はすでに電子写真用光受容部材として実用化されてい
る。
Amorphous silicon is one of the photoconductive materials that has recently been attracting attention based on this point, and a part thereof has already been put to practical use as a light receiving member for electrophotography.

【0004】このようなアモルファス電子写真用光受容
部材の形成方法として、グロー放電によるプラズマCV
D法(以下、単にプラズマCVD法と表記する)があげ
られる。
As a method for forming such a light receiving member for amorphous electrophotography, plasma CV by glow discharge is used.
D method (hereinafter, simply referred to as plasma CVD method) can be used.

【0005】たとえば、特開昭57−115551号公
報には、周波数13.56MHzの電磁波を用いて原料
ガスを分解、グロー放電を生起する、RFプラズマCV
D法により表面層を堆積する例が開示されている。また
特開昭60−186849号公報には、原料ガスの分解
源として、周波数2.45GHzのマイクロ波を用いた
マイクロ波プラズマCVD法による堆積膜の形成方法が
開示されている。更に特開平3−219081号公報に
は、マイクロ波プラズマCVD法に、バイアスを印加し
て、堆積膜の特性を向上させた堆積膜の形成方法が開示
されている。
For example, JP-A-57-115551 discloses an RF plasma CV which decomposes a raw material gas by using an electromagnetic wave having a frequency of 13.56 MHz to cause glow discharge.
An example of depositing a surface layer by the D method is disclosed. Further, JP-A-60-186849 discloses a method of forming a deposited film by a microwave plasma CVD method using a microwave having a frequency of 2.45 GHz as a decomposition source of a raw material gas. Further, Japanese Laid-Open Patent Publication No. 3-219081 discloses a method of forming a deposited film in which a bias is applied to the microwave plasma CVD method to improve the characteristics of the deposited film.

【0006】このような技術により、良好な電気特性を
有する電子写真用光受容部材を供給することが可能とな
った。
With such a technique, it has become possible to supply an electrophotographic light-receiving member having good electrical characteristics.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、近年、
電子写真装置は、従来にもまして、高画質化、高速化、
高耐久化等の高付加価値化が追及されると同時に、オフ
ィス環境等にも配慮してオゾンレス化なども課題となっ
ている。特にa−Si電子写真用光受容部材に対して
は、オゾンレス化のために、従来のオゾン帯電に代わっ
て接触帯電方式への対応が急務となっている。
However, in recent years,
Electrophotographic devices have higher image quality, higher speed,
At the same time as high added value such as high durability is pursued, ozone-free is also an issue in consideration of office environment. In particular, for the a-Si electrophotographic light-receiving member, there is an urgent need for a contact charging method instead of the conventional ozone charging in order to reduce ozone.

【0008】さらに、この様な新たな電子写真プロセス
への対応と共に、コストダウンの要求も強くなってきて
いるのが現状である。
At the same time, the demand for cost reduction is increasing along with the support for such new electrophotographic processes.

【0009】一方で従来のa−Si電子写真用光受容部
材では、a−Si膜堆積中に、球状突起と呼ばれる膜の
異常成長が発生しやすかった。こうした球状突起は、コ
ピー画像上で「白ポチ」と呼ばれる小さな白い斑点状の
画像欠陥を引き起こすと同時に、長期にわたる使用中に
突起の部分が欠落し、新たな画像欠陥となると同時に、
破片が電子写真用光受容部材表面を摺擦する事で、表面
層が電子写真用光受容部材表面から剥離する「キズ」を
誘発する場合もある。またこうした球状突起を中心に絶
縁破壊が生じる場合もあり、これをもとに電子写真用光
受容部材の軸方向一面に帯電不良を起こすいわゆる「白
抜け」現象を引き起こすなど、接触帯電方式への適応性
は良くなかった。
On the other hand, in the conventional a-Si electrophotographic light-receiving member, abnormal growth of a film called a spherical protrusion is likely to occur during deposition of the a-Si film. These spherical protrusions cause small white spotted image defects called “white spots” on the copy image, and at the same time, the protrusions are missing during long-term use, resulting in new image defects.
When the debris rubs the surface of the electrophotographic light-receiving member, the surface layer may induce "scratches" that are peeled from the surface of the electrophotographic light-receiving member. In addition, dielectric breakdown may occur around these spherical protrusions, and based on this, a so-called "white spot" phenomenon that causes charging failure on the entire axial surface of the electrophotographic light-receiving member is generated, and contact charging method The adaptability was not good.

【0010】さらに、従来の電子写真用光受容部材で
は、高速で画像形成を繰り返した場合、前回のコピー画
像の残像が次回のコピー画像上に現れる、いわゆる「ゴ
ースト」現象が発生する場合もあった。
Further, in the conventional electrophotographic light-receiving member, when image formation is repeated at high speed, a so-called "ghost" phenomenon may occur in which an afterimage of the previous copy image appears on the next copy image. It was

【0011】また、コストダウンへの対応の為に、堆積
膜の形成速度(デポレート)を向上させた場合、上記の
画像欠陥の問題がさらに悪化する傾向にあった。
Further, when the deposition film formation rate (deposition rate) is improved in order to cope with the cost reduction, the above-mentioned image defect problem tends to be aggravated.

【0012】こうした背景から、球状突起等の発生を抑
制すると同時に、高速な電子写真プロセスを満足する特
性を有し、コストダウンへの対応も図った、電子写真用
光受容部材の製造方法の確立が強く求められているのが
現状である。
From such a background, the establishment of a method for manufacturing a light-receiving member for electrophotography, which has the characteristics of satisfying a high-speed electrophotographic process while suppressing the generation of spherical projections, etc. At present, there is a strong demand for.

【0013】[発明の目的]本発明は、上述のごときa
−Siで構成された電子写真用光受容部材の形成方法に
於ける諸問題を解決することを目的とするものである。
[Object of the Invention] The present invention has the above-mentioned a.
It is an object of the present invention to solve various problems in a method of forming a light-receiving member for electrophotography composed of —Si.

【0014】即ち、本発明の主たる目的は、球状突起の
発生を抑制し、耐久性に優れ、電位特性、画像特性に優
れた電子写真用光受容部材を、安価に安定して供給し得
る手段となる電子写真用光受容部材の形成方法を提供す
ることにある。
That is, the main object of the present invention is a means for suppressing the generation of spherical projections, and being able to stably and inexpensively supply a light-receiving member for electrophotography which is excellent in durability, potential characteristics and image characteristics. Another object of the present invention is to provide a method of forming a light receiving member for electrophotography.

【0015】また、本発明の別の目的は、「白抜け」を
防止しオゾンレスの接触帯電方式に適応性の良い、オフ
ィス環境に配慮した電子写真用光受容部材の形成方法を
提供することにある。
Another object of the present invention is to provide a method for forming a photoreceptive member for electrophotography which prevents "white spots" and has a good adaptability to an ozone-less contact charging method, and which takes into consideration the office environment. is there.

【0016】また、本発明のもう一つの目的は、ゴース
ト等の光メモリーを本質的に低減し、光感度に優れた電
子写真用光受容部材の形成方法を提供することにある。
Another object of the present invention is to provide a method for forming a photoreceptive member for electrophotography, which essentially reduces optical memory such as ghost and has excellent photosensitivity.

【0017】[0017]

【課題を解決するための手段及び作用】本発明は、上記
のような電子写真用光受容部材の問題点を解決する電子
写真用光受容部材の形成方法を提供するものであって、
減圧可能な真空容器内に少なくとも、導電性を有する基
体、原料ガス導入手段、マイクロ波導入手段、電極、お
よび前記基体と電極の間に電界(以下「外部電気バイア
ス」または単に「バイアス」と記す)を印加する手段と
を有し、前記原料ガス導入手段より導入された原料ガス
を、前記マイクロ波導入手段より導入されたマイクロ波
のエネルギーによるグロー放電により分解すると同時
に、前記基体と前記電極の間に電界を印加しながら前記
基体上に堆積膜を形成するマイクロ波プラズマCVD法
を用い、少なくとも非単結晶材料より構成される光導電
層と表面層からなる電子写真用光受容部材の形成方法で
あって、前記電界を交流電界とすると共にパルス状に印
加することを特徴とする。
SUMMARY OF THE INVENTION The present invention provides a method for forming an electrophotographic light-receiving member which solves the problems of the electrophotographic light-receiving member as described above.
At least a conductive substrate, a source gas introducing unit, a microwave introducing unit, an electrode, and an electric field (hereinafter referred to as "external electric bias" or simply "bias") between the substrate and the electrode in a vacuum container capable of depressurizing. ) Is applied to decompose the raw material gas introduced by the raw material gas introducing means by glow discharge by the energy of the microwave introduced by the microwave introducing means, and at the same time, Method of forming a photoreceptive member for electrophotography comprising a photoconductive layer composed of at least a non-single crystal material and a surface layer by using a microwave plasma CVD method for forming a deposited film on the substrate while applying an electric field therebetween The electric field is an alternating electric field and is applied in a pulse form.

【0018】本発明者は、a−Si電子写真用光受容部
材の球状突起の成長についての解析と、その抑止につい
てさまざまな努力を行ってきた。その結果本発明を見い
出したものであるが、以下にその内容について説明す
る。
The inventor of the present invention has made various efforts to analyze the growth of spherical projections of an a-Si electrophotographic light-receiving member and suppress it. As a result, the present invention has been found. The contents will be described below.

【0019】一般に球状突起は、膜中に異物が混入した
場合、それを核として膜が異常成長したものである。
In general, the spherical projections are formed by abnormal growth of a film when a foreign substance is mixed into the film, which is used as a nucleus.

【0020】この様な球状突起は、電子写真用光受容部
材の表面上に観察される球状突起の直径よりも、数倍以
上の大きな範囲にわたってコピー画像上に影響を与える
ことがわかった。またこうした傾向は、従来の電子写真
用光受容部材では堆積膜のデポレートを向上させるに従
って強調されることもわかった。そこで本発明者は、球
状突起の成長の様子と、画像欠陥の発生過程、およびデ
ポレートとの関係について解析を行った。
It has been found that such spherical protrusions affect the copied image over a range of several times larger than the diameter of the spherical protrusions observed on the surface of the electrophotographic light-receiving member. It was also found that such a tendency is emphasized as the deposition rate of the deposited film is increased in the conventional electrophotographic light-receiving member. Therefore, the present inventor analyzed the relationship between the growth state of the spherical projections, the process of image defect generation, and the deposit rate.

【0021】本発明者は、さまざまな条件で電子写真用
光受容部材を作製し、発生した球状突起の断面を観察し
た。その結果、これらの球状突起は光導電層の膜の途中
から成長しているものがほとんどであった。またほとん
どの場合、実際に球状突起の中心に核が確認された。ま
た、堆積膜のデポレートの違いによって、球状突起の成
長の様子に差異が認められた。
The inventor of the present invention produced electrophotographic light-receiving members under various conditions and observed the cross-section of the spherical projections. As a result, most of these spherical projections grew from the middle of the film of the photoconductive layer. In most cases, a nucleus was actually found at the center of the spherical protrusion. In addition, the growth of the spherical protrusions was found to be different depending on the deposition rate of the deposited film.

【0022】一般に、比較的低いデポレートで形成され
た電子写真用光受容部材の場合、通常の成長部分と球状
突起の部分の境界がはっきりしていない。また中には、
堆積膜中に異物が混入しても、電子写真用光受容部材表
面まで球状突起として成長せずに、途中で通常の膜成長
に戻っているものも観察された。
Generally, in the case of an electrophotographic light-receiving member formed with a relatively low deposition rate, the boundary between the normal growth portion and the spherical projection portion is not clear. In addition, some
It was also observed that even if foreign matter was mixed in the deposited film, it did not grow as spherical projections to the surface of the electrophotographic light-receiving member, but returned to normal film growth in the middle.

【0023】これに対し、比較的高いデポレートで堆積
された電子写真用光受容部材の場合、通常の成長部分と
球状突起の部分の境界がはっきり分かれている。またこ
うした境界部分には、多くの場合空隙が認められた。
On the other hand, in the case of the electrophotographic light-receiving member deposited with a relatively high deposition rate, the boundary between the normal growth portion and the spherical projection portion is clearly separated. In addition, voids were observed in most of these boundaries.

【0024】この様な球状突起の構造の違いは、電子写
真特性にも大きな影響を与える。つまり、比較的低いデ
ポレートで形成された電子写真用光受容部材の球状突起
は、ほとんどの場合コピー画像上に「白ポチ」となって
現れないのに対し、比較的高いデポレートでの場合は、
空隙によって電荷が流れ易くなり、実際の球状突起の大
きさよりも広範囲にわたって電位が下がるため、大きな
「白ポチ」となって画像上に現れる。さらにこうした球
状突起は接触帯電(ローラー帯電)に適用した場合、絶
縁破壊を起こし易く、電流が一箇所に集中して、その他
の部分に帯電不良を起こすいわゆる「白抜け」が極めて
発生し易い。
Such a difference in the structure of the spherical protrusions has a great influence on the electrophotographic characteristics. That is, in most cases, the spherical projections of the electrophotographic light-receiving member formed with a relatively low deposition rate do not appear as "white spots" on the copy image, whereas in the case of a relatively high deposition rate,
The voids facilitate the flow of electric charges, and the potential drops over a wider range than the actual size of the spherical protrusions, resulting in a large “white spot” appearing on the image. Further, when such spherical projections are applied to contact charging (roller charging), dielectric breakdown is likely to occur, and a so-called "white spot" in which electric current is concentrated at one location and charging failure occurs at other locations is extremely likely to occur.

【0025】また、通常の膜との境界に空隙をもつ球状
突起は、当然密着性が悪く、長期間の使用中に剥がれ落
ち易い。こうした球状突起は、電子写真用光受容部材表
面に傷をつける原因になる。
Further, the spherical projection having a void at the boundary with a normal film naturally has poor adhesion and is easily peeled off during long-term use. Such spherical protrusions cause damage to the surface of the electrophotographic light-receiving member.

【0026】特に、ローラー帯電に於いては、このよう
な剥がれた球状突起により損傷を受けた表面層の一部が
剥離するまでに発展するケースもあった。
In particular, in the case of roller charging, in some cases, the surface layer damaged by such peeled spherical projections develops until it peels off.

【0027】堆積膜のデポレートによるこの様な球状突
起の構造の差異は、本質的な堆積膜の形成過程に関係し
ていると思われる。たとえば、比較的低いデポレートで
形成された堆積膜の場合、プラズマ中の活性種が、堆積
膜として結合する際に、充分な緩和時間と表面での活性
種の易動度が確保されるため、3次元的な結合構造を取
り易いのに対し、デポレートを向上させるに従いこれら
が不足して2次元的な結合が促進される傾向が強くな
り、これが通常の堆積膜と球状突起部分の境界を強調さ
せる働きをするものと考えられる。
The difference in the structure of such spherical projections due to the deposition rate of the deposited film seems to be related to the essential formation process of the deposited film. For example, in the case of a deposited film formed with a relatively low deposition rate, when the active species in the plasma combine as a deposited film, sufficient relaxation time and mobility of the active species on the surface are ensured, While it is easy to form a three-dimensional bond structure, as the deposition rate increases, the tendency becomes insufficient and the two-dimensional bond tends to be promoted, which emphasizes the boundary between the normal deposited film and the spherical protrusion. It is thought that it works to let you.

【0028】実際、本発明者の観察によれば、比較的デ
ポレートの低い堆積膜では、膜中にめだった構造が観測
されないのに対し、境界部分に空隙をもつ球状突起が発
生するような堆積膜の形成条件では、膜中に柱状構造が
認められる場合があった。
In fact, according to the observation of the present inventor, in the deposited film having a relatively low depo rate, no remarkable structure is observed in the film, whereas spherical projections having voids at the boundary are generated. Under the conditions for forming the deposited film, a columnar structure was sometimes observed in the film.

【0029】本発明者は、上記のような知見に基づき、
比較的高いデポレートで堆積膜を形成した場合に於いて
も、画像欠陥の発生を抑制し得る電子写真用光受容部材
の形成方法を得るため、プラズマ中のエネルギーに着目
してさまざまな検討を行ってきた。その結果、本発明の
構成が、電子写真用光受容部材の性能向上と、画像欠陥
の抑制に極めて効果的であることを見い出し、本発明を
完成したものである。
The present inventor, based on the above findings,
In order to obtain a method of forming a photoreceptive member for electrophotography that can suppress the occurrence of image defects even when a deposited film is formed with a relatively high deposition rate, various studies are conducted focusing on the energy in plasma. Came. As a result, they have found that the constitution of the present invention is extremely effective in improving the performance of the electrophotographic light-receiving member and suppressing image defects, and completed the present invention.

【0030】本発明のパルス状のバイアスのプラズマ中
の作用には、なお不明な点もあるが、おおよそ次のよう
なものと想像される。本発明のようにパルス状にプラズ
マ状態を変化させる場合、その過度特性上、連続波(C
W)によるプラズマと比較して非常に高い電子温度が得
られる。電子温度は、プラズマ中の活性種の生成過程を
左右する重要な因子であることが知られているが、特に
電子写真用光受容部材の形成条件に於いては、従来の電
子写真用光受容部材の形成方法に比べて、本質的に3次
元的な結合を促進するようなプラズマ反応をもたらすも
のと想像される。
The action of the pulsed bias in the plasma of the present invention is still unclear, but is thought to be roughly as follows. When the plasma state is changed in a pulse shape as in the present invention, the continuous wave (C
A very high electron temperature is obtained compared to the plasma according to W). It is known that the electron temperature is an important factor that influences the generation process of active species in plasma. Especially, under the formation conditions of the electrophotographic light-receiving member, the conventional electrophotographic light-receiving element is used. It is envisioned that it causes a plasma reaction that promotes coupling that is essentially three-dimensional as compared with the method of forming the members.

【0031】プラズマ中でこの様な反応が促進されれ
ば、前記したように、従来の堆積膜形成方法で、活性種
が堆積膜として結合する際の緩和時間や表面易動度が不
足する様な、高デポレートの条件であっても、結果的に
それらを補完し3次元的結合が維持されるものと考えら
れる。
If such a reaction is promoted in plasma, as described above, the relaxation time and surface mobility when the active species combine as a deposited film are insufficient in the conventional deposited film forming method. However, even under the condition of high depo rate, it is considered that they are complemented as a result and the three-dimensional connection is maintained.

【0032】その結果、本発明の電子写真用光受容部材
の形成方法によれば、比較的デポレートを高くした場合
に於いても、従来のような柱状構造は認められず、従っ
て、球状突起が存在しても、それが画像欠陥に結びつか
ないため、画像欠陥の抑制に大きな効果を持つものであ
る。
As a result, according to the method for forming a light-receiving member for electrophotography of the present invention, even when the deposition rate is relatively high, the columnar structure as in the conventional case is not recognized, and therefore the spherical projections are not formed. Even if it exists, it does not lead to the image defect, so that it has a great effect on the suppression of the image defect.

【0033】また、本発明の電子写真用光受容部材の形
成方法では、特に堆積膜の界面形成時の特性改善にも大
きな効果が得られた。例えば、光導電層と表面層の界面
を形成する場合、界面においていったん放電を切り、そ
の後再放電をする場合においては、再放電直後に形成さ
れる堆積膜の結合性に問題があったり、あるいはすでに
形成された層の表面にダメージを与える、等の問題があ
る。また前記したような傷による表面層の剥離を改善す
るため、光導電層と表面層の間に膜組成等を連続的に変
化させる中間領域を設ける等の対策を採る場合に於いて
は中間領域中に局在準位や、吸収層が発生し易く、かえ
ってゴースト現象を引き起こしたり、光感度を悪化させ
る例もあった。
In addition, the method of forming a light-receiving member for electrophotography of the present invention also has a great effect on improving the characteristics, particularly when the interface of the deposited film is formed. For example, in the case of forming the interface between the photoconductive layer and the surface layer, when the discharge is cut off at the interface and then the discharge is performed again, there is a problem in the bondability of the deposited film formed immediately after the re-discharge, or There is a problem that the surface of the already formed layer is damaged. In addition, in order to improve the peeling of the surface layer due to the scratches as described above, in the case of taking measures such as providing an intermediate region for continuously changing the film composition etc. between the photoconductive layer and the surface layer, the intermediate region In some cases, a localized level or an absorption layer is easily generated, which may cause a ghost phenomenon or worsen photosensitivity.

【0034】本発明の電子写真用光受容部材の形成方法
によれば、この様な界面形成に於いてもプラズマ中の反
応の促進により、光導電層と表面層との密着性の高い界
面が形成される。さらに中間領域を形成する場合に於い
ても、従来の電子写真用光受容部材の形成方法よりも、
高い電子温度で安定して中間領域が形成されるため、従
来のようなゴーストの発生や、光感度の劣化を起こさず
に、界面での密着性をより向上することができる。
According to the method of forming the light-receiving member for electrophotography of the present invention, even in such interface formation, the reaction in the plasma is promoted so that the interface having high adhesion between the photoconductive layer and the surface layer is formed. It is formed. Further, even in the case of forming the intermediate region, compared to the conventional method of forming a light receiving member for electrophotography,
Since the intermediate region is stably formed at a high electron temperature, it is possible to further improve the adhesion at the interface without causing the ghost and the deterioration of the photosensitivity as in the conventional case.

【0035】なお本発明で言う中間領域の厚さは、光導
電層と表面層の間に実質的な界面を形成するような厚さ
であって、光導電層と表面層の間をなだらかに接続し、
組成や光学特性等について界面が特定できなくなるよう
ないわゆる界面レスの状態を意味するものではない。
The thickness of the intermediate region in the present invention is such that a substantial interface is formed between the photoconductive layer and the surface layer, and the thickness between the photoconductive layer and the surface layer is gentle. connection,
It does not mean a so-called interfaceless state in which the interface cannot be specified in terms of composition, optical characteristics, and the like.

【0036】以上のように、本発明の電子写真用光受容
部材の形成方法では、パルス上のバイアスを用いて、と
くに電子写真用光受容部材として必要な画像特性を向上
させることができる。
As described above, in the method for forming the electrophotographic light-receiving member of the present invention, the image characteristics required as the electrophotographic light-receiving member can be improved by using the bias on the pulse.

【0037】以下に図面を用いて本発明の効果及び、本
発明の電子写真用光受容部材の形成方法について具体的
に説明する。
The effects of the present invention and the method for forming the electrophotographic light-receiving member of the present invention will be specifically described below with reference to the drawings.

【0038】本発明によって、形成される電子写真用光
受容部材は、少なくとも非単結晶材料より構成された光
導電層と表面層から構成される。図1は、本発明によっ
て形成される電子写真用光受容部材の層構成の一例を模
式的に示した図である。図1において、101は基体、
102は光導電層、103は表面層を、それぞれ示して
いる。本発明では、上記の層構成の他に、例えば光導電
層102と基体101の間に下部電荷注入阻止層、密着
層等を設けることもできる。また、光導電層として、電
荷輸送層、電荷発生層等を用いた、いわゆる機能分離型
の層構成もとることができる。
The electrophotographic light-receiving member formed according to the present invention comprises at least a photoconductive layer made of a non-single crystal material and a surface layer. FIG. 1 is a view schematically showing an example of the layer structure of a light receiving member for electrophotography formed by the present invention. In FIG. 1, 101 is a substrate,
Reference numeral 102 denotes a photoconductive layer, and 103 denotes a surface layer. In the present invention, in addition to the above layer structure, for example, a lower charge injection blocking layer, an adhesion layer, etc. may be provided between the photoconductive layer 102 and the base 101. Further, a so-called function-separated layer structure in which a charge transport layer, a charge generation layer, and the like are used as the photoconductive layer can be used.

【0039】また、光導電層102と表面層103の間
に組成等を連続的に変化させた中間領域を設けることも
できる。本発明の於ける中間領域の厚さは、光導電層と
表面層の間に実質的な界面を形成するような厚さであっ
て、光導電層と表面層の間をなだらかに接続し、組成や
光学特性等について界面が特定できなくなるようないわ
ゆる界面レスの状態を意味するものではない。
Further, an intermediate region having a continuously changed composition can be provided between the photoconductive layer 102 and the surface layer 103. The thickness of the intermediate region in the present invention is such that a substantial interface is formed between the photoconductive layer and the surface layer, and the photoconductive layer and the surface layer are connected smoothly. It does not mean a so-called interfaceless state in which the interface cannot be specified in terms of composition, optical characteristics, and the like.

【0040】本発明において使用される原料ガスは、電
子写真用光受容部材の生産規模や特性、層構成等によっ
て選択される。
The raw material gas used in the present invention is selected according to the production scale and characteristics of the electrophotographic light-receiving member, the layer structure and the like.

【0041】例えば、図1の層構成の電子写真用光受容
部材を形成する場合、光導電層102は、基本的にシリ
コン原子(Si)を供給し得るSi供給用の原料ガスを
内部が減圧可能な反応容器内に所望のガス状態で導入
し、反応容器内でグロー放電を生起させることで形成さ
れる。
For example, when forming the electrophotographic light-receiving member having the layer structure shown in FIG. 1, the photoconductive layer 102 basically depressurizes the inside of the source gas for supplying Si, which can supply silicon atoms (Si). It is formed by introducing it into a possible reaction vessel in a desired gas state and causing a glow discharge in the reaction vessel.

【0042】本発明において使用されるSi供給用の原
料ガスとなり得る物質としては、SiH4 ,Si2
6 ,Si38 ,Si410等のガス状態の、またはガ
ス化し得る水素化珪素(シラン類)が有効に使用される
ものとして挙げられ、更に層作成時の取り扱い易さ、S
i供給効率の良さ等の点でSiH4 ,Si26 が好ま
しいものとして挙げられる。また、これらのSi供給用
の原料ガスを必要に応じてH2 ,He,Ar,Ne等の
ガスにより希釈して使用してもよい。
The substances that can be used as the source gas for supplying Si in the present invention include SiH 4 and Si 2 H
6 , Si 3 H 8 , Si 4 H 10, etc. in a gas state or gasifiable silicon hydrides (silanes) are mentioned as being effectively used, and further, they are easy to handle during layer formation, S
iH 4 and Si 2 H 6 are mentioned as preferable in terms of good supply efficiency. In addition, these raw material gases for supplying Si may be diluted with a gas such as H 2 , He, Ar, or Ne as needed before use.

【0043】また本発明においては、光導電層102中
に伝導性を制御するための原子を導入することも有効で
あるし、修飾物質として弗素原子等のハロゲン原子を導
入することも有効である。
Further, in the present invention, it is effective to introduce an atom for controlling conductivity into the photoconductive layer 102, and it is also effective to introduce a halogen atom such as a fluorine atom as a modifier. .

【0044】また本発明においては、光導電層102中
に伝導性を制御するための原子を導入することも有効で
あるし、修飾物質として弗素原子等のハロゲン原子を導
入することも有効である。光導電層に、伝導性を制御す
る原子、たとえば、第III 族原子あるいは第V族原子を
構造的に導入するには、層形成の際に、第III 族原子導
入用の原料物質あるいは第V族原子導入用の原料物質を
ガス状態で反応容器中に、光導電層を形成するための他
のガスとともに導入してやればよい。第III 族原子導入
用の原料物質あるいは第V族原子導入用の原料物質とな
り得るものとしては、常温常圧でガス状のまたは、少な
くとも層形成条件下で用意にガス化し得るものが採用さ
れるのが望ましい。そのような第III 族原子導入用の原
料物質として具体的には、硼素原子導入用としては、B
26 ,B410,B59 ,B 511,B610,B
612,B614等の水素化硼素、BF3 ,BCl3
BBr3 等の弗素化硼素等が挙げられる。この他、Al
Cl3 ,GaCl3 ,Ga(CH33 ,InCl3
TlCl3 等も挙げることができる。
In the present invention, in the photoconductive layer 102
It is also effective to introduce atoms to control conductivity.
However, if a halogen atom such as a fluorine atom is introduced as a modifier,
It is also effective to enter. Control the conductivity of the photoconductive layer
Atoms, such as group III or group V atoms,
To introduce structurally, a group III atom conductor must be used during layer formation.
Raw material for import or raw material for introducing Group V atom
Others for forming a photoconductive layer in the reaction vessel in the gas state
It may be introduced together with the gas. Group III atom introduction
Or a raw material for introducing a group V atom.
It can be gaseous or low at room temperature and pressure.
A material that can be easily gasified under the conditions for forming at least layers is used.
It is desirable to be. Sources for introducing such group III atoms
Specifically, as a raw material, for introducing a boron atom, B is used.
2 H6 , BFour HTen, BFive H9 , B Five H11, B6 HTen, B
6 H12, B6 H14Borohydride, BF, etc.3 , BCl3 ,
BBr3 And the like, such as fluorinated boron. Besides this, Al
Cl3 , GaCl3 , Ga (CH3 )3 , InCl3 ,
TlCl3 Etc. can also be mentioned.

【0045】第V族原子導入用の原料物質として本発明
において、有効に使用されるのは、燐原子導入用として
は、PH3 ,P24 等の水素化燐、PH4 I,PF
3 ,PF5 ,PCl3 ,PCl5 ,PBr3 ,PBr
5 ,PI3 等の弗素化燐が挙げられる。この他、AsH
3 ,AsF3 ,AsCL3 ,AsBr3 ,AsF5 ,S
bH3 ,SbF3 ,SbF5 ,SbCl3 ,SbCl
5 ,BiH3 ,BiCl3 ,BiBr3 等も第V族原子
導入用の出発物質の有効なものとして挙げることができ
る。
In the present invention, as a raw material for introducing a group V atom, phosphorus hydrides such as PH 3 , P 2 H 4 and the like, PH 4 I, PF are effectively used for introducing a phosphorus atom.
3 , PF 5 , PCl 3 , PCl 5 , PBr 3 , PBr
5 , fluorinated phosphorus such as PI 3 may be mentioned. Besides this, AsH
3 , AsF 3 , AsCL 3 , AsBr 3 , AsF 5 , S
bH 3 , SbF 3 , SbF 5 , SbCl 3 , SbCl
5 , BiH 3 , BiCl 3 , BiBr 3 and the like can also be mentioned as effective starting materials for introducing a Group V atom.

【0046】本発明に於て好適に使用し得るハロゲン化
合物としては、具体的には弗素ガス(F2 )、BrF,
ClF,ClF3 ,BrF3 ,BrF5 ,IF3 ,IF
7 等のハロゲン間化合物を挙げることができる。ハロゲ
ン原子を含む珪素化合物、いわゆるハロゲン原子で置換
されたシラン誘導体としては、具体的には、たとえばS
iF4 ,Si26 等のフッ化珪素が好ましいものとし
て挙げることができる。
Halogen compounds which can be preferably used in the present invention are specifically fluorine gas (F 2 ), BrF,
ClF, ClF 3 , BrF 3 , BrF 5 , IF 3 , IF
An interhalogen compound such as 7 can be mentioned. Specific examples of the silicon compound containing a halogen atom, that is, a silane derivative substituted with a halogen atom include, for example, S
Silicon fluorides such as iF 4 and Si 2 F 6 can be mentioned as preferable ones.

【0047】本発明において、光導電層102の層厚は
所望の電子写真特性が得られること及び経済的効果等の
点から適宜所望にしたがって決定され、好ましくは5〜
50μm、より好ましくは10〜40μm、最適には1
5〜30μmとされるのが望ましい。
In the present invention, the layer thickness of the photoconductive layer 102 is appropriately determined as desired in view of obtaining desired electrophotographic characteristics and economical effects, and is preferably 5 to 5.
50 μm, more preferably 10 to 40 μm, optimally 1
The thickness is preferably 5 to 30 μm.

【0048】基体の温度(Ts)は、層設計にしたがっ
て適宜最適範囲が選択されるが、通常の場合、好ましく
は20〜500℃、より好ましくは50〜480℃、最
適には100〜450℃とするのが望ましい。
The temperature (Ts) of the substrate is appropriately selected in accordance with the layer design, but in the usual case, it is preferably 20 to 500 ° C, more preferably 50 to 480 ° C, most preferably 100 to 450 ° C. Is desirable.

【0049】また本発明の、表面層103として、例え
ばアモルファスシリコンカーバイト(a−SiC)から
なる表面層を設ける場合には、基本的に上記のSiを供
給し得るSi供給用のガスと、炭素原子(C)を供給し
得るC導入用のガスを内部が減圧可能な反応容器内に所
望のガス状態で導入し、反応容器内でグロー放電を生起
させることで形成される。
When a surface layer made of, for example, amorphous silicon carbide (a-SiC) is provided as the surface layer 103 of the present invention, the above-mentioned Si supply gas capable of supplying Si is basically used, It is formed by introducing a gas for introducing C capable of supplying carbon atoms (C) into a reaction vessel whose inside can be decompressed in a desired gas state, and causing glow discharge in the reaction vessel.

【0050】本発明において、炭素原子導入用の原料物
質となり得るものとしては、常温常圧でガス状のまた
は、少なくとも前記表面層層形成条件下で容易にガス化
し得るものが採用されるのが望ましい。炭素原子(C)
導入用の原料ガスになり得るものとして有効に使用され
る出発物質は、CとHとを構成原子とする、例えば炭素
数1〜5の飽和炭化水素、炭素数2〜4のエチレン系炭
化水素、炭素数2〜3のアセチレン系炭化水素等が挙げ
られる。
In the present invention, as a material that can be used as a raw material for introducing carbon atoms, a material that is gaseous at room temperature and normal pressure or that can be easily gasified under at least the above-mentioned surface layer forming conditions is adopted. desirable. Carbon atom (C)
Starting materials that are effectively used as raw material gases for introduction include C and H as constituent atoms, for example, saturated hydrocarbons having 1 to 5 carbon atoms and ethylene hydrocarbons having 2 to 4 carbon atoms. , Acetylene hydrocarbons having 2 to 3 carbon atoms, and the like.

【0051】具体的には、飽和炭化水素としては、メタ
ン(CH4 )、エタン(C26 )、プロパン(C3
8 )、n−ブタン(n−C410)、ペンタン(C5
12)、エチレン系炭化水素としては、エチレン(C2
4 )、プロピレン(C36)、ブテン−1(C4
8 )、ブテン−2(C48 )、イソブチレン(C4
8 )、ペンテン(C510)、アセチレン系炭化水素と
しては、アセチレン(C 22 )、メチルアセチレン
(C34 )、ブチン(C46 )等が挙げられる。ま
た、SiとCとを構成原子とする原料ガスとしては、S
i(CH34 、Si(C254 等のケイ化アルキ
ルを挙げることができる。
Specifically, as the saturated hydrocarbon,
(CHFour ), Ethane (C2 H6 ), Propane (C3 H
8 ), N-butane (n-CFour HTen), Pentane (CFive H
12), Ethylene-based hydrocarbons include ethylene (C2 H
Four ), Propylene (C3 H6), Butene-1 (CFour H
8 ), Butene-2 (CFour H8 ), Isobutylene (CFour H
8 ), Penten (CFive HTen), With acetylene hydrocarbons
Then, acetylene (C 2 H2 ), Methylacetylene
(C3 HFour ), Butin (CFour H6 ) And the like. Well
Further, as a source gas containing Si and C as constituent atoms, S
i (CH3 )Four , Si (C2 HFive )Four Alky of Alchemy
You can list them.

【0052】また本発明において、a−SiCよりなる
表面層を形成する場合、上記の物質の他に、修飾物質と
して弗素原子等のハロゲン原子を導入することも有効で
ある。本発明に於いて表面層にハロゲン原子導入用の原
料ガスとなり得るものとしては、上記の物質の他に、C
とハロゲンを同時に供給できる物質として、CF4 ,C
3 ,C26 ,C38 ,C48 等のフッ化炭素化
合物等も使用することができる。
In the present invention, when a surface layer made of a-SiC is formed, it is also effective to introduce a halogen atom such as a fluorine atom as a modifying substance in addition to the above substances. In the present invention, as the raw material gas for introducing halogen atoms into the surface layer, in addition to the above substances, C
As a substance that can supply halogen and halogen at the same time, CF 4 , C
Fluorocarbon compounds such as F 3 , C 2 F 6 , C 3 F 8 and C 4 F 8 can also be used.

【0053】本発明において、表面層103の層厚は所
望の電子写真特性が得られること、及び経済的効果等の
点から好ましくは0.01〜50μm、より好ましくは
0.05〜20μm、最適には0.1〜10μmとされ
るのが望ましい。
In the present invention, the surface layer 103 preferably has a layer thickness of 0.01 to 50 μm, more preferably 0.05 to 20 μm, from the viewpoint of obtaining desired electrophotographic characteristics and economical effects. It is desirable that the thickness is 0.1 to 10 μm.

【0054】本発明において表面層103を形成する条
件は、所望の電子写真特性が得られるように、適宜決定
することができる。例えば基体温度は適宜最適範囲が選
択されるが、好ましくは20〜500℃、より好ましく
は50〜480℃、最適には100〜450℃とするの
が望ましい。
In the present invention, the conditions for forming the surface layer 103 can be appropriately determined so that desired electrophotographic characteristics can be obtained. For example, the substrate temperature is appropriately selected in an optimum range, but is preferably 20 to 500 ° C, more preferably 50 to 480 ° C, and most preferably 100 to 450 ° C.

【0055】本発明に於ける電子写真用光受容部材形成
時の反応容器内の圧力は、電子写真用光受容部材の特
性、層構成によって選択され、各層形成条件によっても
異なるが、通常の場合、好ましくは1×10-5〜100
Torr、好ましくは5×10 -5〜30Torr、最適
には1×10-4〜10Torrとするのが好ましい。
Formation of Electrophotographic Photoreceptor Member in the Present Invention
The pressure inside the reaction vessel at that time depends on the characteristics of the photoreceptor member for electrophotography.
Selected according to the film properties and layer structure
Different but usually 1 × 10 5-Five~ 100
Torr, preferably 5 × 10 -Five~ 30 Torr, optimum
For 1 x 10-FourIt is preferably set to 10 Torr.

【0056】本発明使用されるマイクロ波は、市場での
電源の入手の容易性などから、2.45GHz(±0.
1GHz)の周波数が好ましいものとして使用される。
The microwave used in the present invention is 2.45 GHz (± 0.
A frequency of 1 GHz) is used as preferred.

【0057】また本発明で使用される、バイアスの周波
数としては10MHz〜550MHzのRF帯域、VH
F帯域、マイクロ波帯域のものが使用できる。周波数1
0MHz未満では、バイアスとしてプラズマ中の反応を
変化させる効果が余り現れない。逆に周波数550MH
zを越えると、プラズマ放電の均一性を維持することが
困難となり、電子写真用光受容部材に堆積膜の膜厚ムラ
が発生する場合がみられた。またこれらの交流電界に直
流電界を重畳する事も本発明には有効である。尚、本発
明に於いては、これらの周波数帯の範囲は便宜上、MF
帯域として、300kHz〜3MHz未満、RF帯域と
して3MHz〜30MHz未満、VHF帯域として30
MHz〜300MHz未満、マイクロ波として300M
Hz以上と定義した。
The bias frequency used in the present invention is 10 MHz to 550 MHz in the RF band, VH.
F band and microwave band can be used. Frequency 1
Below 0 MHz, the effect of changing the reaction in plasma as a bias does not appear so much. Conversely, the frequency is 550 MH
If z is exceeded, it becomes difficult to maintain the uniformity of plasma discharge, and uneven thickness of the deposited film may occur in the electrophotographic light-receiving member. It is also effective for the present invention to superimpose a DC electric field on these AC electric fields. In the present invention, the range of these frequency bands is MF for convenience.
The band is 300 kHz to less than 3 MHz, the RF band is 3 MHz to less than 30 MHz, and the VHF band is 30
MHz ~ less than 300MHz, 300M as microwave
It was defined as above Hz.

【0058】交流電界の周波数は、電子写真用光受容部
材形成中一定であってもいいし、例えば、各層形成時に
変化させることもできるし、同一の層形成中に変化させ
てもよい。しかしながら周波数を変化させる場合には、
上記の周波数範囲内で変化させることが望ましい。
The frequency of the AC electric field may be constant during the formation of the electrophotographic light-receiving member, or may be changed during the formation of each layer or may be changed during the formation of the same layer. However, when changing the frequency,
It is desirable to change within the above frequency range.

【0059】また本発明では、パルス状の電界として、
上記の交流電界、または交流電界と直流電界を重畳した
電界をパルス波で変調したものが効果的に使用できる。
ここで言うパルス波による変調とは、パルス波で交流電
界の振幅を変調する、いわゆる振幅変調をさす。この場
合パルス波の周波数は、100Hz〜1MHzの周波数
範囲が好ましい。上記の範囲以外でも本発明の効果を得
ることができるが、例えば100Hz以下の周波数で
は、周波数が低くなるにつれその効果が低くなる傾向が
現れる。また同様に周波数が1MHzを越えた場合に
も、特性がCWの場合に近づく傾向が顕著なった。これ
は本発明の効果がプラズマ状態の変化の過渡特性を利用
していると考えられることから、好ましい周波数範囲を
こえると、過渡特性があらわれにくくなり、実質的にC
Wと同様な状況に近づくためと考えられる。
Further, in the present invention, as a pulsed electric field,
The AC electric field, or the electric field obtained by superposing the AC electric field and the DC electric field, which is modulated by the pulse wave can be effectively used.
The modulation by the pulse wave mentioned here refers to so-called amplitude modulation in which the amplitude of the AC electric field is modulated by the pulse wave. In this case, the frequency of the pulse wave is preferably in the frequency range of 100 Hz to 1 MHz. The effect of the present invention can be obtained outside the above range, but at a frequency of 100 Hz or less, for example, the effect tends to decrease as the frequency decreases. Similarly, when the frequency exceeds 1 MHz, the characteristics tend to approach those of CW. Since it is considered that the effect of the present invention utilizes the transient characteristic of the change in the plasma state, the transient characteristic is less likely to appear when the preferable frequency range is exceeded, and the C
It is thought that this is to approach a situation similar to W.

【0060】本発明では、パルス波の周波数は電子写真
用光受容部材形成中一定であっても良いし、各層形成
時、または同一層形成時に於いて変化させることもでき
る。しかしながら、パルス波の周波数を変化させる場合
にも、上記の周波数範囲内で変化させることが望まし
い。
In the present invention, the frequency of the pulse wave may be constant during formation of the electrophotographic light-receiving member, or may be changed during formation of each layer or during formation of the same layer. However, when changing the frequency of the pulse wave, it is desirable to change it within the above frequency range.

【0061】本発明に於けるマイクロ波および交流電界
の電力は、使用するガス種、求める電子写真用光受容部
材の特性、生産規模、等の条件により決定されるが、し
かしながら、パルス波のバイアスによるプラズマの反応
をより促進する観点から、マイクロ波のパワーとして
は、交流電界を印加しないときの条件で、基体上に形成
される堆積膜の形成速度が飽和するときの電力を1とし
たときの0.05〜0.9の範囲とする事で、本発明の
効果をより高めることができる。
The power of the microwave and AC electric field in the present invention is determined by the conditions such as the type of gas used, the characteristics of the electrophotographic light-receiving member to be obtained, the production scale, etc. However, the bias of the pulse wave is used. From the viewpoint of further accelerating the plasma reaction due to the above, when the microwave power is set to 1 when the formation speed of the deposited film formed on the substrate is saturated under the condition when no AC electric field is applied. By setting the range of 0.05 to 0.9, the effect of the present invention can be further enhanced.

【0062】これらのマイクロ波および交流電界の電力
は、電子写真用光受容部材形成中一定であっても良い
し、各層形成時、または同一層形成時に於いて変化させ
ることもできる。
The power of the microwave and the alternating electric field may be constant during the formation of the electrophotographic light-receiving member, or may be changed during the formation of each layer or during the formation of the same layer.

【0063】また本発明において使用される基体101
は、たとえばAl,Cr,Mo,Au,In,Nb,T
e,V,Ti,Pt,Pb,Fe,等の金属、およびこ
れらの合金、たとえばステンレス等が挙げられる。また
ポリエステル、ポリスチレン、ポリカーボネイト、セル
ロースアセテート、ポリプロピレン、ポリ塩化ビニル、
ポリエチレン、ポリアミド等の合成樹脂のフィルムまた
はシート、ガラス、セラミック等の電気絶縁性基体の少
なくとも光受容層を形成する側の表面を導電処理した基
体も用いることができる。さらに光受容層を形成する側
と反対側も導電処理することが望ましい。
Substrate 101 used in the present invention
Is, for example, Al, Cr, Mo, Au, In, Nb, T
Examples include metals such as e, V, Ti, Pt, Pb, Fe, and alloys thereof, such as stainless steel. In addition, polyester, polystyrene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride,
It is also possible to use a substrate obtained by subjecting at least the surface of the electrically insulating substrate such as a film or sheet made of a synthetic resin such as polyethylene or polyamide, glass, or ceramic to the side where the light receiving layer is formed, to a conductive treatment. Further, it is desirable that the side opposite to the side on which the light receiving layer is formed is also subjected to conductive treatment.

【0064】基体101の形状は、平滑平面あるいは凹
凸表面の円筒状または板状無端ベルト形状であることが
でき、その厚さは所望どうりの電子写真用光受容部材を
形成し得るように適宜決定されるが、電子写真用光受容
部材として可とう性が要求される場合には、基体として
の機能が十分発揮できる範囲内で可能な限り薄くするこ
とができる。しかしながら、基体の製造上および取り扱
い上、機械的強度等の点から通常は10μm以上とされ
る。
The substrate 101 may be in the shape of a cylindrical or plate endless belt having a smooth flat surface or an uneven surface, and its thickness is appropriately selected so that a desired electrophotographic light-receiving member can be formed. Although it is determined, when flexibility is required for the electrophotographic light-receiving member, the thickness can be made as thin as possible within a range in which the function as the substrate can be sufficiently exerted. However, it is usually 10 μm or more from the viewpoint of mechanical strength and the like in manufacturing and handling the substrate.

【0065】以下、本発明の電子写真用光受容部材の形
成方法について詳細に説明する。
The method of forming the electrophotographic light-receiving member of the present invention will be described in detail below.

【0066】図2は、本発明を実施するための、マイク
ロ波プラズマCVD法による電子写真用光受容部材の形
成装置の一例の模式図である。また、図3は、反応容器
の横断面図、図4は反応容器の縦断面図である。
FIG. 2 is a schematic view of an example of an apparatus for forming a light receiving member for electrophotography by the microwave plasma CVD method for carrying out the present invention. 3 is a cross-sectional view of the reaction container, and FIG. 4 is a vertical cross-sectional view of the reaction container.

【0067】この装置は、大別すると、堆積装置200
0、原料ガスの供給装置2200、反応容器2111内
を減圧にするための排気装置(不図示)、マイクロ波を
発生するための電源(不図示)から構成されている。堆
積装置2000中の反応容器2111内には回転軸21
16、基体加熱用のヒーター2113が設置されてお
り、回転軸2116上に基体2112が固定される。回
転軸2116はギアを介してモーター2120と連結さ
れ、回転できるようになっている。また反応容器211
1内には原料ガス導入管兼バイアス電極2114が設置
され、バイアス電源(高周波増幅器)2121に接続さ
れる。また反応容器2111の上下にマイクロ波を導入
するための窓2122が設置され、導波管2115を介
してマイクロ波電源に接続されている。
This apparatus is roughly classified into a deposition apparatus 200.
0, a source gas supply device 2200, an exhaust device (not shown) for reducing the pressure in the reaction vessel 2111, and a power source (not shown) for generating microwaves. The rotary shaft 21 is provided in the reaction vessel 2111 in the deposition apparatus 2000.
16. A heater 2113 for heating the substrate is installed, and the substrate 2112 is fixed on the rotating shaft 2116. The rotating shaft 2116 is connected to the motor 2120 via a gear so that it can rotate. Also the reaction vessel 211
A source gas introduction tube / bias electrode 2114 is installed in the chamber 1, and is connected to a bias power source (high frequency amplifier) 2121. Further, windows 2122 for introducing microwaves are provided above and below the reaction vessel 2111 and are connected to a microwave power source through a waveguide 2115.

【0068】原料ガス供給装置2200は、SiH4
2 ,CH4 ,He,C22 ,SiF4 等の原料ガス
のボンベ2221〜2226とバルブ2231〜223
6、2241〜2246、2251〜2256、圧力調
整器2261〜2266、およびマスフローコントロー
ラー2211〜2216から構成され、各原料ガスのボ
ンベはバルブ2260を介して反応容器に接続される。
The source gas supply device 2200 is composed of SiH 4 ,
Cylinders 2221 to 2226 of raw material gases such as H 2 , CH 4 , He, C 2 H 2 , and SiF 4 and valves 2231 to 223
6, 2241 to 2246, 2251 to 2256, pressure regulators 2261 to 2266, and mass flow controllers 2211 to 2216, and each source gas cylinder is connected to a reaction container via a valve 2260.

【0069】上記のような装置を用いて、例えば図1に
示した層構成の電子写真用光受容部材を作製する場合
は、おおよそ以下のような手順による。
When an electrophotographic light-receiving member having the layer structure shown in FIG. 1 is produced using the above apparatus, the procedure is roughly as follows.

【0070】まず、あらかじめ脱脂洗浄した基体211
2を反応容器2111内の回転軸2116に設置し、不
図示の排気装置により反応容器2111内を排気する。
続いて基体加熱用のヒーター2113により基体211
2の温度を20℃〜500℃の所望の温度に制御する。
First, the base 211 that has been degreased and washed in advance
2 is installed on the rotary shaft 2116 in the reaction container 2111, and the inside of the reaction container 2111 is exhausted by an exhaust device (not shown).
Subsequently, the substrate 211 is heated by the heater 2113 for heating the substrate.
Control the temperature of 2 to the desired temperature between 20 ° C and 500 ° C.

【0071】堆積膜形成用の原料ガスを反応容器211
1に流入させるには、ガスボンベのバルブ2231〜2
236、反応容器のリークバルブ2117が閉じられて
いることを確認し、また、流入バルブ2241〜224
6、流出バルブ2251〜2256、補助バルブ226
0が開かれていることを確認して、まずメインバルブ2
118を開いて反応容器2111およびガス配管内22
16を排気する。
A raw material gas for forming a deposited film is supplied to the reaction vessel 211.
In order to make it flow into 1, the gas cylinder valves 2231-2
236, make sure that the leak valve 2117 of the reaction vessel is closed, and check the inflow valves 2241 to 224.
6, outflow valves 2251 to 2256, auxiliary valve 226
Make sure 0 is open, then first open main valve 2
118 is opened and the reaction vessel 2111 and the gas pipe 22 are opened.
Evacuate 16.

【0072】次に、真空計2119の読みが約5×10
-3Torrになった時点で補助バルブ2260、流出バ
ルブ2251〜2256を閉じる。
Next, the reading of the vacuum gauge 2119 is about 5 × 10.
When the pressure reaches -3 Torr, the auxiliary valve 2260 and the outflow valves 2251 to 2256 are closed.

【0073】その後、ガスボンベ2221〜2226よ
り各ガスをバルブ2231〜2236を開いて導入し、
圧力調整器2261〜2266により各ガス圧を2kg
/cm2 に調整する。次に、流入バルブ2241〜22
46を徐々に開けて、各ガスをマスフローコントローラ
ー2211〜2216内に導入する。
Thereafter, the gases are introduced from the gas cylinders 2221 to 2226 by opening the valves 2231 to 2236,
Each pressure of 2kg by pressure regulators 2261 to 2266
Adjust to / cm 2 . Next, inflow valves 2241-22
46 is gradually opened to introduce each gas into the mass flow controllers 2211 to 2216.

【0074】以上のようにして成膜の準備が完了した
後、基体2112上に光導電層および表面層の形成を行
う。
After the preparation for film formation is completed as described above, a photoconductive layer and a surface layer are formed on the substrate 2112.

【0075】基体2112が所定の温度になったところ
で流出バルブ2251〜2256のうちの必要なものお
よび補助バルブ2260を徐々に開き、ガスボンベ22
21〜2226から所定のガスを原料ガス導入管兼バイ
アス電極2114内に導入する。次に、マスフローコン
トローラー2211〜2216によって各原料ガスが所
定の流量になるように調整する。その際、反応容器21
11内の圧力が1Torr以下の所定の圧力になるよう
に真空計2119を見ながらメインバルブ2118の開
口を調整する。内圧が安定したところで、マイクロ波電
源(不図示)を所望の電力に設定して、導波管2115
を通じて反応容器2111内にマイクロ波を導入し、グ
ロー放電を生起させる。この時、同時並行的にバイアス
電源(高周波増幅器)2121を所望の電力に調整し原
料ガス導入管2114に外部電気バイアスを供給する。
When the base body 2112 has reached a predetermined temperature, the necessary ones of the outflow valves 2251 to 2256 and the auxiliary valve 2260 are gradually opened to open the gas cylinder 22.
A predetermined gas is introduced from 21 to 2226 into the source gas introduction pipe / bias electrode 2114. Next, the mass flow controllers 2211 to 2216 are adjusted so that each raw material gas has a predetermined flow rate. At that time, the reaction vessel 21
The opening of the main valve 2118 is adjusted while observing the vacuum gauge 2119 so that the pressure inside 11 becomes a predetermined pressure of 1 Torr or less. When the internal pressure is stable, the microwave power source (not shown) is set to a desired power, and the waveguide 2115
Microwaves are introduced into the reaction vessel 2111 through to generate a glow discharge. At this time, the bias power supply (high frequency amplifier) 2121 is simultaneously adjusted in parallel to a desired power to supply the source gas introduction pipe 2114 with an external electric bias.

【0076】こうして、グロー放電によって反応容器2
111内に導入された原料ガスが分解され、基体211
2上に所定の堆積膜が形成される。この際、基体211
2を回転軸にギアを介して接続されたモーター2120
で回転することで基体2112上にムラなく堆積膜を得
るところとなる。所望の膜厚の形成が行われた後、マイ
クロ波電力及びバイアス電力の供給を止め、流出バルブ
2251〜2256を閉じて反応容器2111へのガス
の流入を止め、堆積膜の形成を終える。
In this way, the reaction vessel 2 is activated by glow discharge.
The raw material gas introduced into 111 is decomposed, and the substrate 211
A predetermined deposited film is formed on the surface 2. At this time, the base 211
A motor 2120 in which 2 is connected to a rotating shaft via a gear
By rotating with, the deposited film is obtained on the base 2112 without unevenness. After the desired film thickness is formed, the supply of the microwave power and the bias power is stopped, the outflow valves 2251 to 2256 are closed to stop the gas from flowing into the reaction vessel 2111, and the formation of the deposited film is completed.

【0077】電子写真用光受容部材として多層構成を採
る場合には、上記の手順で所望の層を形成した後、再び
同じ手順を繰り返せば良いが、この時、層設計に併せて
ガス種や内圧、基体温度、マイクロ波及びバイアス電力
等を調整することは言うまでもない。
When a multi-layer structure is adopted as the electrophotographic light-receiving member, the desired layer may be formed by the above procedure and then the same procedure may be repeated again. It goes without saying that the internal pressure, substrate temperature, microwave, bias power, etc. are adjusted.

【0078】本発明において、各層の間に組成等を連続
的に変化させた中間領域を設ける場合、例えば光導電層
と表面層の間に中間領域を設ける場合には、上記の操作
により光導電層を形成した後、高周波電力の供給を止め
ずに、原料ガスの流量条件を光導電層形成時の条件か
ら、表面層形成時の条件に徐々に、かつ連続的に変化さ
せる等の方法をとることができる。このとき原料ガスの
流量を変化させると同時に、変化層形成時の所望の条件
が得られるように、マイクロ波電源(不図示)およびバ
イアス電源2121の出力及び、メインバルブ2118
等を必要に応じて調整する。また原料ガスの流量を変化
させるに際して、ガスの突出等による極端な圧力変化が
起きないように充分配慮することは言うまでもない。こ
の変化領域の厚さは前記のように、光導電層と表面層の
間に実質的に界面を形成する程度の厚さであれば良い。
In the present invention, when an intermediate region having a continuously changed composition or the like is provided between the layers, for example, when the intermediate region is provided between the photoconductive layer and the surface layer, the photoconductive layer is formed by the above operation. After forming the layer, there is a method of gradually and continuously changing the flow rate condition of the raw material gas from the condition at the time of forming the photoconductive layer to the condition at the time of forming the surface layer without stopping the supply of high frequency power. Can be taken. At this time, the outputs of the microwave power source (not shown) and the bias power source 2121 and the main valve 2118 are changed so that the desired conditions at the time of forming the changed layer are obtained while changing the flow rate of the source gas.
Etc. are adjusted as necessary. Needless to say, when the flow rate of the raw material gas is changed, sufficient consideration should be given so as not to cause an extreme pressure change due to gas protrusion or the like. As described above, the thickness of this change region may be such that it substantially forms an interface between the photoconductive layer and the surface layer.

【0079】それぞれの層を形成する際には必要なガス
以外の流出バルブはすべて閉じられていることは言うま
でもなく、また、それぞれのガスが反応容器2111
内、流出バルブ2251〜2256から反応容器211
1に至る配管内に残留することを避けるために、流出バ
ルブ2251〜2256を閉じ、補助バルブ2260を
開き、さらにメインバルブ2118を全開にして系内を
一旦高真空に排気する操作を必要に応じて行う。また上
述のガス種およびバルブ操作は各々の層の作成条件に従
って変更が加えられることは言うまでもない。
Needless to say, all the outflow valves other than the necessary gas are closed when forming each layer, and each gas is supplied to the reaction vessel 2111.
Inside, outflow valves 2251 to 2256 to reaction vessel 211
In order to avoid remaining in the pipe reaching 1, the outflow valves 2251 to 2256 are closed, the auxiliary valve 2260 is opened, and the main valve 2118 is fully opened to temporarily exhaust the system to a high vacuum. Do it. Needless to say, the above-mentioned gas species and valve operation may be changed according to the preparation conditions of each layer.

【0080】[0080]

【実施例】以下に本発明の効果を実証するための具体例
を説明するが、本発明はこれらによって何ら限定される
ものではない。
EXAMPLES Specific examples for demonstrating the effects of the present invention will be described below, but the present invention is not limited thereto.

【0081】<実施例1>図2に示した堆積膜形成装置
を実験用に改造した装置を用いて、上記の手順にしたが
って、直径108mmのアルミニウムシリンダーを基体
として使用し、表1の作成条件で電子写真用光受容部材
を作製した。本実施例では、交流電界を固定し、パルス
波の周波数を50Hz〜10MHzの範囲で変化させ
た。またパルス波のデューティ比は0.1とした。本実
施例では光導電層と表面層の間に中間領域を設けず、交
流電界および、パルス波の周波数は光導電層と表面層で
一定とした。また、本発明ではパルス状の交流電界(ま
たは交流電界に直流電界を重畳したもの)の電力とし
て、CWの時に得られる電力にデューティ比をかけたも
のを指すものとする。
<Example 1> Using the apparatus for experimentally modifying the deposited film forming apparatus shown in FIG. 2 and following the procedure described above, an aluminum cylinder having a diameter of 108 mm was used as a substrate, and the preparation conditions shown in Table 1 were used. Then, a light-receiving member for electrophotography was produced. In this example, the AC electric field was fixed and the frequency of the pulse wave was changed in the range of 50 Hz to 10 MHz. The duty ratio of the pulse wave was 0.1. In this example, no intermediate region was provided between the photoconductive layer and the surface layer, and the AC electric field and the frequency of the pulse wave were constant between the photoconductive layer and the surface layer. Further, in the present invention, the electric power of the pulsed AC electric field (or the AC electric field superposed with the DC electric field) refers to the electric power obtained at the time of CW multiplied by the duty ratio.

【0082】こうして作製した電子写真用光受容部材を
電子写真装置(キヤノン社製NP6060をローラー帯
電方式とし、本テスト用に改造したもの)にセットし
て、通常の電子写真プロセスにより画像を形成し、「白
ポチ」、「キズ」、「白抜け」、ゴースト、光感光の各
項目についての初期画像評価と、500万枚の連続通紙
耐久試験(以下耐久試験と記す)を行った後の画像評価
をおこなった。またこれとは別に電子写真用光受容部材
単体に於いて引っかき強度試験を行い、光導電層と表面
層の密着性の評価を行った。
The electrophotographic light-receiving member thus produced was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc. was used as a roller charging type and modified for this test), and an image was formed by an ordinary electrophotographic process. , "White spots", "scratches", "white spots", ghosts, and photosensitivity, after initial image evaluation and 5 million continuous paper feed durability tests (hereinafter referred to as durability tests) Image evaluation was performed. Separately from this, a scratch strength test was conducted on a single electrophotographic light-receiving member to evaluate the adhesion between the photoconductive layer and the surface layer.

【0083】それぞれの項目について評価は以下の基準
を用いた。 「白ポチ」…像露光のハロゲンランプを切り、全面黒色
画像(ベタ黒画像)をとり、画像上の「白ポチ」を観察
し、評価する。
The following criteria were used for evaluation of each item. "White spot": The halogen lamp for image exposure is turned off, a black image on the entire surface (solid black image) is taken, and "white spot" on the image is observed and evaluated.

【0084】「白ポチ」の評価に於いて ◎ 「白ポチ」は認められない ○ 「白ポチ」はあるが判別が難しい △ 明かな「白ポチ」はあるが、実用上問題なし × 実用できない を示している。 「白抜け」…「白ポチ」と同様にベタ黒画像をとり、画
像上の「白抜け」の状態を観察し評価した。 「白抜け」の評価に於いて ◎ 「白抜け」は全く認められない △ 「白ポチ」が大きくなる程度で実用上は問題ない × 実用できない を示している。 「キズ」…「白ポチ」と同様にベタ黒画像をとり、画像
上の「キズ」の状態を観察し評価した。 「キズ」の評価に於いて ◎ 「キズ」は認められない ○ 「キズ」はあるが判別が難しい △ 明かな「キズ」はあるが、実用上問題なし × 実用できない を示している。
In the evaluation of "white spots" ◎ "white spots" are not recognized. ○ "white spots" are difficult to distinguish. △ There are clear "white spots", but there is no practical problem. Is shown. "White spots" ... A solid black image was taken in the same manner as "white spots", and the state of "white spots" on the image was observed and evaluated. In the evaluation of "white spots" ◎ "White spots" are not observed at all. △ "White spots" are large, and there is no problem in practical use. “Scratch” ... A solid black image was taken in the same manner as “white spot”, and the state of “scratch” on the image was observed and evaluated. In the evaluation of "scratches" ◎ "Scratches" are not recognized. ○ There are "scratches" but it is difficult to distinguish. △ There are obvious "scratches", but there is no problem in practical use.

【0085】ゴースト…キヤノン製ゴーストテストチャ
ート(部品番号:FY9−9040)に反射濃度1.
1、直径5mmの黒丸を貼り付けたものを原稿台に起
き、そのうえにキヤノン製中間調チャートを重ねておい
た際のコピー画像において、中間調コピー上に認められ
るゴーストチャートの直径5mmの黒丸の反射濃度と中
間調部分の反射濃度との差を測定、評価した。
Ghost ... A Canon Ghost Test Chart (Part No. FY9-9040) has a reflection density of 1.
1. When a black circle with a diameter of 5 mm is pasted on the platen, and a Canon halftone chart is overlaid on it, the reflection of the black circle with a diameter of 5 mm of the ghost chart that is recognized on the halftone copy in the copy image. The difference between the density and the reflection density of the halftone portion was measured and evaluated.

【0086】ゴーストについて ◎は「特に良好」 ○は「良好」 △は「実用上問題なし」 ×は「実用上問題有り」 を表している。Regarding Ghosts ⊚ indicates “especially good” ○ indicates “good” Δ indicates “no problem in practical use” x indicates “problem in practical use”

【0087】光感度…電子写真用光受容部材を一定の暗
部表面電位に帯電させる。そして直ちに光像を照射す
る。光像はキセノンランプ光源を用い、フィルターを用
いて550nm以下の波長域の光を除いた光を照射し
た。この時表面電位計により電子写真用光受容部材の明
部表面電位を測定する。明部表面電位が所定の電位にな
るよう露光量を調整し、この時の露光量をもって感度と
する。
Photosensitivity: The photoreceptive member for electrophotography is charged to a constant dark surface potential. Then, the light image is immediately irradiated. The light image was emitted by using a xenon lamp light source and excluding light in a wavelength range of 550 nm or less using a filter. At this time, the surface potential of the light portion of the electrophotographic light-receiving member is measured with a surface potential meter. The exposure amount is adjusted so that the light portion surface potential becomes a predetermined potential, and the exposure amount at this time is taken as the sensitivity.

【0088】光感度について ◎は「特に良好」 ○は「良好」 △は「実用上問題なし」 ×は「実用上問題有り」 を表している。Regarding the photosensitivity, ⊚ means “particularly good”, ○ means “good”, Δ means “no problem in practical use”, and “means problem in practical use”.

【0089】引っかき強度試験…電子写真用光受容部材
表面上に直径0.1mmのダイヤモンド針をのせて荷重
をかけ、毎分100mmのスピードで針を電子写真用光
受容部材の軸方向に移動させる。この際電子写真用光受
容部材表面を観察し、表面層の剥離が始まるときの荷重
の大小をもって光導電層と表面層の膜の密着性を評価す
る。
Scratch strength test: A diamond needle having a diameter of 0.1 mm is placed on the surface of the electrophotographic light-receiving member, and a load is applied, and the needle is moved in the axial direction of the electrophotographic light-receiving member at a speed of 100 mm / min. . At this time, the surface of the electrophotographic light-receiving member is observed, and the adhesion between the photoconductive layer and the film of the surface layer is evaluated based on the magnitude of the load when the surface layer starts to peel.

【0090】引っかき強度試験に於いて ◎は「特に良好」 ○は「良好」 △は「実用上問題なし」 ×は「実用上問題有り」 を表している。In the scratch strength test, ⊚ represents “especially good”, ◯ represents “good”, Δ represents “no problem in practical use”, and x represents “problem in practical use”.

【0091】<比較例1>バイアスを周波数105MH
zの連続波(CW)とする以外は、実施例1と全く同様
にして、電子写真用光受容部材を作製した。こうして作
製した電子写真用光受容部材について実施例1と同様に
評価した。
<Comparative Example 1> The bias frequency is 105 MHz.
An electrophotographic light-receiving member was produced in exactly the same manner as in Example 1 except that the continuous wave (CW) of z was used. The electrophotographic light-receiving member thus produced was evaluated in the same manner as in Example 1.

【0092】以上実施例1および比較例1の結果を表2
に示す。表2に示したように本発明の電子写真用光受容
部材形成方法に於いては、従来のCWのバイアスに比較
して、画像特性および光導電層と表面層の密着性が向上
していることがわかる。また、パルス波の周波数を10
0Hz〜1MHzとすることで、本発明の効果がより向
上していることがわかる。
The results of Example 1 and Comparative Example 1 are shown in Table 2 above.
Shown in As shown in Table 2, in the method for forming a light receiving member for electrophotography of the present invention, the image characteristics and the adhesion between the photoconductive layer and the surface layer are improved as compared with the bias of the conventional CW. I understand. In addition, the frequency of the pulse wave is 10
It can be seen that the effect of the present invention is further improved by setting it to 0 Hz to 1 MHz.

【0093】<実施例2>図2に示した堆積膜形成装置
を実験用に改造した装置を用いて、上記の手順にしたが
って、直径108mmのアルミニウムシリンダーを基体
として使用し、表3の作成条件で電子写真用光受容部材
を作製した。本実施例では、光導電層と表面層の間に組
成を連続的に変化させた中間領域を設ける以外は、実施
例1と全く同様の条件で行った。
Example 2 Using the apparatus for experimentally modifying the deposited film forming apparatus shown in FIG. 2 and following the procedure described above, an aluminum cylinder having a diameter of 108 mm was used as a substrate, and the preparation conditions shown in Table 3 were used. Then, a light-receiving member for electrophotography was produced. In this example, the same conditions as in Example 1 were used except that an intermediate region having a continuously changed composition was provided between the photoconductive layer and the surface layer.

【0094】こうして作製した電子写真用光受容部材を
電子写真装置(キヤノン社製NP6060をローラー帯
電方式とし、本テスト用に改造したもの)にセットし
て、実施例1と同様に初期の特性と、耐久試験後の特
性、および引っかき強度試験について評価を行った。
The electrophotographic light-receiving member thus produced was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc. was used as a roller charging type and modified for this test), and the initial characteristics were obtained in the same manner as in Example 1. The characteristics after the durability test and the scratch strength test were evaluated.

【0095】<比較例2>バイアスを周波数105MH
zの連続波(CW)とする以外は、実施例2と全く同様
にして、電子写真用光受容部材を作製した。こうして作
製した電子写真用光受容部材について実施例2と同様に
評価した。
<Comparative Example 2> The bias frequency is 105 MHz.
An electrophotographic light-receiving member was produced in exactly the same manner as in Example 2 except that the continuous wave of z (CW) was used. The electrophotographic light-receiving member thus produced was evaluated in the same manner as in Example 2.

【0096】以上実施例2および比較例2の結果を表4
に示す。表4から明らかなように、本発明の電子写真用
光受容部材形成方法では、従来のCWのバイアスに比較
して画像特性および光導電層と表面層の、密着性が向上
していることが確認された。また表2と比較することで
中間領域を設けることにより、従来のような光感度の劣
化がないままに、光導電層と表面層の密着性がさらに向
上していることがわかる。
The results of Example 2 and Comparative Example 2 are shown in Table 4 above.
Shown in As is apparent from Table 4, in the electrophotographic light-receiving member forming method of the present invention, the image characteristics and the adhesion between the photoconductive layer and the surface layer are improved as compared with the conventional CW bias. confirmed. Further, by comparing with Table 2, it can be seen that by providing the intermediate region, the adhesion between the photoconductive layer and the surface layer is further improved without deterioration of photosensitivity as in the conventional case.

【0097】<実施例3>図2に示した堆積膜形成装置
を実験用に改造した装置を用いて、上記の手順にしたが
って、直径108mmのアルミニウムシリンダーを基体
として使用し、表5の作成条件で電子写真用光受容部材
を作製した。本実施例では、400Hz、デューティ比
0.2のパルス波を固定して、交流電界の周波数を5M
Hz〜700MHzの範囲で変化させた。また本実施例
では光導電層と表面層の間に中間領域を設けず、交流電
界および、パルス波の周波数は光導電層と表面層で一定
とした。
Example 3 Using the apparatus for experimentally modifying the deposited film forming apparatus shown in FIG. 2 and following the procedure described above, an aluminum cylinder having a diameter of 108 mm was used as a substrate, and the preparation conditions shown in Table 5 were used. Then, a light-receiving member for electrophotography was produced. In this embodiment, a pulse wave having a frequency of 400 Hz and a duty ratio of 0.2 is fixed, and the frequency of the alternating electric field is 5M.
It was changed in the range of Hz to 700 MHz. Further, in this example, no intermediate region was provided between the photoconductive layer and the surface layer, and the frequency of the alternating electric field and the pulse wave was constant between the photoconductive layer and the surface layer.

【0098】こうして作製した電子写真用光受容部材を
電子写真装置(キヤノン社製NP6060をローラー帯
電方式とし、本テスト用に改造したもの)にセットし
て、実施例1と同様に初期の特性と、耐久試験後の特
性、および引っかき強度試験について評価を行った。
The electrophotographic light-receiving member thus prepared was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc. was used as a roller charging type and modified for this test), and the same initial characteristics as those of Example 1 were obtained. The characteristics after the durability test and the scratch strength test were evaluated.

【0099】<比較例3>バイアスを連続波(CW)と
する以外は、実施例3と全く同様にして、電子写真用光
受容部材を作製した。こうして作製した電子写真用光受
容部材について実施例3と同様に評価した。
Comparative Example 3 An electrophotographic light-receiving member was produced in exactly the same manner as in Example 3 except that the bias was continuous wave (CW). The electrophotographic light-receiving member thus produced was evaluated in the same manner as in Example 3.

【0100】以上実施例3を表6に、また比較例3の結
果を表7に示す。表6および表7の結果から、本発明の
電子写真用光受容部材形成方法では画像特性が向上して
いることがわかる。特に交流電界の周波数を10MHz
〜550MHzとする事で、本発明の効果がより向上し
ていることがわかる。
The above Example 3 is shown in Table 6 and the result of Comparative Example 3 is shown in Table 7. From the results shown in Tables 6 and 7, it can be seen that the image characteristics are improved by the method for forming a light receiving member for electrophotography of the present invention. Especially, the frequency of AC electric field is 10MHz
It can be seen that the effect of the present invention is further improved by setting the frequency to 550 MHz.

【0101】<実施例4>図2に示した堆積膜形成装置
を実験用に改造した装置を用いて、上記の手順にしたが
って、直径108mmのアルミニウムシリンダーを基体
として使用し、表8の作成条件で電子写真用光受容部材
を作製した。本実施例では、マイクロ波の電力を、堆積
膜の形成速度が飽和する時の電力(飽和電力)を1とし
て、0.05〜1.5まで変化させた。なお表8の条件
では、マイクロ波電力1200Wで堆積膜の形成速度が
飽和した。また本実施例では、光導電層と表面層の間に
組成を連続的に変化させた中間領域を設けなかった。
Example 4 Using the apparatus for experimentally modifying the deposited film forming apparatus shown in FIG. 2 and following the procedure described above, an aluminum cylinder having a diameter of 108 mm was used as a substrate, and the preparation conditions shown in Table 8 were used. Then, a light-receiving member for electrophotography was produced. In this example, the microwave power was varied from 0.05 to 1.5 with the power (saturation power) at which the formation rate of the deposited film saturates as 1. Under the conditions shown in Table 8, the formation rate of the deposited film was saturated at a microwave power of 1200 W. Further, in this example, no intermediate region having a continuously changed composition was provided between the photoconductive layer and the surface layer.

【0102】こうして作製した電子写真用光受容部材を
電子写真装置(キヤノン社製NP6060をローラー帯
電方式とし、本テスト用に改造したもの)にセットし
て、実施例1と同様に初期の特性と、耐久試験後の特
性、および引っかき強度試験について評価を行った。
The electrophotographic light-receiving member thus produced was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc. was used as a roller charging type and modified for this test), and the same initial characteristics as those of Example 1 were obtained. The characteristics after the durability test and the scratch strength test were evaluated.

【0103】また本実施例に於いては、堆積膜形成速度
を飽和電力のときの堆積膜形成速度との相対比較を堆積
膜生成速度比として評価した。
Further, in this example, a relative comparison between the deposition film formation rate and the deposition film formation rate at the saturation power was evaluated as the deposition film formation rate ratio.

【0104】<比較例4>バイアスを連続波(CW)と
する以外は、実施例2と全く同様にして、電子写真用光
受容部材を作製した。こうして作製した電子写真用光受
容部材について実施例4と同様に評価した。
Comparative Example 4 An electrophotographic light-receiving member was produced in exactly the same manner as in Example 2 except that the bias was continuous wave (CW). The electrophotographic light-receiving member thus produced was evaluated in the same manner as in Example 4.

【0105】以上実施例4の結果を表9に、比較例4の
結果を表10に示す。表9の結果より本発明の電子写真
用光受容部材形成方法では、画像特性の向上が得られ
た。また、マイクロ波の電力を堆積膜に形成速度が飽和
するときの電力に対して0.05〜0.9の範囲とする
事で画像特性が特に向上することがわかった。
The results of Example 4 are shown in Table 9 and the results of Comparative Example 4 are shown in Table 10. From the results shown in Table 9, the method for forming a light-receiving member for electrophotography of the present invention improved image characteristics. Further, it has been found that the image characteristics are particularly improved by setting the microwave power in the range of 0.05 to 0.9 with respect to the power when the formation rate of the deposited film is saturated.

【0106】一方、表10の従来の電子写真用光受容部
材形成方法では、マイクロ波電力を減ずるに従い、堆積
膜形成速度が次第に減少する傾向がみられた。それにと
もなって、「白ポチ」、「白抜け」、「キズ」は良化す
る傾向が見られるが、逆にゴースト、光感度は悪化し、
堆積膜形成速度も含めて全てを満足するものは得られな
かった。
On the other hand, in the conventional method for forming a photoreceptive member for electrophotography shown in Table 10, there was a tendency that the deposition film formation rate gradually decreased as the microwave power was reduced. Along with that, "white spots", "white spots", and "scratches" tend to improve, but on the contrary, ghosts and light sensitivity deteriorate,
It was not possible to obtain the one that satisfied all the conditions including the deposition film formation rate.

【0107】<実施例5>図2に示した堆積膜形成装置
を実験用に改造した装置を用いて、上記の手順にしたが
って、直径108mmのアルミニウムシリンダーを基体
として使用し、表11の作成条件で電子写真用光受容部
材を作製した。本実施例では、マイクロ波の電力を、堆
積膜の形成速度が飽和する時の電力(飽和電力)を1と
して、0.05〜1.5まで変化させた。なお表11の
条件では、マイクロ波電力1100Wで堆積膜の形成速
度が飽和した。また本実施例では、光導電層と表面層の
間に組成を連続的に変化させた中間領域を設けた。
Example 5 Using the apparatus modified from the deposited film forming apparatus shown in FIG. 2 for an experiment and using the aluminum cylinder having a diameter of 108 mm as a substrate according to the above procedure, the preparation conditions shown in Table 11 were used. Then, a light-receiving member for electrophotography was produced. In this example, the microwave power was varied from 0.05 to 1.5 with the power (saturation power) at which the formation rate of the deposited film saturates as 1. Under the conditions shown in Table 11, the formation rate of the deposited film was saturated with microwave power of 1100W. Further, in this example, an intermediate region whose composition was continuously changed was provided between the photoconductive layer and the surface layer.

【0108】こうして作製した電子写真用光受容部材を
電子写真装置(キヤノン社製NP6060をローラー帯
電方式とし、本テスト用に改造したもの)にセットし
て、実施例1と同様に初期の特性と、耐久試験後の特
性、および引っかき強度試験について評価を行った。
The electrophotographic light-receiving member thus prepared was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc. was used as a roller charging type and modified for this test), and the same initial characteristics as those of Example 1 were obtained. The characteristics after the durability test and the scratch strength test were evaluated.

【0109】また本実施例に於いては、堆積膜形成速度
を飽和電力のときの堆積膜形成速度との相対比較を堆積
膜生成速度比として評価した。
Further, in the present embodiment, the relative comparison between the deposition film formation rate and the deposition film formation rate at the saturation power was evaluated as the deposition film formation rate ratio.

【0110】以上実施例5の結果を表12に示す。表1
2の結果より本発明の電子写真用光受容部材形成方法で
は、画像特性の向上が得られた。また、マイクロ波の電
力を堆積膜に形成速度が飽和するときの電力に対して
0.05〜0.9の範囲とする事で画像特性が特に向上
することがわかった。
The results of Example 5 are shown in Table 12. Table 1
From the results of No. 2, improvement in image characteristics was obtained by the method for forming a light receiving member for electrophotography of the present invention. Further, it has been found that the image characteristics are particularly improved by setting the microwave power in the range of 0.05 to 0.9 with respect to the power when the formation rate of the deposited film is saturated.

【0111】<実施例6>図2に示した堆積膜形成装置
を実験用に改造した装置を用いて、上記の手順にしたが
って、直径108mmのアルミニウムシリンダーを基体
として使用し、表13の作成条件で電子写真用光受容部
材を作製した。本実施例では、外部電気バイアスとし
て、周波数13.56MHzのRF帯域に直流電界を重
畳したものを用いた。また本実施例では、光導電層と表
面層の間に組成を連続的に変化させた中間領域を設け
た。
Example 6 Using the apparatus for experimentally modifying the deposited film forming apparatus shown in FIG. 2 and following the procedure described above, an aluminum cylinder having a diameter of 108 mm was used as a substrate, and the preparation conditions shown in Table 13 were used. Then, a light-receiving member for electrophotography was produced. In this embodiment, as the external electric bias, a DC electric field is superimposed on the RF band having a frequency of 13.56 MHz. Further, in this example, an intermediate region whose composition was continuously changed was provided between the photoconductive layer and the surface layer.

【0112】こうして作製した電子写真用光受容部材を
電子写真装置(キヤノン社製NP6060をローラー帯
電方式とし、本テスト用に改造したもの)にセットし
て、実施例1と同様に初期の特性と、耐久試験後の特
性、および引っかき強度試験について評価を行った。
The electrophotographic light-receiving member thus produced was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc. was used as a roller charging type and modified for this test), and the same initial characteristics as those of Example 1 were obtained. The characteristics after the durability test and the scratch strength test were evaluated.

【0113】<実施例7>図2に示した堆積膜形成装置
を実験用に改造した装置を用いて、上記の手順にしたが
って、直径108mmのアルミニウムシリンダーを基体
として使用し、表14の作成条件で電子写真用光受容部
材を作製した。また本実施例では、光導電層と表面層の
間に組成を連続的に変化させた中間領域を設けた。
Example 7 Using the apparatus for experimentally modifying the deposited film forming apparatus shown in FIG. 2, following the procedure described above, an aluminum cylinder having a diameter of 108 mm was used as a substrate, and the preparation conditions shown in Table 14 were used. Then, a light-receiving member for electrophotography was produced. Further, in this example, an intermediate region whose composition was continuously changed was provided between the photoconductive layer and the surface layer.

【0114】こうして作製した電子写真用光受容部材を
電子写真装置(キヤノン社製NP6060をローラー帯
電方式とし、本テスト用に改造したもの)にセットし
て、実施例1と同様に初期の特性と、耐久試験後の特
性、および引っかき強度試験について評価を行った。
The electrophotographic light-receiving member thus produced was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc. was used as a roller charging type and modified for this test), and the same initial characteristics as those of Example 1 were obtained. The characteristics after the durability test and the scratch strength test were evaluated.

【0115】<実施例8>図2に示した堆積膜形成装置
を実験用に改造した装置を用いて、上記の手順にしたが
って、直径108mmのアルミニウムシリンダーを基体
として使用し、表15の作成条件で電子写真用光受容部
材を作製した。また本実施例では、光導電層と表面層の
間に組成を連続的に変化させた中間領域を設けた。
<Embodiment 8> Using the apparatus modified from the deposited film forming apparatus shown in FIG. 2 for an experiment, the aluminum cylinder having a diameter of 108 mm was used as a substrate according to the above procedure, and the preparation conditions shown in Table 15 were used. Then, a light-receiving member for electrophotography was produced. Further, in this example, an intermediate region whose composition was continuously changed was provided between the photoconductive layer and the surface layer.

【0116】こうして作製した電子写真用光受容部材を
電子写真装置(キヤノン社製NP6060をローラー帯
電方式とし、本テスト用に改造したもの)にセットし
て、実施例1と同様に初期の特性と、耐久試験後の特
性、および引っかき強度試験について評価を行った。
The electrophotographic light-receiving member thus produced was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc. was used as a roller charging type and modified for this test), and the same initial characteristics as those of Example 1 were obtained. The characteristics after the durability test and the scratch strength test were evaluated.

【0117】以上実施例6〜実施例8の結果について表
16に示す。表16から明らかなようにいずれも良好な
結果が得られた。
The results of Examples 6 to 8 are shown in Table 16. As is clear from Table 16, good results were obtained in all cases.

【0118】[0118]

【表1】 [Table 1]

【0119】[0119]

【表2】 [Table 2]

【0120】[0120]

【表3】 [Table 3]

【0121】[0121]

【表4】 [Table 4]

【0122】[0122]

【表5】 [Table 5]

【0123】[0123]

【表6】 [Table 6]

【0124】[0124]

【表7】 [Table 7]

【0125】[0125]

【表8】 [Table 8]

【0126】[0126]

【表9】 [Table 9]

【0127】[0127]

【表10】 [Table 10]

【0128】[0128]

【表11】 [Table 11]

【0129】[0129]

【表12】 [Table 12]

【0130】[0130]

【表13】 [Table 13]

【0131】[0131]

【表14】 [Table 14]

【0132】[0132]

【表15】 [Table 15]

【0133】[0133]

【表16】 [Table 16]

【0134】[0134]

【発明の効果】以上説明したように、本発明は、プラズ
マCVD法による電子写真用光受容部材形成時に於け
る、外部電気バイアスをパルス状に印加することによ
り、画像特性と耐久性能に優れた電子写真用光受容部材
を得ることが可能となる。
As described above, the present invention has excellent image characteristics and durability by applying an external electric bias in a pulse form when the electrophotographic light-receiving member is formed by the plasma CVD method. It is possible to obtain a light receiving member for electrophotography.

【0135】即ち、本発明によれば、球状突起の発生を
抑制し、耐久性に優れ、電位特性、画像特性に優れた電
子写真用光受容部材を、安価に安定して供給することが
可能となる。
That is, according to the present invention, it is possible to stably and inexpensively supply an electrophotographic light-receiving member that suppresses the generation of spherical projections, has excellent durability, and has excellent potential characteristics and image characteristics. Becomes

【0136】また、「白抜け」を防止しオゾンレスの接
触帯電方式に適応性の良い、オフィス環境に配慮した電
子写真用光受容部材の形成方法を提供することができ
る。
Further, it is possible to provide a method for forming a light-receiving member for electrophotography, which is suitable for an ozone-less contact charging system and which prevents "white spots" and which is friendly to the office environment.

【0137】また、ゴースト等の光メモリーを本質的に
低減し、光感度に優れた電子写真用光受容部材の形成方
法を提供することができる。
Further, it is possible to provide a method for forming a photoreceptive member for electrophotography, which is capable of essentially reducing optical memory such as ghost and has excellent photosensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によって形成された電子写真用光受容部
材の層構成の1例を示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of a light-receiving member for electrophotography formed by the present invention.

【図2】本発明の電子写真用光受容部材の形成方法を実
施するための堆積膜形成装置の一例の模式図であり、反
応容器縦断面および、堆積膜形成装置の全体構成図であ
る。
FIG. 2 is a schematic view of an example of a deposited film forming apparatus for carrying out the method for forming a light receiving member for electrophotography of the present invention, and is a longitudinal sectional view of a reaction vessel and an overall configuration diagram of the deposited film forming apparatus.

【図3】図2の反応容器の横断面である。FIG. 3 is a cross section of the reaction vessel of FIG.

【図4】図2の反応容器の縦断面である。FIG. 4 is a vertical cross section of the reaction vessel of FIG.

【符号の説明】[Explanation of symbols]

100 電子写真用光受容部材 101 基体 102 光導電層 103 表面層 2000 堆積装置 2111 反応容器 2112 基体 2113 基体加熱用ヒーター 2114 原料ガス導入管兼バイアス電極 2116 回転軸 2117 リークバルブ 2118 メインバルブ 2119 真空計 2120 モーター 2121 バイアス電源(高周波増幅器) 2122 窓 2123 マッチングボックス 2124 信号発生器 2200 ガス供給装置 2211〜2216 マスフローコントローラー 2221〜2226 ボンベ 2231〜2236 バルブ 2241〜2246 バルブ 2251〜2256 バルブ 2260 バルブ 100 Electrophotographic Photoreceptive Member 101 Substrate 102 Photoconductive Layer 103 Surface Layer 2000 Deposition Device 2111 Reaction Vessel 2112 Substrate 2113 Substrate Heating Heater 2114 Raw Material Gas Introducing Tube / Bias Electrode 2116 Rotating Shaft 2117 Leak Valve 2118 Main Valve 2119 Vacuum Gauge 2120 Motor 2121 Bias power supply (high frequency amplifier) 2122 Window 2123 Matching box 2124 Signal generator 2200 Gas supply device 2211 to 2216 Mass flow controller 2221 to 2226 Cylinder 2231 to 2236 Valve 2241 to 2246 Valve 2251 to 2256 Valve 2260 Valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性を有する基体上に、少なくとも非
単結晶材料より構成される光導電層と表面層を有する電
子写真用光受容部材の形成方法において、 マイクロ波プラズマCVD法を用い、マイクロ波エネル
ギーによるグロー放電により原料ガスを分解すると同時
に、前記基体と電極との間に交流電界をパルス状に印加
して、該基体上に堆積膜を形成することを特徴とする電
子写真用光受容部材の形成方法。
1. A method of forming a photoreceptive member for electrophotography, comprising a photoconductive layer composed of at least a non-single crystal material and a surface layer on a conductive substrate, wherein a microwave plasma CVD method is used, A photo-receptor for electrophotography, characterized in that a raw material gas is decomposed by glow discharge by wave energy and, at the same time, an alternating electric field is applied in a pulse shape between the substrate and an electrode to form a deposited film on the substrate. Method of forming member.
【請求項2】 前記交流電界の周波数を、10MHz〜
550MHzとすることを特徴とする請求項1に記載の
電子写真用光受容部材の形成方法。
2. The frequency of the alternating electric field is from 10 MHz to
The method for forming a photoreceptive member for electrophotography according to claim 1, wherein the method is 550 MHz.
【請求項3】 前記交流電界を、周波数100Hz〜1
MHzのパルス波により変調したことを特徴とする請求
項1又は2に記載の電子写真用光受容部材の形成方法。
3. The AC electric field has a frequency of 100 Hz to 1
3. The method for forming a light receiving member for electrophotography according to claim 1, wherein the light receiving member for electrophotography is modulated by a pulse wave of MHz.
【請求項4】 前記光導電層と表面層との間に、堆積膜
の組成比を連続的に変化させた中間領域を設けることを
特徴とする請求項1〜3のいずれか1項に記載の電子写
真用光受容部材の形成方法。
4. The intermediate region in which the composition ratio of the deposited film is continuously changed is provided between the photoconductive layer and the surface layer. A method for forming a light-receiving member for electrophotography.
【請求項5】 前記マイクロ波の電力を、交流電界を印
加しない条件で導電性を有する基体上に形成される堆積
膜の形成速度が飽和するときの電力を1としたときの、
0.05〜0.9の範囲とすることを特徴とする請求項
1〜4のいずれか1項に記載の電子写真用光受容部材の
形成方法。
5. When the power of the microwave is set to 1 when the formation speed of a deposited film formed on a conductive substrate is saturated under the condition that an AC electric field is not applied,
The method for forming a photoreceptive member for electrophotography according to claim 1, wherein the range is from 0.05 to 0.9.
JP10246295A 1995-04-26 1995-04-26 Formation of electrophotographic photoreceptive member Pending JPH08297374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10246295A JPH08297374A (en) 1995-04-26 1995-04-26 Formation of electrophotographic photoreceptive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10246295A JPH08297374A (en) 1995-04-26 1995-04-26 Formation of electrophotographic photoreceptive member

Publications (1)

Publication Number Publication Date
JPH08297374A true JPH08297374A (en) 1996-11-12

Family

ID=14328133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10246295A Pending JPH08297374A (en) 1995-04-26 1995-04-26 Formation of electrophotographic photoreceptive member

Country Status (1)

Country Link
JP (1) JPH08297374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041472A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041472A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP4534898B2 (en) * 2005-08-05 2010-09-01 パナソニック株式会社 Method for producing electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JP3155413B2 (en) Light receiving member forming method, light receiving member and deposited film forming apparatus by the method
EP0785475B1 (en) Light receiving member having a surface protective layer with a specific outermost surface and process for the production thereof
JP2962851B2 (en) Light receiving member
JP3122281B2 (en) Method of forming light receiving member for electrophotography
JP3229002B2 (en) Light receiving member for electrophotography
JPH08297374A (en) Formation of electrophotographic photoreceptive member
JP3289011B2 (en) Cleaning method for deposited film forming apparatus
JP2786756B2 (en) Manufacturing method of electrophotographic photoreceptor
JP3459700B2 (en) Light receiving member and method of manufacturing light receiving member
US5242775A (en) Photosensitive device and manufacturing method for the same
JPH05134439A (en) Method for formation of light receiving member by microwave plasma cvd method
JP2902509B2 (en) Method of forming light receiving member for electrophotography
JP3154259B2 (en) Light receiving member
JPH09244284A (en) Production of photoreceptive member
JP2895286B2 (en) Method of forming light receiving member for electrophotography
JP3076404B2 (en) Electrophotographic apparatus using amorphous silicon photoreceptor
JP3323681B2 (en) Manufacturing method of electrophotographic photoreceptor
JP3076406B2 (en) Electrophotographic apparatus using amorphous silicon photoreceptor
JP4143491B2 (en) Method for producing electrophotographic photosensitive member
JP3076403B2 (en) Electrophotographic apparatus using amorphous silicon photoreceptor
JP2786757B2 (en) Manufacturing method of electrophotographic photoreceptor
JP2960609B2 (en) Light receiving member
JPH0815883A (en) Forming method of electrophotographic light-receiving member
JPH08211641A (en) Forming method of amorphous silicon photosensitive body
JPH05119501A (en) Formation of photoreceptive member