JPH08297195A - Radioactivity reducing method for nuclear power plant - Google Patents

Radioactivity reducing method for nuclear power plant

Info

Publication number
JPH08297195A
JPH08297195A JP7101882A JP10188295A JPH08297195A JP H08297195 A JPH08297195 A JP H08297195A JP 7101882 A JP7101882 A JP 7101882A JP 10188295 A JP10188295 A JP 10188295A JP H08297195 A JPH08297195 A JP H08297195A
Authority
JP
Japan
Prior art keywords
nuclear power
power plant
injected
radioactivity
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7101882A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Takamori
良幸 高森
Noriyuki Onaka
紀之 大中
卓也 ▲高▼橋
Takuya Takahashi
Hiroshi Yamauchi
博史 山内
Kazuhiko Akamine
和彦 赤嶺
Koichi Yamane
康一 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7101882A priority Critical patent/JPH08297195A/en
Publication of JPH08297195A publication Critical patent/JPH08297195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE: To suppress the corrosion of the constituting members of a nuclear power plant and reduce radioactivity without being adversely affected by zinc 65 by injecting Zm having bivalent cations in the reactor cooling water, adjusting the pH value of the cooling water to a specific value, and injecting hydrogen into the reactor cooling water. CONSTITUTION: The pH of the cooling water is made alkaline when Zn is injected into the cooling water, then Zn is easily absorbed into an oxide film on the surfaces of constituting members, and the oxide film is made more stable. The effect on the corrosion suppression of the constituting members and the reduction of radioactivity becomes remarkable, and the quantity of the Zn required for the same effect can be reduced. The pH value is preferably set to the range of 7-9, more preferably to the range of 8-9. When hydrogen is injected, Zn and Cr form a stable composite compound ZnCY2 O4 in the oxide film on the surfaces of the constituting members, the oxide film becomes more stable, and the effect on the corrosion suppression of the constituting members and the reduction of radioactivity is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力プラントに係わ
り、放射性物質を含む原子炉冷却水と接する原子力発電
プラントの金属からなる構成部材の腐食を抑制し、原子
力プラントの放射能を低減する方法、特に、一次冷却系
配管のように、放射性物質が溶解している溶液と接して
使用される構成部材の腐食抑制及び放射性物質の付着抑
制方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear power plant, and a method for suppressing corrosion of a metal component of a nuclear power plant in contact with a reactor cooling water containing a radioactive material to reduce radioactivity of the nuclear power plant. In particular, the present invention relates to a method for suppressing corrosion of a constituent member used in contact with a solution in which a radioactive substance is dissolved, such as a primary cooling system pipe, and a method for suppressing adhesion of the radioactive substance.

【0002】[0002]

【従来の技術】BWRプラントの一次冷却系に使用され
ている配管,ポンプ,弁などはステンレス綱及びステラ
イト等(以下、構成部と略称する)から構成されてい
る。
2. Description of the Related Art Pipes, pumps, valves, etc. used in a primary cooling system of a BWR plant are made of stainless steel, stellite, etc. (hereinafter abbreviated as "components").

【0003】これらの金属は長時間使用されると腐食損
傷を受け、構成金属元素が原子炉冷却水(以下、冷却水
と略称する)中に溶出し、原子炉内に持ち込まれる。
When these metals are used for a long time, they are corroded and damaged, and constituent metal elements are eluted into the reactor cooling water (hereinafter referred to as cooling water) and brought into the reactor.

【0004】溶出金属元素は、大半は酸化物となって燃
料棒に付着し中性子照射を受け、その結果、コバルト6
0,コバルト58,マンガン54及びクロム51等の放
射性核種が生成する。
Most of the eluted metal elements become oxides and adhere to the fuel rods and are irradiated with neutrons. As a result, cobalt 6
Radionuclides such as 0, cobalt 58, manganese 54, and chromium 51 are produced.

【0005】これらの放射性核種は再溶出してイオンあ
るいは不溶性固体成分(以下、クラッドと略称する)と
して浮遊する。
These radionuclides are re-eluted and float as ions or insoluble solid components (hereinafter abbreviated as cladding).

【0006】そして、その一部は、炉水浄化用の脱塩器
等で除去されるが、残りは一次冷却水系を循環している
うちに構成部材表面に付着する。
A part of it is removed by a demineralizer for purifying the reactor water, and the rest adheres to the surfaces of the constituent members while circulating in the primary cooling water system.

【0007】そのため、構成部材表面における線量率が
高くなり、保守や点検を実施する際の作業者の放射線被
曝が問題となっていた。
As a result, the dose rate on the surface of the constituent members becomes high, and there has been a problem of radiation exposure of workers during maintenance and inspection.

【0008】そして、放射性物質の付着量を低減させる
ため、その源である金属元素の溶出を抑制する方法が提
案されている。
In order to reduce the amount of radioactive substances deposited, a method of suppressing the elution of the metal element that is the source has been proposed.

【0009】例えば、耐食性の良い材料の使用あるいは
酸素を給水系内に注入して構成部材の腐食を抑制する方
法などがある。
For example, there is a method of using a material having good corrosion resistance or a method of injecting oxygen into a water supply system to suppress corrosion of constituent members.

【0010】しかし、いずれの方法を用いても給水系を
はじめとし、一次冷却水系の構成部材の腐食を十分に抑
制することはできず一次冷却水中の放射性物質を十分に
低減することはできないため、構成部材への放射性物質
の付着による表面線量率が増加してしまっていた。
However, whichever method is used, it is not possible to sufficiently suppress the corrosion of the components of the primary cooling water system including the water supply system, and it is not possible to sufficiently reduce the radioactive substances in the primary cooling water. , The surface dose rate was increasing due to the deposition of radioactive materials on the components.

【0011】このために、例えば、特開昭61−95290 号
公報及び特開昭63−172999号公報等に記載された原子力
発電プラントの放射能低減法が提案されている。
For this reason, for example, methods for reducing radioactivity in nuclear power plants have been proposed, such as those disclosed in Japanese Patent Laid-Open Nos. 61-95290 and 63-172999.

【0012】[0012]

【発明が解決しようとする課題】上記従来技術のうち、
特開昭61−95290 号公報記載のものはZnを注入してコ
バルト60の構成部材表面への付着を抑制するものであ
る。しかしながらZnを注入した場合、コバルト60の
構成部材表面への付着は抑制されるものの、天然のZn
の約50%を占める亜鉛64が原子炉で中性子照射を受
け放射性同位元素である亜鉛65が生成するため、原子
力発電プラントの線量率はかえって高くなる恐れがあ
る。
Of the above-mentioned conventional techniques,
The one described in Japanese Patent Application Laid-Open No. 61-95290 suppresses the adhesion of cobalt 60 to the surfaces of the constituent members by injecting Zn. However, when Zn is injected, the adhesion of cobalt 60 to the surface of the constituent members is suppressed, but the natural Zn
Since zinc 64, which accounts for about 50% of the above, is irradiated with neutrons in a nuclear reactor and zinc 65 which is a radioisotope is generated, the dose rate of a nuclear power plant may be rather high.

【0013】また、特開昭63−172999号公報記載のもの
は、同位体分離したZnを使用することによりZn−6
5による線量率の上昇を抑えるものであるが、同位体分
離Znは非常に高価である、また、この方法ではZnを
注入し続けないと効果が持続しないなどの問題がある。
Further, the one described in JP-A-63-172999 uses Zn-6 that isotope-separated to obtain Zn-6.
Although the increase in the dose rate due to No. 5 is suppressed, isotope-separated Zn is very expensive, and this method has a problem that the effect does not last unless Zn is continuously injected.

【0014】本発明は、亜鉛65による悪影響を与えず
に、原子力発電プラントの構成部材の腐食を抑制し放射
能を低減する方法を提供することを目的とする。
It is an object of the present invention to provide a method for suppressing corrosion of components of a nuclear power plant and reducing radioactivity without adversely affecting zinc 65.

【0015】[0015]

【課題を解決するための手段】本発明の原子力発電プラ
ントの放射能低減法は、放射性物質を含む原子炉冷却水
と接する原子力発電プラントの金属からなる構成部材の
腐食を抑制し、原子力発電プラントの放射能低減方法に
おいて、原子炉冷却水中に2価の陽イオンであるZnを
注入するとともに、炉水のpH値を7〜9に調整するこ
とを特徴とする。
A method for reducing radioactivity in a nuclear power plant according to the present invention suppresses corrosion of metal components of the nuclear power plant that come into contact with the reactor cooling water containing radioactive substances, thereby suppressing the corrosion of the nuclear power plant. In the method for reducing radioactivity, the divalent cation Zn is injected into the reactor cooling water, and the pH value of the reactor water is adjusted to 7-9.

【0016】本発明の原子力発電プラントの放射能低減
法は、放射性物質を含む原子炉冷却水と接する原子力発
電プラントの金属からなる構成部材の腐食を抑制し、原
子力発電プラントの放射能低減方法において、原子炉冷
却水中に2価の陽イオンであるZnを注入し、かつ炉水
のpH値を7〜9に調整するとともに、原子炉冷却水中
に水素を注入することを特徴とする。
The method of reducing the radioactivity of a nuclear power plant according to the present invention is a method of reducing the radioactivity of a nuclear power plant by suppressing the corrosion of metal components of the nuclear power plant that come into contact with the reactor cooling water containing radioactive substances. Zn, which is a divalent cation, is injected into the reactor cooling water, the pH value of the reactor water is adjusted to 7 to 9, and hydrogen is injected into the reactor cooling water.

【0017】本発明の原子力発電プラントの放射能低減
法は、pH値に対応して炉水に注入する2価の陽イオン
であるZn濃度を調整し、かつ該Zn濃度を50ppb 以
下とすることをが望ましい。
In the method for reducing radioactivity in a nuclear power plant of the present invention, the Zn concentration which is a divalent cation injected into the reactor water is adjusted according to the pH value, and the Zn concentration is set to 50 ppb or less. Is desirable.

【0018】本発明の原子力発電プラントの放射能低減
法は、炉水水素濃度を0〜1000ppb に制御し、pH
値および該炉水水素濃度に対応して、炉水に注入する2
価の陽イオンであるZn濃度を調整することが望まし
い。
The method of reducing radioactivity in a nuclear power plant of the present invention controls the hydrogen concentration in reactor water to 0 to 1000 ppb, and adjusts the pH.
Inject into the reactor water according to the value and hydrogen concentration of the reactor water 2
It is desirable to adjust the Zn concentration, which is a valent cation.

【0019】本発明の原子力発電プラントの放射能低減
法は、注入する金属が亜鉛64を除く2価の陽イオンで
ある同位体除去亜鉛であることが望ましい。
In the method for reducing radioactivity of a nuclear power plant of the present invention, it is desirable that the metal to be injected is isotope-removed zinc, which is a divalent cation except zinc 64.

【0020】本発明の原子力発電プラントの放射能低減
法は、注入する金属が2価の陽イオンのNiであること
が望ましい。
In the method for reducing radioactivity of a nuclear power plant of the present invention, it is desirable that the metal to be injected be divalent cation Ni.

【0021】本発明の原子力発電プラントの放射能低減
法は、放射性物質を含む原子炉冷却水と接する原子力発
電プラントの金属からなる構成部材の腐食を抑制し、原
子力発電プラントの放射能低減方法において、原子炉冷
却水中に水素を注入し、かつ2価の陽イオンであるZn
を間欠的に注入するとともに、炉水のpH値を7〜9に
調整することを特徴とする。
The method of reducing the radioactivity of a nuclear power plant according to the present invention is a method of reducing the radioactivity of a nuclear power plant by suppressing the corrosion of metal components of the nuclear power plant that come into contact with the reactor cooling water containing radioactive substances. , Hydrogen is injected into reactor cooling water, and Zn is a divalent cation
Is intermittently injected and the pH value of the reactor water is adjusted to 7-9.

【0022】[0022]

【作用】冷却水中にZnを注入する際、冷却水のpHを
アルカリ性にするとZnは構成部材表面の酸化皮膜中に
取り込まれやすくなり酸化皮膜をより安定化するため、
構成部材の腐食抑制及び放射能低減効果が顕著となり、
同等の効果を得るために必要なZnの量が少量ですむ。
When injecting Zn into the cooling water, if the pH of the cooling water is made alkaline, Zn is more likely to be taken into the oxide film on the surface of the constituent member and stabilizes the oxide film.
The effect of suppressing corrosion of components and reducing radioactivity becomes remarkable,
A small amount of Zn is required to obtain the same effect.

【0023】この際、pH値は、7〜9の範囲が好まし
く、更に、8〜9の範囲がより好ましい。
At this time, the pH value is preferably in the range of 7 to 9, and more preferably in the range of 8 to 9.

【0024】また、さらに水素を注入した場合、Znは
構成部材表面の酸化皮膜内でCrと安定な複合酸化物Z
nCr24を形成するため酸化皮膜はより安定となり、
構成部材の腐食抑制及び放射能低減効果が増す。そし
て、ZnCr24の形成により、Znの冷却水中への再
溶出が抑制されるため、途中でZn注入を停止しても付
着抑制及び放射能低減効果を長く持続できる。
When hydrogen is further injected, Zn forms a stable complex oxide Z with Cr in the oxide film on the surfaces of the constituent members.
The oxide film becomes more stable due to the formation of nCr 2 O 4 ,
The effects of suppressing corrosion of components and reducing radioactivity are increased. The formation of ZnCr 2 O 4 suppresses the re-elution of Zn into the cooling water. Therefore, even if the injection of Zn is stopped midway, the effects of suppressing adhesion and reducing radioactivity can be maintained for a long time.

【0025】pH値に対応して炉水に注入する2価の陽
イオンであるZn濃度を調整し、かつ該Zn濃度を50
ppb 以下とすることで、腐食抑制及び放射能低減効果を
維持しつつZn注入量の低減がはかれる。
The Zn concentration which is a divalent cation injected into the reactor water is adjusted according to the pH value, and the Zn concentration is adjusted to 50.
By setting the content to ppb or less, the Zn implantation amount can be reduced while maintaining the corrosion suppression and radioactivity reduction effects.

【0026】炉水水素濃度を0〜1000ppb に制御
し、pH値および該炉水水素濃度に対応して、炉水に注
入する2価の陽イオンであるZn濃度を調整すること
で、さらに腐食抑制及び放射能低減効果を維持しつつZ
n注入量の低減がはかれる。
By controlling the hydrogen concentration in the reactor water to 0 to 1000 ppb and adjusting the Zn concentration, which is a divalent cation injected into the reactor water, in accordance with the pH value and the hydrogen concentration in the reactor water, further corrosion can be achieved. Z while maintaining suppression and radioactivity reduction effects
The n implantation amount can be reduced.

【0027】注入する金属が亜鉛64を除く2価の陽イ
オンの同位体除去亜鉛とすることで、腐食抑制及び放射
能低減効果を高めることができる。
By using divalent cation isotope-removed zinc excluding zinc 64 as the metal to be injected, the effects of suppressing corrosion and reducing radioactivity can be enhanced.

【0028】注入する金属が2価の陽イオンのNiとし
ても亜鉛と同等の効果が得られる。原子炉冷却水中に水
素を注入し、かつ2価の陽イオンであるZnを注入する
際、間欠的にZnを注入しても同等の効果が得られる。
Even if the metal to be injected is Ni, which is a divalent cation, the same effect as zinc can be obtained. When hydrogen is injected into the reactor cooling water and Zn, which is a divalent cation, is injected intermittently, the same effect can be obtained.

【0029】[0029]

【実施例】【Example】

(実施例1)本発明の実施例を以下に示す。 (Example 1) An example of the present invention will be described below.

【0030】まず、腐食量を調べるための資料として、
ステンレス綱を用いた。このステンレス綱を高温水中で
1000時間浸漬し、腐食量,pH値及びZn濃度の関
係を調べた。
First, as data for examining the amount of corrosion,
Stainless steel was used. This stainless steel was immersed in high temperature water for 1000 hours, and the relationship between the corrosion amount, pH value and Zn concentration was investigated.

【0031】この際、溶存酸素濃度(DO)を200pp
b (以下、水質と称す),温度を288℃とした。
At this time, the dissolved oxygen concentration (DO) was set to 200 pp.
b (hereinafter referred to as water quality) and the temperature was 288 ° C.

【0032】この実験結果を図1に示す。ここで、腐食
量は、中性時のZn注入無しの場合を1としたときの相
対値である。
The results of this experiment are shown in FIG. Here, the amount of corrosion is a relative value when the case where Zn is not injected at neutral is set to 1.

【0033】図1の結果から、Zn注入条件下でpH値
を中性からpH8,pH9にアルカリ性に制御すること
により、ステンレス綱の腐食抑制効果が顕著になってい
ることがわかった。
From the results shown in FIG. 1, it was found that the corrosion inhibiting effect of stainless steel became remarkable by controlling the pH value from neutral to alkaline at pH 8 and pH 9 under the Zn injection condition.

【0034】特に、中性の場合に50ppb のZn濃度で
得られる効果は、相対的腐食量で約0.7であるが、p
H9の場合に同様の効果を得るZn濃度は約10ppbで
あり、同効果を得る注入Zn量の低減がはかれることが
わかった。
In particular, the effect obtained at a Zn concentration of 50 ppb in the case of neutrality is about 0.7 in relative corrosion, but p
In the case of H9, the Zn concentration that achieves the same effect is about 10 ppb, and it was found that the amount of injected Zn that achieves the same effect can be reduced.

【0035】また、Zn濃度を50ppb とし、pH9と
した場合、腐食量は通常水質の1/2以下になってお
り、ステンレス綱の腐食抑制効果が向上していることが
わかった。
Further, when the Zn concentration was 50 ppb and the pH was 9, the corrosion amount was less than 1/2 of the normal water quality, and it was found that the corrosion inhibiting effect of stainless steel was improved.

【0036】次に、コバルト付着量の低減効果について
調べた。
Next, the effect of reducing the amount of cobalt deposited was investigated.

【0037】上記の試験において、コバルト60イオン
を共存させ、ステンレス綱へのコバルト60の付着量と
pH値及びZn濃度の関係調べた。
In the above test, the relationship between the amount of cobalt 60 adhering to stainless steel, the pH value, and the Zn concentration was investigated in the presence of cobalt 60 ions.

【0038】その結果を図2に示す。ここで、コバルト
60の付着量は、中性時のZn注入無しの場合を1とし
たときの相対値である。
The results are shown in FIG. Here, the adhesion amount of cobalt 60 is a relative value when the case where Zn is not injected at neutral is set to 1.

【0039】図2に示すように、コバルト60の付着量
の低減効果については、アルカリ化およびZn注入の影
響は腐食量に及ぼすものと同様の傾向を示す。
As shown in FIG. 2, with respect to the effect of reducing the amount of cobalt 60 deposited, the effects of alkalizing and Zn implantation show the same tendency as that of the amount of corrosion.

【0040】その効果は、腐食量よりも顕著であり、p
H9とした場合、Zn濃度約13ppb で付着量は半減
し、Zn濃度約4ppb で付着量は1/4に低減した。
The effect is more remarkable than the amount of corrosion.
In the case of H9, the adhesion amount was halved when the Zn concentration was about 13 ppb, and the adhesion amount was reduced to 1/4 when the Zn concentration was about 4 ppb.

【0041】このように、本発明によりコバルト付着量
の低減がはかれた。
As described above, according to the present invention, the amount of deposited cobalt was reduced.

【0042】また、上記試験において、Zn注入のコバ
ルト60イオン付着低減効果を、288℃、溶存酸素濃
度(DO)が200ppb で、Zn注入無しの場合を基準
値1として相対値で示したものを表1に示す。
In the above test, the effect of Zn implantation for reducing the adhesion of cobalt 60 ions was shown as a relative value with 288 ° C., a dissolved oxygen concentration (DO) of 200 ppb and no Zn implantation as a reference value 1. It shows in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】表1では、コバルト60イオン付着が1/
2となる低減条件を、pH値およびZn濃度の組み合わ
せでまとめた。
In Table 1, cobalt 60 ion attachment is 1 /
The reduction conditions of 2 were summarized by the combination of pH value and Zn concentration.

【0045】これによれば、pH7でのZnの必要濃度
は50ppb であるが、pH8では15ppb ,pH9では
5ppb となり、著しく低い濃度レベルでのコバルト60
イオン付着低減効果が得られることがわかる。
According to this, the required concentration of Zn at pH 7 is 50 ppb, but at pH 8 it is 15 ppb and at pH 9 it is 5 ppb.
It can be seen that the effect of reducing ion attachment can be obtained.

【0046】以上のように、本実施例によるとコバルト
60の付着低減効果及び腐食抑制効果を向上することが
可能であり、少量のZn注入でも従来よりコバルト60
の付着低減効果及び腐食抑制効果を期待でき、Zn注入
量低減がはかれることがわかった。
As described above, according to the present embodiment, it is possible to improve the effect of reducing the adhesion of cobalt 60 and the effect of suppressing corrosion, and even if a small amount of Zn is injected, cobalt 60 can be provided as compared with the conventional case.
It was found that the effect of reducing the adhesion and the effect of suppressing corrosion can be expected, and the Zn injection amount can be reduced.

【0047】また、上記は2価の陽イオンのZnを注入
したが、このかわりに、亜鉛64を除く同位体除去亜鉛
または2価の陽イオンのNiを注入しても同様の結果が
得られた。
Although divalent cation Zn was injected in the above, similar results can be obtained by injecting isotope-removed zinc excluding zinc 64 or divalent cation Ni instead. It was

【0048】(実施例2)実施例1と同様の方法で、水
素濃度(DH)を変化させた。
Example 2 The hydrogen concentration (DH) was changed in the same manner as in Example 1.

【0049】図3に、水素を1000ppb 注入した場合
(以下水素注入水質と称す)のステンレス綱の腐食量と
pH及びZn濃度の関係を示す。
FIG. 3 shows the relationship between the amount of corrosion of stainless steel and the pH and Zn concentration when 1000 ppb of hydrogen was injected (hereinafter referred to as hydrogen injected water quality).

【0050】図3から、水素注入水質下においてもpH
値をアルカリに調整した方がステンレス綱の腐食抑制に
対して、Zn注入効果が増大していることがわかる。
From FIG. 3, even under the hydrogen-injected water quality, the pH
It can be seen that when the value is adjusted to alkali, the Zn injection effect is increased with respect to the corrosion inhibition of stainless steel.

【0051】また、図4に、上記水素注入水質下の試験
において、コバルト60イオンを共存させ、ステンレス
綱へのコバルト60の付着量とpH値及びZn濃度の関
係を示す。
FIG. 4 shows the relationship between the amount of cobalt 60 adhering to the stainless steel and the pH value and Zn concentration in the test under the hydrogen-injected water quality in the presence of cobalt 60 ions.

【0052】この際、コバルト60の付着量は、水素濃
度(DH)が1000ppb ,溶存酸素濃度(DO)が0
ppb のときの付着量を1とした相対値である。
At this time, the amount of cobalt 60 deposited was such that the hydrogen concentration (DH) was 1000 ppb and the dissolved oxygen concentration (DO) was 0.
It is a relative value with the amount of adhesion at ppb being 1.

【0053】図4からコバルト60の付着量の低減効果
については、アルカリ化およびZn注入が腐食量に及ぼ
すもの影響と同様の傾向を示すが、より顕著な効果が認
められることがわかる。
It can be seen from FIG. 4 that the effect of reducing the amount of cobalt 60 deposited is similar to the effect of alkalizing and Zn implantation on the amount of corrosion, but a more remarkable effect is recognized.

【0054】また、通常水質と水素注入水質を比較する
と、コバルト60の付着抑制効果は水素注入水質の方が
著しく大きいことがわかる。
Further, when comparing the normal water quality and the hydrogen-injected water quality, it can be seen that the effect of suppressing the adhesion of cobalt 60 is significantly higher in the hydrogen-injected water quality.

【0055】上記試験において、Zn注入のコバルト6
0イオン付着低減効果を、288℃,溶存酸素濃度20
0ppb で、Zn注入無しの場合を基準値1として相対値
で示したものを表2に示す。
In the above test, Zn-implanted cobalt 6
0 ion adhesion reduction effect, 288 ℃, dissolved oxygen concentration 20
Table 2 shows relative values with 0 ppb and no Zn implantation as the reference value 1.

【0056】[0056]

【表2】 [Table 2]

【0057】表2では、コバルト60イオン付着が1/
2となる低減条件を、pHおよびZnの組み合わせでま
とめた。
In Table 2, cobalt 60 ion attachment is 1 /
The reduction conditions of 2 are summarized by the combination of pH and Zn.

【0058】これによれば、温度288℃,溶存酸素濃
度200ppb の通常水質下では、pH7でのZnの必要
濃度は50ppb であるが、水素を1000ppb 注入した
水素注入水質下では、pH7では12ppb ,pH8では
5ppb ,pH9では1ppbとなり、通常水質下の場合に
比較するとさらに著しく低いZn濃度レベルでのコバル
ト60イオン付着低減効果が得られている。
According to this, under the normal water quality of the temperature of 288 ° C. and the dissolved oxygen concentration of 200 ppb, the required concentration of Zn at pH 7 is 50 ppb. It becomes 5 ppb at pH 8 and 1 ppb at pH 9, and the effect of reducing the adhesion of cobalt 60 ions is obtained at a Zn concentration level which is significantly lower than that under normal water quality.

【0059】以上のように、本実施例によるとコバルト
60の付着低減効果及び腐食抑制効果を向上することが
可能であり、少量のZn注入でも従来よりコバルト60
の付着低減効果及び腐食抑制効果を期待でき、Zn注入
量低減がはかれることがわかった。
As described above, according to the present embodiment, it is possible to improve the effect of reducing the adhesion of cobalt 60 and the effect of suppressing corrosion, and even if a small amount of Zn is injected, the amount of cobalt 60 can be increased as compared with the prior art.
It was found that the effect of reducing the adhesion and the effect of suppressing corrosion can be expected, and the Zn injection amount can be reduced.

【0060】また、上記は2価の陽イオンのZnを注入
したが、このかわりに、亜鉛64を除く同位体除去亜鉛
または2価の陽イオンのNiを注入しても同様の結果が
得られた。
Although divalent cation Zn was injected in the above, similar results can be obtained by injecting isotope-removed zinc excluding zinc 64 or divalent cation Ni instead. It was

【0061】(実施例3)次に、Zn注入の連続注入及
び断続的注入についての実施例を示す。
(Example 3) Next, an example of continuous injection and intermittent injection of Zn injection will be described.

【0062】図5は通常水質及び水素注入水質において
Zn注入を間欠的に行った場合のステンレス綱へのCo
の付着量の経時変化を示したものである。
FIG. 5 shows Co in stainless steel when Zn is injected intermittently in normal water quality and hydrogen injection water quality.
3 is a graph showing a change with time of the adhered amount of.

【0063】図5から通常水質においてはZn注入を停
止するとCoの付着量が急激に増大しているのに対し、
水素注入条件ではZn注入を停止してもCoの付着抑制
効果が持続していることがわかる。
From FIG. 5, in the normal water quality, when the Zn injection is stopped, the adhered amount of Co increases rapidly, whereas
It can be seen that under the hydrogen injection conditions, the effect of suppressing Co deposition continues even after Zn injection is stopped.

【0064】このことから、実機でのZn注入におい
て、連続的な注入に代わり、一日おきの注入や一週間注
入,一週間未注入といった間欠運転が可能になり、必要
な注入金属量の低減が図れる。
From the above, in the Zn injection in the actual machine, intermittent operation such as injection every other day, injection for one week, or no injection for one week becomes possible instead of continuous injection, and the required amount of injected metal is reduced. Can be achieved.

【0065】また、従来は、Zn注入装置等の故障によ
りZn注入が停止した場合はCoの付着を抑制すること
が困難であり、不慮の事故に対し考慮されていなかった
が、本発明では、Zn注入装置等の故障によりZn注入
が停止した場合にでも、Coの付着抑制効果を維持でき
ることがわかった。
Further, conventionally, when Zn implantation is stopped due to a failure of the Zn implanting device or the like, it is difficult to suppress the adhesion of Co, and no consideration has been given to an accident, but in the present invention, It was found that the effect of suppressing Co adhesion can be maintained even when Zn injection is stopped due to a failure of the Zn injection device or the like.

【0066】また、上記は2価の陽イオンのZnを注入
したが、このかわりに、亜鉛64を除く同位体除去亜鉛
または2価の陽イオンのNiを注入しても同様の結果が
得られた。
Although divalent cation Zn was injected in the above, similar results can be obtained by injecting isotope-removed zinc excluding zinc 64 or divalent cation Ni instead. It was

【0067】[0067]

【発明の効果】以上説明したように、本発明によれば原
子炉冷却水のpH値をアルカリ性にしてZnを注入する
ことにより、コバルト60の付着低減効果及び腐食抑制
効果を向上することが可能であり、少量のZn注入でも
従来よりコバルト60の付着低減効果及び腐食抑制効果
を期待でき、Zn注入量低減がはかれることがわかっ
た。
As described above, according to the present invention, by making the pH value of the reactor cooling water alkaline and injecting Zn, it is possible to improve the effect of reducing the adhesion of cobalt 60 and the effect of suppressing corrosion. Therefore, it was found that the effect of reducing the adhesion of cobalt 60 and the effect of suppressing corrosion can be expected even with a small amount of Zn injection, and the Zn injection amount can be reduced.

【0068】さらに水素注入を併用すればZn注入を停
止しても効果が持続することから亜鉛65による放射能
上昇を抑制することができる。
Further, if hydrogen injection is also used, the effect is maintained even if Zn injection is stopped, so that the increase in radioactivity due to zinc 65 can be suppressed.

【0069】また、Zn注入装置等の故障によりZn注
入が停止した場合にでも、Coの付着抑制効果を維持で
きる。
Further, even when the Zn implantation is stopped due to a failure of the Zn implantation apparatus or the like, the effect of suppressing Co adhesion can be maintained.

【0070】そして、亜鉛64を除く同位体除去亜鉛ま
たは2価の陽イオンのNiを注入しても同様の結果が得
られることがわかった。
It was found that the same result was obtained by injecting isotope-removed zinc except for zinc 64 or Ni as a divalent cation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である腐食量,pH値及びZ
n濃度の関係を示す。
FIG. 1 is an embodiment of the present invention, the amount of corrosion, pH value and Z
The relationship of n concentration is shown.

【図2】本発明の一実施例であるコバルト60の付着量
とpH値及びZn濃度の関係を示す。
FIG. 2 shows the relationship between the amount of deposited cobalt 60, the pH value, and the Zn concentration, which is an example of the present invention.

【図3】本発明の一実施例である腐食量,pH値及びZ
n濃度の関係を示す。
FIG. 3 is an embodiment of the present invention, the amount of corrosion, pH value and Z
The relationship of n concentration is shown.

【図4】本発明の一実施例であるコバルト60の付着量
とpH値及びZn濃度の関係を示す。
FIG. 4 shows the relationship between the amount of cobalt 60 deposited, the pH value, and the Zn concentration, which is an example of the present invention.

【図5】Zn注入を間欠的に行った場合のCoの付着量
の経時変化を示す。
FIG. 5 shows a change over time in the amount of Co deposited when Zn is intermittently injected.

【符号の説明】[Explanation of symbols]

1…基準値。 1 ... Standard value.

フロントページの続き (72)発明者 山内 博史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 赤嶺 和彦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 山根 康一 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内Front Page Continuation (72) Inventor Hiroshi Yamauchi 7-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Kazuhiko Akamine 3-1-1, Saiwaicho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd., Hitachi Plant (72) Inventor, Koichi Yamane 3-1-1, Saiwaicho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd., Hitachi Plant

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】放射性物質を含む原子炉冷却水と接する原
子力発電プラントの金属からなる構成部材の腐食を抑制
し、原子力発電プラントの放射能低減方法において、原
子炉冷却水中に2価の陽イオンであるZnを注入すると
ともに、炉水のpH値を7〜9に調整することを特徴と
する原子力発電プラントの放射能低減法。
1. A method for reducing radioactivity in a nuclear power plant, which suppresses corrosion of metal components of a nuclear power plant in contact with reactor cooling water containing a radioactive substance, and divalent cations in the reactor cooling water. Zn is injected and the pH value of the reactor water is adjusted to 7 to 9 to reduce the radioactivity in the nuclear power plant.
【請求項2】放射性物質を含む原子炉冷却水と接する原
子力発電プラントの金属からなる構成部材の腐食を抑制
し、原子力発電プラントの放射能低減方法において、原
子炉冷却水中に2価の陽イオンであるZnを注入し、か
つ炉水のpH値を7〜9に調整するとともに、原子炉冷
却水中に水素を注入することを特徴とする原子力発電プ
ラントの放射能低減法。
2. A divalent cation in the reactor cooling water in a method for reducing radioactivity in a nuclear power plant, which suppresses corrosion of metal components of the nuclear power plant that come into contact with the reactor cooling water containing radioactive substances. Zn is injected, the pH value of the reactor water is adjusted to 7 to 9, and hydrogen is injected into the reactor cooling water. A method for reducing radioactivity in a nuclear power plant.
【請求項3】pH値に対応して炉水に注入する2価の陽
イオンであるZn濃度を調整し、かつ該Zn濃度を50
ppb 以下とすることを特徴とする請求項1又は請求項2
に記載の原子力発電プラントの放射能低減法。
3. The Zn concentration which is a divalent cation injected into the reactor water is adjusted in accordance with the pH value, and the Zn concentration is adjusted to 50.
ppb or less, Claim 1 or Claim 2 characterized by the above-mentioned.
Radioactivity reduction method for nuclear power plants described in.
【請求項4】炉水水素濃度を0〜1000ppb に制御
し、pH値および該炉水水素濃度に対応して、炉水に注
入する2価の陽イオンであるZn濃度を調整することを
特徴とする請求項1〜請求項3のいずれかに記載の原子
力発電プラントの放射能低減法。
4. The hydrogen concentration in the reactor water is controlled to 0 to 1000 ppb, and the Zn concentration which is a divalent cation injected into the reactor water is adjusted according to the pH value and the hydrogen concentration in the reactor water. The method for reducing radioactivity of a nuclear power plant according to any one of claims 1 to 3.
【請求項5】請求項1〜請求項4のいずれかに記載の原
子力発電プラントの放射能低減法において、注入する金
属が亜鉛64を除く2価の陽イオンの同位体除去亜鉛で
あることを特徴とする原子力プラントの放射能低減法。
5. The method for reducing radioactivity of a nuclear power plant according to claim 1, wherein the metal to be injected is divalent cation isotope-removed zinc excluding zinc 64. The characteristic method of reducing radioactivity in nuclear power plants.
【請求項6】請求項1〜請求項4のいずれかに記載の原
子力発電プラントの放射能低減法において、注入する金
属が2価の陽イオンのNiであることを特徴とする原子
力プラントの放射能低減法。
6. The method for reducing radioactivity of a nuclear power plant according to any one of claims 1 to 4, wherein the metal to be injected is divalent cation Ni. Noh reduction method.
【請求項7】放射性物質を含む原子炉冷却水と接する原
子力発電プラントの金属からなる構成部材の腐食を抑制
し、原子力発電プラントの放射能低減方法において、原
子炉冷却水中に水素を注入し、かつ2価の陽イオンであ
るZnを間欠的に注入するとともに、炉水のpH値を7
〜9に調整することを特徴とする原子力発電プラントの
放射能低減法。
7. A method for suppressing radioactivity of a nuclear power plant that is in contact with a reactor cooling water containing a radioactive substance, and injecting hydrogen into the reactor cooling water in a method of reducing radioactivity in a nuclear power plant, In addition, Zn, which is a divalent cation, is intermittently injected, and the pH value of the reactor water is adjusted to 7
A method for reducing radioactivity in a nuclear power plant, characterized by adjusting to ~ 9.
JP7101882A 1995-04-26 1995-04-26 Radioactivity reducing method for nuclear power plant Pending JPH08297195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7101882A JPH08297195A (en) 1995-04-26 1995-04-26 Radioactivity reducing method for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7101882A JPH08297195A (en) 1995-04-26 1995-04-26 Radioactivity reducing method for nuclear power plant

Publications (1)

Publication Number Publication Date
JPH08297195A true JPH08297195A (en) 1996-11-12

Family

ID=14312315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7101882A Pending JPH08297195A (en) 1995-04-26 1995-04-26 Radioactivity reducing method for nuclear power plant

Country Status (1)

Country Link
JP (1) JPH08297195A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058974A1 (en) * 1999-03-26 2000-10-05 Hitachi, Ltd. Method of operating reactor
JP2006312783A (en) * 2005-05-02 2006-11-16 General Electric Co <Ge> Method for mitigating stress corrosion cracking in structural material exposed to high-temperature water
JP2014077753A (en) * 2012-10-12 2014-05-01 Japan Atom Power Co Ltd:The Method and system for injection of zinc into bwr plant cooling water
DE102013108802A1 (en) * 2013-08-14 2015-02-19 Areva Gmbh Method for reducing the radioactive contamination of a water-bearing circuit of a nuclear power plant
US9947425B2 (en) 2013-08-14 2018-04-17 Areva Gmbh Method for reducing the radioactive contamination of the surface of a component used in a nuclear reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058974A1 (en) * 1999-03-26 2000-10-05 Hitachi, Ltd. Method of operating reactor
JP2006312783A (en) * 2005-05-02 2006-11-16 General Electric Co <Ge> Method for mitigating stress corrosion cracking in structural material exposed to high-temperature water
JP2014077753A (en) * 2012-10-12 2014-05-01 Japan Atom Power Co Ltd:The Method and system for injection of zinc into bwr plant cooling water
DE102013108802A1 (en) * 2013-08-14 2015-02-19 Areva Gmbh Method for reducing the radioactive contamination of a water-bearing circuit of a nuclear power plant
US9947425B2 (en) 2013-08-14 2018-04-17 Areva Gmbh Method for reducing the radioactive contamination of the surface of a component used in a nuclear reactor

Similar Documents

Publication Publication Date Title
US4722823A (en) Nuclear power plant providing a function of suppressing the deposition of radioactive substance
JPS61111500A (en) Method of reducing radioactivity of nuclear power plant
JPS6390796A (en) Method and device for suppressing elution of radioactive substance into cooling water in nuclear power plant
JPS6153680B2 (en)
JPH08297195A (en) Radioactivity reducing method for nuclear power plant
JP2982517B2 (en) Operating method of boiling water nuclear power plant and boiling water nuclear power plant
JP2008051530A (en) Elution suppression method for nickel and cobalt from structure material
US4940564A (en) Suppression of deposition of radioactive substances in boiling water type, nuclear power plant
JPH11118986A (en) Method for suppressing adhesion of radioactive corrosive product onto surface of primary coolant pipe in nuclear power generation plate
JPH0943393A (en) Boiling water type nuclear power plant and its operation method
JP3289679B2 (en) Water quality control method for boiling water nuclear power plant
Lister et al. Effects of magnesium and zinc additives on corrosion and cobalt contamination of stainless steels in simulated BWR coolant
JP3156113B2 (en) Water quality control method and device
JPH08262186A (en) Method for controlling water quality of boiling water reactor plant
JPH0566999B2 (en)
JPH0480357B2 (en)
JPH0478960B2 (en)
JP2002542458A (en) A method for controlling zinc addition to a power reactor.
JPH0424434B2 (en)
JPH0430560B2 (en)
JPH05209991A (en) Contamination prevention method for reactor piping
JPH08304584A (en) Radioactive concentration reducing method in reactor primary system water
JP3309784B2 (en) Water quality control method for boiling water nuclear power plant
JPS6184597A (en) Method of inhibiting adhesion of radioactive substance on nuclear power plant constitution member
JPS6312551B2 (en)