JPH08297104A - Strain evaluating method for grain oriented electromagnetic steel plate - Google Patents

Strain evaluating method for grain oriented electromagnetic steel plate

Info

Publication number
JPH08297104A
JPH08297104A JP7122955A JP12295595A JPH08297104A JP H08297104 A JPH08297104 A JP H08297104A JP 7122955 A JP7122955 A JP 7122955A JP 12295595 A JP12295595 A JP 12295595A JP H08297104 A JPH08297104 A JP H08297104A
Authority
JP
Japan
Prior art keywords
steel plate
rays
grain
strain
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7122955A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ushigami
義行 牛神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7122955A priority Critical patent/JPH08297104A/en
Publication of JPH08297104A publication Critical patent/JPH08297104A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE: To quantitatively evaluate the strain in a steel plate by feeding parallel X-rays to the steel plate while diffracting the X-rays with a monocrystal of Si, measuring a diffraction intensity curve, and obtaining the half-value width. CONSTITUTION: Parallel X-rays having the divergence angle 100sec or below are fed to a steel plate, a diffraction intensity curve is measured, and the internal strain of a material is evaluated by the half-value width. X-rays are fed to a monocrystal to be diffracted, and the diffracted X-rays with good parallelism are used as parallel X-rays fed to the steel plate for evaluation. The rolling direction of the steel plate is used as the rotation axis when the diffraction intensity curve is measured. The half-value width must be kept at 100sec or below to keep the magnetic strain of the grain oriented electromagnetic steel plate at the preferable range of 5×10<-6> or below. The internal strain at the level corresponding to the dispersion of the magnetic characteristic of the grain oriented electromagnetic steel plate can be quantitatively evaluated, and the control of operating conditions for manufacture and the quality control of products can be conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として変圧器その他の
電気機器等の鉄心として利用される方向性電磁鋼板の材
料の内部歪を評価する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating internal strain of a material of grain-oriented electrical steel sheet which is mainly used as an iron core of transformers and other electric devices.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、磁気鉄心として多く
の電気機器に用いられている。方向性電磁鋼板は、Si
を0.8〜4.8%含有し製品の結晶粒の方位を{11
0}<001>に高度に集積させた鋼板である。その磁
気特性として磁歪、鉄損が低いことが要求される。これ
らの軟磁気特性は材料の内部歪に大きく影響されること
は知られているが、その評価法は確立されていない。例
えば、IEEE Trans.MAG(1974)p.
123〜127:Fig7より磁歪特性は内部歪に敏感
であることが示されているが、その内部歪に関しては定
量的な評価はなされておらず、エッチピットにより転位
分布を観察している程度にすぎない。
2. Description of the Related Art Grain-oriented electrical steel sheets are used as magnetic iron cores in many electric devices. The grain-oriented electrical steel sheet is Si
Of 0.8 to 4.8% and the crystal grain orientation of the product is {11
0} <001> is a highly integrated steel plate. Its magnetic characteristics are required to have low magnetostriction and iron loss. It is known that these soft magnetic properties are greatly affected by the internal strain of the material, but the evaluation method has not been established. For example, IEEE Trans. MAG (1974) p.
123 to 127: Fig. 7 shows that the magnetostriction characteristic is more sensitive to the internal strain, but the internal strain has not been quantitatively evaluated, and the dislocation distribution is observed by the etch pits. Only.

【0003】[0003]

【発明が解決しようとする課題】方向性電磁鋼板の磁気
特性(磁歪、鉄損等)は材料の内部歪が大きく影響する
ことは知られている。従って、内部歪の定量的な評価を
行うことができれば、製造の操業条件の管理および製品
の品質管理が可能となる。本発明の目的はこれまで確立
されたものがない方向性電磁鋼板の内部歪の定量的な評
価法にある。
It is known that the magnetic properties (magnetostriction, iron loss, etc.) of grain-oriented electrical steel sheets are greatly affected by the internal strain of the material. Therefore, if the internal strain can be quantitatively evaluated, it becomes possible to control the operating conditions of manufacturing and the quality of the product. An object of the present invention is a quantitative evaluation method of internal strain of grain-oriented electrical steel sheet which has never been established.

【0004】[0004]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、重量でSiを0.8〜4.8%含有
する方向性電磁鋼板の歪評価法において、発散角100
秒以下の平行X線を鋼板に入射し回析強度曲線を測定
し、その半価幅により材料の内部歪を評価することを特
徴とする方向性電磁鋼板の歪評価法である。またここに
おいてX線を単結晶に入射し回析させ、その平行度の良
い回析線を鋼板に入射する平行X線として用いて評価す
ること、回析強度曲線を測定するさいの回転軸を鋼板の
圧延方向とすることも特徴とする。
Means for Solving the Problems The present invention is to solve the above problems, and in a strain evaluation method for a grain-oriented electrical steel sheet containing 0.8 to 4.8% by weight of Si, a divergence angle of 100
It is a strain evaluation method for a grain-oriented electrical steel sheet, characterized in that a parallel X-ray of a second or less is incident on a steel sheet, a diffraction strength curve is measured, and the half-width thereof is used to evaluate the internal strain of the material. Further, here, X-rays are made incident on a single crystal to be diffracted, and the diffraction lines with good parallelism are used as parallel X-rays made incident on the steel sheet for evaluation. The axis of rotation for measuring the diffraction intensity curve is It is also characterized in that the rolling direction of the steel sheet is used.

【0005】[0005]

【作用】本発明者は基本的前提としてX線の回析強度曲
線を内部歪の測定に利用することを考え、現在問題とな
る方向性電磁鋼板製品の磁気特性レベルとの対応を評価
した。その結果、通常鉄鋼材料に用いられるX線回析装
置では方向性電磁鋼板を評価することはできないこと、
方向性電磁鋼板の内部歪を評価するためには入射X線の
角度分解能を高め、100秒以下のオーダーの半価幅で
差を検出する必要があることを見い出した。以下、詳細
に説明する。
The present inventor considered that the X-ray diffraction intensity curve is used for the measurement of internal strain as a basic premise, and evaluated the correspondence with the magnetic characteristic level of the grain-oriented electrical steel sheet product, which is currently a problem. As a result, it is not possible to evaluate grain-oriented electrical steel sheets with an X-ray diffraction apparatus normally used for steel materials,
It has been found that in order to evaluate the internal strain of the grain-oriented electrical steel sheet, it is necessary to enhance the angular resolution of incident X-rays and detect the difference with a half width on the order of 100 seconds or less. The details will be described below.

【0006】本発明者はまず方向性電磁鋼板製品の結晶
の完全性を評価した。方向性電磁鋼板は従来、平均数度
の方位分散をもつ多結晶体であることは知られている
が、その各単結晶粒を詳細に調査した結果0.1度オー
ダーのサブグレインに分かれていることを見い出した
(J.Mat.Eng.13(1991)p.113〜
118)。この知見ともとに、さらにこれらのサブグレ
インの分散やサブグレインごとの結晶の完全性等と磁歪
(磁気特性のなかで特に重要)との関係の研究を行っ
た。その結果、各サブグレインの回析強度曲線の半価幅
が磁歪特性と密接な関係があることを見い出した。
The present inventor first evaluated the crystal perfection of grain-oriented electrical steel sheet products. It is known that grain-oriented electrical steel sheets are polycrystals having an average orientation dispersion of several degrees, but as a result of detailed investigation of each single crystal grain, they are divided into subgrains of the order of 0.1 degree. It was found that (J. Mat. Eng. 13 (1991) p.113-
118). In addition to this finding, the relationship between the dispersion of these subgrains, the crystal perfection of each subgrain, and the like, and magnetostriction (particularly important among magnetic properties) was investigated. As a result, it was found that the half width of the diffraction intensity curve of each subgrain is closely related to the magnetostrictive property.

【0007】図1に板厚0.35mmの方向性電磁鋼板
製品の回析強度曲線の半価幅と磁歪特性を示す。図1よ
り、回析強度曲線の半価幅によって方向性電磁鋼板にお
いて問題をなる磁歪特性の差異が充分評価できることが
わかる。図1より、方向性電磁鋼板の磁歪の好ましい範
囲である5×10-6以下とするためには、半価幅を10
0秒以下にする必要があることがわかる。
FIG. 1 shows the full width at half maximum of a diffraction strength curve and a magnetostrictive characteristic of a grain-oriented electrical steel sheet product having a sheet thickness of 0.35 mm. From FIG. 1, it can be seen that the difference in magnetostrictive properties, which is a problem in grain-oriented electrical steel sheets, can be sufficiently evaluated by the half width of the diffraction strength curve. From FIG. 1, in order to set the magnetostriction of the grain-oriented electrical steel sheet to not more than 5 × 10 −6, which is a preferable range, the half-value width is 10
It can be seen that the time needs to be 0 seconds or less.

【0008】図2に本発明で用いた測定系を示す。図中
1はX線の径路、2はSi単結晶、3は試料、4は検出
器(シンチレーションカウンター等)、5は試料、検出
器の回転軸である。X線源としてはMoターゲットを用
いたローターターゲット型の発生装置を用い、Si単結
晶2の{620}非対称反射を利用することにより入射
X線の角度発散を約3秒に低減させた。この平行度の優
れたX線を試料3に入射し、試料と検出器をそれぞれθ
と2θ回転させ回析強度曲線の測定を行った。また、磁
歪特性は圧縮応力(0.3kg/mm2 )付与下で最大
磁束密度1.9Tでの測定値を用いた。
FIG. 2 shows the measuring system used in the present invention. In the figure, 1 is a path of X-rays, 2 is a Si single crystal, 3 is a sample, 4 is a detector (scintillation counter or the like), 5 is a sample, and a rotation axis of the detector. A rotor target type generator using a Mo target was used as the X-ray source, and the {620} asymmetrical reflection of the Si single crystal 2 was used to reduce the angular divergence of the incident X-ray to about 3 seconds. This X-ray with excellent parallelism is made incident on the sample 3 and the sample and the detector are respectively separated by θ.
Then, the diffraction intensity curve was measured by rotating 2θ. As the magnetostrictive property, a measured value at a maximum magnetic flux density of 1.9 T under application of compressive stress (0.3 kg / mm 2 ) was used.

【0009】以上の結果より、方向性電磁鋼板の内部歪
を評価するためには、入射X線の角度分散および試料の
回転を制御して100秒以下の半価幅が測定できる精度
で回析強度曲線を測定するシステムを構成することが必
要であることがわかる。特に、入射X線の角度分散を制
御する方法を限定する必要はないが、Si、Ge、Fe
−Si等の完全性の良い単結晶に入射し回析させ、その
平行度の良い回析線を試料の入射線とした方法は装置系
を小型化するうえで有効である。
From the above results, in order to evaluate the internal strain of the grain-oriented electrical steel sheet, diffraction was performed with an accuracy capable of measuring the half width of 100 seconds or less by controlling the angular dispersion of incident X-rays and the rotation of the sample. It turns out that it is necessary to configure a system for measuring the intensity curve. In particular, it is not necessary to limit the method for controlling the angular dispersion of incident X-rays, but Si, Ge, Fe
A method in which a single crystal having a high degree of perfection, such as -Si, is incident and diffracted and the diffraction line having good parallelism is used as the incident line of the sample is effective for downsizing the apparatus system.

【0010】また、方向性電磁鋼板は通常コイル状で仕
上げ焼鈍され、そのさいに二次再結晶現象を利用して結
晶方位制御される。その場合、方向性電磁鋼板のサブグ
レインにはコイルセットの影響で圧延方向と直角方向を
回転軸とする角度分散を持ち込んでしまう。従って、こ
のようなコイル状の形態で方位制御を行った場合には、
コイルセットの影響を受けない圧延方向を回転軸として
回析強度曲線を測定する必要がある。すなわち図2にお
いて試料3の回転の回転軸5の方向を圧延方向にすれば
よい。
Further, the grain-oriented electrical steel sheet is usually finish-annealed in a coil shape, and at that time, the crystal orientation is controlled by utilizing the secondary recrystallization phenomenon. In that case, due to the influence of the coil set, the sub-grain of the grain-oriented electrical steel sheet introduces angular dispersion with the axis of rotation perpendicular to the rolling direction. Therefore, when azimuth control is performed in such a coiled form,
It is necessary to measure the diffraction strength curve with the rolling direction that is not affected by the coil set as the axis of rotation. That is, in FIG. 2, the rotation axis 5 of the sample 3 may be rotated in the rolling direction.

【0011】[0011]

【実施例】仕上げ焼鈍後の方向性電磁鋼板製品(0.3
5mm厚)に歪取り焼鈍として、(1)500℃、
(2)700℃、(3)800℃で1時間焼鈍して磁歪
特性および回析強度曲線を測定した。表1に結果を示し
たが、焼鈍温度を高めることにより内部歪が低下し、半
価幅が小さくなっている。これにより磁歪特性が向上、
すなわち磁歪が小さくなり、700℃以上の焼鈍温度で
は好ましい範囲になっている。
[Examples] Grain-oriented electrical steel sheet products after finish annealing (0.3
(1) 500 ° C. as strain relief annealing
(2) Annealed at 700 ° C. and (3) 800 ° C. for 1 hour, and the magnetostrictive characteristics and the diffraction strength curve were measured. The results are shown in Table 1, and the internal strain is lowered and the half width is reduced by increasing the annealing temperature. This improves the magnetostrictive characteristics,
That is, the magnetostriction becomes small, and it is in a preferable range at an annealing temperature of 700 ° C or higher.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】方向性電磁鋼板の磁気特性(磁歪、鉄損
等)は材料の内部歪が大きく影響する。本発明法によ
り、方向性電磁鋼板の磁気特性のばらつきに対応するレ
ベルの内部歪を定量的に評価することが可能になった。
これにより製造の操業条件の管理および製品の品質管理
が可能となる。
The magnetic characteristics (magnetostriction, iron loss, etc.) of grain-oriented electrical steel sheets are greatly affected by the internal strain of the material. According to the method of the present invention, it becomes possible to quantitatively evaluate the internal strain of a level corresponding to the variation in the magnetic characteristics of the grain-oriented electrical steel sheet.
This makes it possible to control the operating conditions of manufacturing and the quality of products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法で測定した方向性電磁鋼板の回析強度
曲線の半価幅と磁歪特性との関係を示すグラフ
FIG. 1 is a graph showing the relationship between the full width at half maximum of the diffraction strength curve of a grain-oriented electrical steel sheet measured by the method of the present invention and the magnetostrictive characteristic.

【図2】測定系の構成の例を示す図FIG. 2 is a diagram showing an example of the configuration of a measurement system.

【符号の説明】[Explanation of symbols]

1 X線の経路 2 Si単結晶 3 試料 4 検出器 5 回転軸 1 X-ray path 2 Si single crystal 3 Sample 4 Detector 5 Rotation axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量でSiを0.8〜4.8%含有する
方向性電磁鋼板の歪評価法において、発散角100秒以
下の平行X線を鋼板に入射し回析強度曲線を測定し、そ
の半価幅により材料の内部歪を評価することを特徴とす
る方向性電磁鋼板の歪評価法。
1. In a strain evaluation method of a grain-oriented electrical steel sheet containing 0.8 to 4.8% by weight of Si, a parallel X-ray with a divergence angle of 100 seconds or less is incident on the steel sheet to measure a diffraction intensity curve. , A method for evaluating the strain of grain-oriented electrical steel sheets, characterized in that the internal strain of the material is evaluated by its half width.
【請求項2】 X線を単結晶に入射し回析させ、その平
行度の良い回析線を鋼板に入射する平行X線として用い
ることを特徴とする請求項1記載の方向性電磁鋼板の歪
評価法。
2. The grain-oriented electrical steel sheet according to claim 1, wherein X-rays are incident on a single crystal to be diffracted, and the diffraction lines having good parallelism are used as parallel X-rays incident on the steel sheet. Strain evaluation method.
【請求項3】 回析強度曲線を測定するさいの回転軸を
鋼板の圧延方向とすることを特徴とする請求項1または
2記載の方向性電磁鋼板の歪評価法。
3. The strain evaluation method for a grain-oriented electrical steel sheet according to claim 1, wherein the axis of rotation when measuring the diffraction strength curve is the rolling direction of the steel sheet.
JP7122955A 1995-04-25 1995-04-25 Strain evaluating method for grain oriented electromagnetic steel plate Withdrawn JPH08297104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7122955A JPH08297104A (en) 1995-04-25 1995-04-25 Strain evaluating method for grain oriented electromagnetic steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7122955A JPH08297104A (en) 1995-04-25 1995-04-25 Strain evaluating method for grain oriented electromagnetic steel plate

Publications (1)

Publication Number Publication Date
JPH08297104A true JPH08297104A (en) 1996-11-12

Family

ID=14848769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7122955A Withdrawn JPH08297104A (en) 1995-04-25 1995-04-25 Strain evaluating method for grain oriented electromagnetic steel plate

Country Status (1)

Country Link
JP (1) JPH08297104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021156980A1 (en) * 2020-02-05 2021-08-12 日本製鉄株式会社 Oriented electromagnetic steel sheet
WO2021156960A1 (en) * 2020-02-05 2021-08-12 日本製鉄株式会社 Grain-oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021156980A1 (en) * 2020-02-05 2021-08-12 日本製鉄株式会社 Oriented electromagnetic steel sheet
WO2021156960A1 (en) * 2020-02-05 2021-08-12 日本製鉄株式会社 Grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
Gradmann et al. Flat ferromagnetic, epitaxial 48Ni/52Fe (111) films of few atomic layers
US20140152416A1 (en) Magnetic core, method and device for its production and use of such a magnetic core
Sixtus Magnetic anisotropy in silicon steel
KR950005792B1 (en) Process for production of oriented electrical steel sheet having excellent magnetic properties
JPH08269562A (en) Grain-oriented silicon steel sheet reduced in magnetostriction and its production
JPH08297104A (en) Strain evaluating method for grain oriented electromagnetic steel plate
Foster et al. Loss separation measurements for several electrical steels
Kamminga et al. Diffraction line broadening analysis if broadening is caused by both dislocations and limited crystallite size
Hatano Acoustic emission and stacking‐fault energy
JPS59181575A (en) Torque sensor
Park et al. Comparison of the crystallization behavior of silica between Mg-and Al-phosphate used in tension coatings of grain-oriented electrical steel
RU2763924C1 (en) Sheet of electrical steel with oriented grain structure exhibiting excellent magnetic properties
Owen et al. X-ray measurements on lithium at low temperatures
JP2000345306A (en) High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss
Miyazaki et al. Magnetic relaxation in amorphous (Fe1-xNix) 77Si10B13 alloys
JPH051999A (en) Measurement method and device for complex structure
Hernando et al. Anisotropy, magnetostriction and local chemical order in amorphous TbxFe1-x (0.1< x< 0.55) thin films
JPS6259256B2 (en)
JPH0412502A (en) Soft magnetic powder for magnetic shielding, manufacture thereof and magnetic shielding material
Otte et al. Habit planes of martensite in chrome-carbon steel
Dias et al. Magnetostriction Increase of Polycrystalline Fe-Al-B Thin Sheets after Thermomechanical Process
Dutta et al. Magnetic Non-Destructive Evaluation of Softening of Cold Rolled Low Carbon IF Steel
JPH09178675A (en) Measuring method for aggregate texture in depth direction
JP5353399B2 (en) Indirect measurement method for coating tension of grain-oriented electrical steel sheet
Gubbiotti et al. Magnetic Anisotropy of Fe/Cu (110) Films Studied by in‐situ Brillouin Light Scattering

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702