JPH0829687A - Small-sized zoom lens - Google Patents

Small-sized zoom lens

Info

Publication number
JPH0829687A
JPH0829687A JP16218694A JP16218694A JPH0829687A JP H0829687 A JPH0829687 A JP H0829687A JP 16218694 A JP16218694 A JP 16218694A JP 16218694 A JP16218694 A JP 16218694A JP H0829687 A JPH0829687 A JP H0829687A
Authority
JP
Japan
Prior art keywords
group
lens
wide
telephoto end
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16218694A
Other languages
Japanese (ja)
Inventor
Hitoshi Hagimori
仁 萩森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP16218694A priority Critical patent/JPH0829687A/en
Publication of JPH0829687A publication Critical patent/JPH0829687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To provide the low-cost, small-sized zoom lens which is small in power chromatic aberration at the time of zooming from the wide-angle end to the telephoto end. CONSTITUTION:This zoom lens consists of a 1st positive group Gr1, a 2nd positive group Gr2, and a 3rd negative group Gr3 in order from the object side; and the 1st group Gr1 consists of two negative and positive elements and at least one surface is aspherical. For the zooming from the wide-angle end W to the telephoto end T, the gap d6 between the 2nd group Gr2 and 3rd group Gr3 is narrowed down and a conditional expression 0.01<M23/Z<5 (M23: difference in movement quantity between the 2nd group Gr2 and 3rd group Gr3 at the time of zooming, Z: zoom ratio) is satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小型のズームレンズに
関するものであり、例えばカメラ用撮影レンズとして好
適な小型のズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact zoom lens, for example, a compact zoom lens suitable as a photographing lens for a camera.

【0002】[0002]

【従来の技術】カメラ用撮影レンズとして、従来より様
々なタイプのズームレンズが提案されている(例えば、
特開昭63−148223号,特開平5−181063
号,特開昭62−235916号)。
2. Description of the Related Art Various types of zoom lenses have been conventionally proposed as photographing lenses for cameras (for example,
JP-A-63-148223, JP-A-5-181063
No. 62-235916).

【0003】[0003]

【発明が解決しようとする課題】しかし、これらのズー
ムレンズには、広角端から望遠端にかけてのズーミング
において倍率色収差の変動が大きいという問題がある。
しかも、レンズ枚数が多いためコストが高く、また充分
小型化されていないという問題もある。
However, these zoom lenses have a problem that the chromatic aberration of magnification varies greatly during zooming from the wide-angle end to the telephoto end.
Moreover, there are problems that the cost is high because the number of lenses is large, and the size is not sufficiently reduced.

【0004】本発明はこの点に鑑みてなされたものであ
って、その目的は、広角端から望遠端にかけてのズーミ
ングにおいて倍率色収差の変動が小さい、低コストで小
型のズームレンズを提供することにある。
The present invention has been made in view of this point, and an object thereof is to provide a low-cost and small-sized zoom lens in which variation in lateral chromatic aberration is small during zooming from the wide-angle end to the telephoto end. is there.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明に係るズームレンズは、物体側より順
に、正の屈折力を有する第1群と,正の屈折力を有する
第2群と,負の屈折力を有する第3群とから成るズーム
レンズであって、第1群は負・正の2枚構成であって少
なくとも1面が非球面であり、ズーミングに際して少な
くとも第2群と第3群とが移動し、広角端から望遠端に
かけてのズーミングにおいて第2群と第3群との間隔が
狭まり、次の条件式(1)を満足することを特徴とする。 0.01<M23/Z<5 ……(1) 但し、 M23:ズーミング時の第2群と第3群との移動量の差 Z :ズーム比 である。
To achieve the above object, a zoom lens according to a first aspect of the present invention comprises, in order from the object side, a first group having a positive refractive power and a first group having a positive refractive power. A zoom lens including two groups and a third group having a negative refractive power, wherein the first group has a negative and positive two-lens structure, at least one surface of which is an aspherical surface, and at least the second group during zooming. It is characterized in that the group and the third group move and the distance between the second group and the third group becomes narrower during zooming from the wide-angle end to the telephoto end, and the following conditional expression (1) is satisfied. 0.01 <M 23 / Z <5 (1) However, M 23 is a difference in moving amount between the second group and the third group during zooming, and Z is a zoom ratio.

【0006】広角端から望遠端にかけてのズーミングに
おいて第2群と第3群との間隔が狭まるので、広角端,
望遠端での倍率色収差を小さく抑えることができる。そ
の結果、ズーム比を拡大することができる。条件式(1)
の下限を超えると以上の効果が得られなくなり、条件式
(1)の上限を超えると単色性能が悪くなる。また、第1
群が負・正の2枚構成であるため、広角端時にレンズバ
ックを長くとることができる。広角端時にレンズバック
を長くとれればレンズ外径を小さくすることができるの
で、効果的に小型化を図ることが可能である。
During zooming from the wide-angle end to the telephoto end, the distance between the second group and the third group is narrowed, so
Lateral chromatic aberration can be suppressed at the telephoto end. As a result, the zoom ratio can be increased. Conditional expression (1)
If the lower limit of is exceeded, the above effect will not be obtained, and the conditional expression
If the upper limit of (1) is exceeded, monochromatic performance will be poor. Also, the first
Since the group consists of two negative and positive lenses, the lens back can be long at the wide-angle end. If the lens back is long at the wide-angle end, the outer diameter of the lens can be reduced, so that the size can be effectively reduced.

【0007】第1の発明に係るズームレンズにおいて、
第2群,第3群を各々単レンズで構成し、少なくとも1
面を非球面とすれば、より一層のコンパクト化,低コス
ト化を図ることができる。また、広角端から望遠端にか
けてのズーミングの際、第1群を構成する第1レンズ
と,第1群を構成する第2レンズとの間隔を広げること
によって、望遠側での軸上色収差及び倍率色収差並びに
g線の球面収差を小さく抑えることができ、さらに、単
色性能も良くなるという効果も得られる。
In the zoom lens according to the first invention,
Each of the second group and the third group is composed of a single lens, and at least 1
If the surface is an aspherical surface, further compactness and cost reduction can be achieved. Further, during zooming from the wide-angle end to the telephoto end, by widening the distance between the first lens forming the first group and the second lens forming the first group, axial chromatic aberration and magnification on the telephoto side are increased. The chromatic aberration and the spherical aberration of the g-line can be suppressed small, and further, the effect of improving the monochromatic performance can be obtained.

【0008】第2の発明に係るズームレンズは、物体側
より順に、負の屈折力を有する第1群と,正の屈折力を
有する第2群と,負の屈折力を有する第3群とから成る
ズームレンズであって、第3群は2枚以上のレンズから
成り、広角端から望遠端にかけてのズーミングにおいて
第1群と第2群との間隔が単調に拡がり、次の条件式
(2)を満足することを特徴とする。 0.01<M12/Z<5 ……(2) 但し、 M12:ズーミング時の第1群と第2群との移動量の差 である。
The zoom lens according to the second invention comprises, in order from the object side, a first group having a negative refracting power, a second group having a positive refracting power, and a third group having a negative refracting power. The third lens unit is composed of two or more lenses, and the distance between the first lens unit and the second lens unit monotonically increases during zooming from the wide-angle end to the telephoto end.
It is characterized by satisfying (2). 0.01 <M 12 / Z <5 (2) where M 12 is the difference in the amount of movement between the first group and the second group during zooming.

【0009】広角端から望遠端にかけてのズーミングに
おいて第1群と第2群との間隔が単調に拡がるので、望
遠側での軸上色収差及び倍率色収差を小さく抑えること
ができる。また、広角端から望遠端にかけてのズーミン
グにおいて第1群と第2群との間隔が単調に拡がるの
で、g線の球面収差を小さく抑えることができ、更に単
色性能が良くなるという効果も得られる。第3群は第1
群,第2群に対して単独で大きく移動するが、第3群が
2枚以上のレンズで構成されているため、第3群の中だ
けで色収差を除去することができる。条件式(2)の下限
を超えると以上の効果が得られなくなり、条件式(2)の
上限を超えると単色性能が悪化してしまう。
In zooming from the wide-angle end to the telephoto end, the distance between the first group and the second group monotonically increases, so that axial chromatic aberration and lateral chromatic aberration on the telephoto side can be suppressed to be small. In addition, since the distance between the first group and the second group monotonically increases during zooming from the wide-angle end to the telephoto end, spherical aberration on the g-line can be suppressed to a small value, and monochromatic performance can be improved. . The third group is the first
Although the third group is composed of two or more lenses, it is possible to remove chromatic aberration only in the third group, although the group largely moves independently of the second group. If the lower limit of conditional expression (2) is exceeded, the above effect will not be obtained, and if the upper limit of conditional expression (2) is exceeded, monochromatic performance will deteriorate.

【0010】第2の発明に係るズームレンズにおいて、
更に第1群,第2群を各々単レンズで構成すれば、より
一層のコンパクト化,低コスト化,高性能化を図ること
ができる。
In the zoom lens according to the second invention,
Further, if each of the first group and the second group is composed of a single lens, further compactness, cost reduction and high performance can be achieved.

【0011】第3の発明に係るズームレンズは、物体側
より順に、負の屈折力を有する第1群と,正の屈折力を
有する第2群と,正の屈折力を有する第3群と,負の屈
折力を有する第4群とから成るズームレンズであって、
広角端から望遠端にかけてのズーミングにおいて第1群
と第2群との間隔が拡がり、第3群と第4群との間隔が
狭まることを特徴とする。
A zoom lens according to a third invention comprises, in order from the object side, a first group having a negative refracting power, a second group having a positive refracting power, and a third group having a positive refracting power. A zoom lens composed of a fourth lens unit having a negative refractive power,
In zooming from the wide-angle end to the telephoto end, the distance between the first group and the second group is widened, and the distance between the third group and the fourth group is narrowed.

【0012】広角端から望遠端にかけてのズーミングに
おいて第3群と第4群との間隔が狭まるので、広角端,
望遠端での倍率色収差を小さく抑えることができる。そ
の結果、ズーム比を拡大することができる。広角端から
望遠端にかけてのズーミングにおいて第1群と第2群と
の間隔が拡がるので、望遠側での軸上色収差及び倍率色
収差を小さく抑えることができる。また、広角端から望
遠端にかけてのズーミングにおいて第1群と第2群との
間隔が拡がるので、g線の球面収差を抑えることがで
き、更に単色性能も良くなる。第1群が負の屈折力を有
し、第2群が正の屈折力を有しているため、広角端時に
レンズバックを長くとることができる。広角端時にレン
ズバックを長くとれればレンズ外径を小さくすることが
できるので、効果的に小型化を図ることが可能である。
During zooming from the wide-angle end to the telephoto end, the distance between the third group and the fourth group is narrowed, so
Lateral chromatic aberration can be suppressed at the telephoto end. As a result, the zoom ratio can be increased. During zooming from the wide-angle end to the telephoto end, the distance between the first group and the second group widens, so that axial chromatic aberration and lateral chromatic aberration on the telephoto side can be suppressed to a small value. In addition, since the distance between the first group and the second group widens during zooming from the wide-angle end to the telephoto end, g-line spherical aberration can be suppressed and monochromatic performance is improved. Since the first group has a negative refractive power and the second group has a positive refractive power, the lens back can be long at the wide angle end. If the lens back is long at the wide-angle end, the outer diameter of the lens can be reduced, so that the size can be effectively reduced.

【0013】第3の発明に係るズームレンズにおいて、
以下の条件式(3),(4)を満足するのが好ましい。 0.01<M12/Z<8 ……(3) 0.01<M34/Z<8 ……(4)
In the zoom lens according to the third invention,
It is preferable to satisfy the following conditional expressions (3) and (4). 0.01 <M 12 / Z <8 (3) 0.01 <M 34 / Z <8 (4)

【0014】条件式(3),(4)の下限を超えると、第3の
発明によって得られる上記効果を得ることができなくな
り、条件式(3),(4)の上限を超えると、単色性能が悪化
する。第3の発明に係るズームレンズにおいて、更に各
群を単レンズで構成し、かつ、非球面が2面以上用いれ
ば、より一層のコンパクト化,低コスト化,高性能化を
図ることができる。
When the lower limits of conditional expressions (3) and (4) are exceeded, the above-described effect obtained by the third invention cannot be obtained, and when the upper limits of conditional expressions (3) and (4) are exceeded, monochromatic Performance deteriorates. In the zoom lens according to the third aspect of the present invention, if each group is composed of a single lens and two or more aspherical surfaces are used, further compactness, cost reduction and high performance can be achieved.

【0015】以上のように第1〜第3の発明に係るズー
ムレンズによれば、ズーミングにおいて所定のレンズを
微小量動かすことで、低コスト化,小型化を図りつつ、
特に色収差の良好な補正を行うことができる。なお、圧
電素子をレンズの駆動に使用すると、これまで誤差感度
が高すぎてズーミングで動かせなかったレンズのブロッ
クをズーミングで自由に移動させることが可能となり、
性能,スペックの向上を図ることができる。
As described above, according to the zoom lenses of the first to third aspects of the present invention, by moving a predetermined lens by a small amount during zooming, the cost and size can be reduced,
Particularly good correction of chromatic aberration can be performed. If you use a piezoelectric element to drive the lens, you can freely move the lens block that could not be moved by zooming because of too high error sensitivity.
Performance and specifications can be improved.

【0016】[0016]

【実施例】以下、本発明に係るズームレンズの実施例を
示す。但し、各実施例において、ri(i=1,2,3,...)は物
体側から数えてi番目の面の曲率半径、di(i=1,2,3,...)
は物体側から数えてi番目の軸上面間隔を示し、Ni(i=1,
2,3,...),νi(i=1,2,3,...)は物体側から数えてi番目の
レンズのd線に対する屈折率,アッベ数を示す。また、
広角端(W),中間焦点距離(M)及び望遠端(T)での、全
系の焦点距離f及びFナンバーFNOを併せて示す。
EXAMPLES Examples of zoom lenses according to the present invention will be shown below. However, in each example, ri (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, di (i = 1,2,3, ...)
Represents the i-th axial upper surface distance counted from the object side, and Ni (i = 1,
2,3, ...), νi (i = 1,2,3, ...) represent the refractive index and Abbe number of the i-th lens for the d-line counting from the object side. Also,
The focal length f and the F number FNO of the entire system at the wide angle end (W), the intermediate focal length (M) and the telephoto end (T) are also shown.

【0017】尚、各実施例中、曲率半径に*印を付した
面は非球面で構成された面であることを示し、非球面の
面形状を表わす以下の数1の式で定義するものとする。
It should be noted that in each of the embodiments, the surface with a radius of curvature marked with * indicates that it is a surface composed of an aspherical surface, and is defined by the following formula 1 representing the surface shape of the aspherical surface. And

【0018】[0018]

【数1】 [Equation 1]

【0019】但し、数1の式中、 X :光軸方向の基準面からの変位量 Y :光軸と垂直な方向の高さ C :近軸曲率 ε:2次曲面パラメータ Ai:i次の非球面係数 である。However, in the equation (1), X: displacement from the reference plane in the optical axis direction Y: height in the direction perpendicular to the optical axis C: paraxial curvature ε: quadric surface parameter Ai: i It is an aspherical coefficient.

【0020】<実施例1> f=38.9〜55.0〜102.0,FNO=3.6〜5.1〜9.5 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1* 34.502 d1 2.500 N1 1.84506 ν1 23.66 r2* 22.826 d2 5.369〜5.419〜5.569 r3 69.624 d3 5.000 N2 1.51680 ν2 64.20 r4 -14.016 d4 15.606〜9.872〜3.450 r5* -59.300 d5 3.300 N3 1.52510 ν3 56.38 r6* -31.000 d6 5.000 r7 -11.198 d7 1.000 N4 1.69680 ν4 56.47 r8 -48.129 Σd=37.775〜32.091〜25.819 <Example 1> f = 38.9 to 55.0 to 102.0, FNO = 3.6 to 5.1 to 9.5 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 * 34.502 d1 2.500 N1 1.84506 ν1 23.66 r2 * 22.826 d2 5.369 ~ 5.419 ~ 5.569 r3 69.624 d3 5.000 N2 1.51680 ν2 64.20 r4 -14.016 d4 15.606 ~ 9.872 ~ 3.450 r5 * -59.300 d5 3.300 N3 1.52510 ν3 56.38 r6 * -31.000 d6 5.000 r7 -11.198 d7 1.000 N4 1.69 1.47 r8 -48.129 Σd = 37.775 ~ 32.091 ~ 25.819

【0021】[非球面係数] r1 : ε=1.0000 A4=-0.94637×10-4 A6=-0.46132×10-6 A8=0.14415×10-8 A10=0.55143×10-10 A12=-0.16632×10-11 r2 : ε=1.0000 A4=-0.36811×10-4 A6=-0.73295×10-6 A8=0.26206×10-7 A10=-0.21320×10-9 A12=-0.13639×10-11 r5 : ε=1.0000 A3=-0.34831×10-3 A4=0.24360×10-3 A5=-0.45182×10-4 A6=0.49505×10-5 A7=0.11325×10-6 A8=-0.45967×10-7 A9=-0.80474×10-9 A10=0.31194×10-9 A11=0.80952×10-11 A12=-0.15865×10-11 A13=0.33841×10-15 A14=0.59366×10-15 A15=0.97281×10-16 A16=0.11662×10-16 r6 : ε=1.0000 A3=-0.39293×10-3 A4=0.14715×10-3 A5=-0.14086×10-4 A6=-0.50195×10-6 A7=0.31285×10-7 A8=0.41561×10-7 A9=-0.51847×10-8 A10=0.10910×10-9 A11=0.16120×10-10 A12=-0.25505×10-11 A13=0.13748×10-12 [0021] [aspherical coefficients] r1: ε = 1.0000 A4 = -0.94637 × 10 -4 A6 = -0.46132 × 10 -6 A8 = 0.14415 × 10 -8 A10 = 0.55143 × 10 -10 A12 = -0.16632 × 10 - 11 r2: ε = 1.0000 A4 = -0.368 11 × 10 -4 A6 = -0.73 295 × 10 -6 A8 = 0.26206 × 10 -7 A10 = -0.21320 × 10 -9 A12 = -0.13639 × 10 -11 r5: ε = 1.0000 A3 = -0.34831 × 10 -3 A4 = 0.24360 × 10 -3 A5 = -0.45182 × 10 -4 A6 = 0.49505 × 10 -5 A7 = 0.11325 × 10 -6 A8 = -0.45967 × 10 -7 A9 = -0.80474 × 10 -9 A10 = 0.31194 × 10 -9 A11 = 0.80952 × 10 -11 A12 = -0.15865 × 10 -11 A13 = 0.33841 × 10 -15 A14 = 0.59366 × 10 -15 A15 = 0.97281 × 10 -16 A16 = 0.11662 × 10 -16 r6: ε = 1.0000 A3 = -0.39293 × 10 -3 A4 = 0.14715 × 10 -3 A5 = -0.14086 × 10 -4 A6 = -0.50195 × 10 -6 A7 = 0.31285 × 10 -7 A8 = 0.41561 × 10 -7 A9 = -0.51847 × 10 -8 A10 = 0.109 10 × 10 -9 A11 = 0.16 120 × 10 -10 A12 = -0.25 505 × 10 -11 A13 = 0.13748 × 10 -12

【0022】<実施例2> f=38.9〜55.0〜116.5,FNO=3.6〜5.1〜10.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1* 34.502 d1 2.500 N1 1.84506 ν1 23.66 r2* 22.388 d2 5.840〜6.140〜6.640 r3 59.306 d3 5.000 N2 1.51680 ν2 64.20 r4 -14.786 d4 17.080〜11.082〜3.450 r5* -68.003 d5 3.300 N3 1.52510 ν3 56.38 r6* -31.000 d6 5.000 r7 -10.837 d7 1.000 N4 1.69680 ν4 56.47 r8 -46.411 Σd=39.720〜34.021〜26.890<Example 2> f = 38.9 to 55.0 to 116.5, FNO = 3.6 to 5.1 to 10.9 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 * 34.502 d1 2.500 N1 1.84506 ν1 23.66 r2 * 22.388 d2 5.840 ~ 6.140 ~ 6.640 r3 59.306 d3 5.000 N2 1.51680 ν2 64.20 r4 -14.786 d4 17.080 ~ 11.082 ~ 3.450 r5 * -68.003 d5 3.300 N3 1.52510 ν3 56.38 r6 * -31.000 d6 5.000 r7 -10.837 d7 1.000 N4 1.49 r8 -46.411 Σd = 39.720 ~ 34.021 ~ 26.890

【0023】[非球面係数] r1 : ε=1.0000 A4=-0.80714×10-4 A6=-0.38236×10-6 A8=0.17773×10-8 A10=0.60141×10-10 A12=-0.16286×10-11 r2 : ε=1.0000 A4=-0.29814×10-4 A6=-0.69260×10-6 A8=0.26497×10-7 A10=-0.21467×10-9 A12=-0.13805×10-11 r5 : ε=1.0000 A3=-0.35528×10-3 A4=0.24438×10-3 A5=-0.46861×10-4 A6=0.47826×10-5 A7=0.10360×10-6 A8=-0.46083×10-7 A9=-0.75233×10-9 A10=0.32063×10-9 A11=0.90521×10-11 A12=-0.15000×10-11 A13=0.33841×10-15 A14=0.59366×10-15 A15=0.97281×10-16 A16=0.11662×10-16 r6 : ε=1.0000 A3=-0.38378×10-3 A4=0.14342×10-3 A5=-0.16458×10-4 A6=-0.63963×10-6 A7=0.27110×10-7 A8=0.41368×10-7 A9=-0.46725×10-8 A10=0.87916×10-10 A11=0.90415×10-11 A12=-0.29098×10-11 A13=0.22739×10-12 [0023] [aspherical coefficients] r1: ε = 1.0000 A4 = -0.80714 × 10 -4 A6 = -0.38236 × 10 -6 A8 = 0.17773 × 10 -8 A10 = 0.60141 × 10 -10 A12 = -0.16286 × 10 - 11 r2: ε = 1.0000 A4 = -0.29814 × 10 -4 A6 = -0.69260 × 10 -6 A8 = 0.26497 × 10 -7 A10 = -0.21467 × 10 -9 A12 = -0.13805 × 10 -11 r5: ε = 1.0000 A3 = -0.35528 × 10 -3 A4 = 0.24438 × 10 -3 A5 = -0.46861 × 10 -4 A6 = 0.47826 × 10 -5 A7 = 0.10360 × 10 -6 A8 = -0.46083 × 10 -7 A9 = -0.75233 × 10 -9 A10 = 0.32063 × 10 -9 A11 = 0.90521 × 10 -11 A12 = -0.15000 × 10 -11 A13 = 0.33841 × 10 -15 A14 = 0.59366 × 10 -15 A15 = 0.97281 × 10 -16 A16 = 0.11662 × 10 -16 r6: ε = 1.0000 A3 = -0.38378 × 10 -3 A4 = 0.14342 × 10 -3 A5 = -0.16458 × 10 -4 A6 = -0.63963 × 10 -6 A7 = 0.27110 × 10 -7 A8 = 0.41368 × 10 -7 A9 = -0.46725 × 10 -8 A10 = 0.87916 × 10 -10 A11 = 0.90415 × 10 -11 A12 = -0.29098 × 10 -11 A13 = 0.22739 × 10 -12

【0024】<実施例3> f=38.9〜55.0〜115.0,FNO=4.6〜6〜9.4 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1* 34.502 d1 2.500 N1 1.84506 ν1 23.66 r2* 22.388 d2 5.867〜6.067〜6.467 r3 86.088 d3 5.000 N2 1.51680 ν2 64.20 r4 -13.681 d4 16.746〜10.871〜3.450 r5* -63.720 d5 3.300 N3 1.52510 ν3 56.38 r6* -31.000 d6 5.000 r7 -10.724 d7 1.000 N4 1.69680 ν4 56.47 r8 -42.659 Σd=39.414〜33.738〜26.718<Example 3> f = 38.9 to 55.0 to 115.0, FNO = 4.6 to 6 to 9.4 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 * 34.502 d1 2.500 N1 1.84506 ν1 23.66 r2 * 22.388 d2 5.867 to 6.067 to 6.467 r3 86.088 d3 5.000 N2 1.51680 ν2 64.20 r4 -13.681 d4 16.746 to 10.871 to 3.450 r5 * -63.720 d5 3.300 N3 1.52510 ν3 56.38 r6 * -31.000 d6 5.000 r7 -10.724 d47 1.000 N4 r8-42.659 Σd = 39.414〜33.738〜26.718

【0025】[非球面係数] r1 : ε=1.0000 A4=-0.60481×10-4 A6=-0.35267×10-6 A8=0.18356×10-8 A10=0.61368×10-10 A12=-0.16108×10-11 r2 : ε=1.0000 A4=0.69790×10-5 A6=-0.60899×10-6 A8=0.28548×10-7 A10=-0.19560×10-9 A12=-0.12553×10-11 r5 : ε=1.0000 A3=-0.35658×10-3 A4=0.25197×10-3 A5=-0.47140×10-4 A6=0.47990×10-5 A7=0.10880×10-6 A8=-0.45299×10-7 A9=-0.65884×10-9 A10=0.33035×10-9 A11=0.99640×10-11 A12=-0.14214×10-11 A13=0.33841×10-15 A14=0.59366×10-15 A15=0.97281×10-16 A16=0.11662×10-16 r6 : ε=1.0000 A3=-0.38468×10-3 A4=0.14535×10-3 A5=-0.16383×10-4 A6=-0.62972×10-6 A7=0.27842×10-7 A8=0.43640×10-7 A9=-0.48108×10-8 A10=0.65233×10-10 A11=0.82439×10-11 A12=-0.27089×10-11 A13=0.27939×10-12 [0025] [aspherical coefficients] r1: ε = 1.0000 A4 = -0.60481 × 10 -4 A6 = -0.35267 × 10 -6 A8 = 0.18356 × 10 -8 A10 = 0.61368 × 10 -10 A12 = -0.16108 × 10 - 11 r2: ε = 1.0000 A4 = 0.69790 × 10 -5 A6 = -0.60899 × 10 -6 A8 = 0.28548 × 10 -7 A10 = -0.19560 × 10 -9 A12 = -0.12553 × 10 -11 r5: ε = 1.0000 A3 = -0.35658 × 10 -3 A4 = 0.25197 × 10 -3 A5 = -0.47140 × 10 -4 A6 = 0.47990 × 10 -5 A7 = 0.10880 × 10 -6 A8 = -0.45299 × 10 -7 A9 = -0.65884 × 10 -9 A10 = 0.33035 × 10 -9 A11 = 0.99640 × 10 -11 A12 = -0.14 214 × 10 -11 A13 = 0.33841 × 10 -15 A14 = 0.59366 × 10 -15 A15 = 0.97281 × 10 -16 A16 = 0.11662 × 10 -16 r6: ε = 1.0000 A3 = -0.38468 × 10 -3 A4 = 0.14535 × 10 -3 A5 = -0.16383 × 10 -4 A6 = -0.62972 × 10 -6 A7 = 0.27842 × 10 -7 A8 = 0.43640 × 10 -7 A9 = -0.48 108 × 10 -8 A10 = 0.65233 × 10 -10 A11 = 0.82439 × 10 -11 A12 = -0.27089 × 10 -11 A13 = 0.27939 × 10 -12

【0026】<実施例4> f=38.9〜55.0〜102.0,FNO=3.6〜5.1〜9.4 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1* 34.502 d1 2.500 N1 1.84506 ν1 23.66 r2* 22.826 d2 4.987 r3 87.275 d3 5.000 N2 1.51680 ν2 64.20 r4 -13.179 d4 14.373〜9.504〜3.450 r5* -59.300 d5 3.300 N3 1.52510 ν3 56.38 r6* -31.000 d6 5.000〜4.500〜4.400 r7 -11.228 d7 1.000 N4 1.69680 ν4 56.47 r8 -48.662 Σd=36.160〜30.791〜24.637<Example 4> f = 38.9 to 55.0 to 102.0, FNO = 3.6 to 5.1 to 9.4 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 * 34.502 d1 2.500 N1 1.84506 ν1 23.66 r2 * 22.826 d2 4.987 r3 87.275 d3 5.000 N2 1.51680 ν2 64.20 r4 -13.179 d4 14.373 ~ 9.504 ~ 3.450 r5 * -59.300 d5 3.300 N3 1.52510 ν3 56.38 r6 * -31.000 d6 5.000 ~ 4.500 ~ 4.400 r7 -11.228.69 d7 1.000 N4 r8 -48.662 Σd = 36.160 ~ 30.791 ~ 24.637

【0027】[非球面係数] r1 : ε=1.0000 A4=-0.96461×10-4 A6=-0.54140×10-6 A8=0.11628×10-8 A10=0.51816×10-10 A12=-0.16901×10-11 r2 : ε=1.0000 A4=-0.28420×10-4 A6=-0.70003×10-6 A8=0.26039×10-7 A10=-0.21375×10-9 A12=-0.13664×10-11 r5 : ε=1.0000 A3=-0.34471×10-3 A4=0.25781×10-3 A5=-0.43392×10-4 A6=0.50950×10-5 A7=0.12274×10-6 A8=-0.45464×10-7 A9=-0.78795×10-9 A10=0.31130×10-9 A11=0.78768×10-11 A12=-0.16181×10-11 A13=0.33841×10-15 A14=0.59366×10-15 A15=0.97281×10-16 A16=0.11662×10-16 r6 : ε=1.0000 A3=-0.39539×10-3 A4=0.16102×10-3 A5=-0.12685×10-4 A6=-0.43081×10-6 A7=0.33698×10-7 A8=0.45292×10-7 A9=-0.53103×10-8 A10=0.10601×10-9 A11=0.17331×10-10 A12=-0.24410×10-11 A13=0.12718×10−12 [0027] [aspherical coefficients] r1: ε = 1.0000 A4 = -0.96461 × 10 -4 A6 = -0.54140 × 10 -6 A8 = 0.11628 × 10 -8 A10 = 0.51816 × 10 -10 A12 = -0.16901 × 10 - 11 r2: ε = 1.0000 A4 = -0.28420 × 10 -4 A6 = -0.70003 × 10 -6 A8 = 0.26039 × 10 -7 A10 = -0.21375 × 10 -9 A12 = -0.13664 × 10 -11 r5: ε = 1.0000 A3 = -0.34471 × 10 -3 A4 = 0.25781 × 10 -3 A5 = -0.43392 × 10 -4 A6 = 0.50950 × 10 -5 A7 = 0.12274 × 10 -6 A8 = -0.45464 × 10 -7 A9 = -0.78795 × 10 -9 A10 = 0.31 130 × 10 -9 A11 = 0.78768 × 10 -11 A12 = -0.16181 × 10 -11 A13 = 0.33841 × 10 -15 A14 = 0.59366 × 10 -15 A15 = 0.97281 × 10 -16 A16 = 0.11662 × 10 -16 r6: ε = 1.0000 A3 = -0.39539 × 10 -3 A4 = 0.16 102 × 10 -3 A5 = -0.12685 × 10 -4 A6 = -0.43081 × 10 -6 A7 = 0.33698 × 10 -7 A8 = 0.45292 × 10 -7 A9 = -0.53103 × 10 -8 A10 = 0.10601 × 10 -9 A11 = 0.17331 × 10 -10 A12 = -0.24410 × 10 -11 A13 = 0.12718 × 10 -12

【0028】<実施例5> f=38.9〜55.0〜102.0,FNO=3.6〜5.1〜9.5 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1* 34.502 d1 2.500 N1 1.84506 ν1 23.66 r2* 22.826 d2 5.046〜5.096〜5.246 r3 79.476 d3 5.000 N2 1.51680 ν2 64.20 r4 -13.382 d4 14.437〜9.682〜3.450 r5* -59.300 d5 3.300 N3 1.52510 ν3 56.38 r6* -31.000 d6 5.000 〜4.400〜4.400 r7 -11.150 d7 1.000 N4 1.69680 ν4 56.47 r8 -47.292 Σd=36.283〜30.978〜24.896<Example 5> f = 38.9 to 55.0 to 102.0, FNO = 3.6 to 5.1 to 9.5 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 * 34.502 d1 2.500 N1 1.84506 ν1 23.66 r2 * 22.826 d2 5.046 ~ 5.096 ~ 5.246 r3 79.476 d3 5.000 N2 1.51680 ν2 64.20 r4 -13.382 d4 14.437 ~ 9.682 ~ 3.450 r5 * -59.300 d5 3.300 N3 1.52510 ν3 56.38 r6 * -31.000 d6 5.000 ~ 4.400 ~ 4.400 r4. d7 1.000 N4 1.69680 ν4 56.47 r8 -47.292 Σd = 36.283〜30.978〜24.896

【0029】[非球面係数] r1 : ε=1.0000 A4=-0.94219×10-4 A6=-0.52820×10-6 A8=0.10239×10-8 A10=0.51876×10-10 A12=-0.16837×10-11 r2 : ε=1.0000 A4=-0.28737×10-4 A6=-0.72429×10-6 A8=0.26040×10-7 A10=-0.21379×10-9 A12=-0.13648×10-11 r5 : ε=1.0000 A3=-0.34304×10-3 A4=0.25671×10-3 A5=-0.43904×10-4 A6=0.50578×10-5 A7=0.12068×10-6 A8=-0.45551×10-7 A9=-0.78853×10-9 A10=0.31186×10-9 A11=0.79855×10-11 A12=-0.16027×10-11 A13=0.33841×10-15 A14=0.59366×10-15 A15=0.97281×10-16 A16=0.11662×10-16 r6 : ε=1.0000 A3=-0.39590×10-3 A4=0.15951×10-3 A5=-0.12888×10-4 A6=-0.44656×10-6 A7=0.32917×10-7 A8=0.43345×10-7 A9=-0.52406×10-8 A10=0.11651×10-9A11=0.17720×10-10 A12=-0.24774×10-11 A13=0.11959×10-12 [0029] [aspherical coefficients] r1: ε = 1.0000 A4 = -0.94219 × 10 -4 A6 = -0.52820 × 10 -6 A8 = 0.10239 × 10 -8 A10 = 0.51876 × 10 -10 A12 = -0.16837 × 10 - 11 r2: ε = 1.0000 A4 = -0.28737 × 10 -4 A6 = -0.72429 × 10 -6 A8 = 0.26040 × 10 -7 A10 = -0.21379 × 10 -9 A12 = -0.13648 × 10 -11 r5: ε = 1.0000 A3 = -0.34304 × 10 -3 A4 = 0.25671 × 10 -3 A5 = -0.43904 × 10 -4 A6 = 0.50578 × 10 -5 A7 = 0.12068 × 10 -6 A8 = -0.45551 × 10 -7 A9 = -0.78853 × 10 -9 A10 = 0.31186 × 10 -9 A11 = 0.79855 × 10 -11 A12 = -0.16027 × 10 -11 A13 = 0.33841 × 10 -15 A14 = 0.59366 × 10 -15 A15 = 0.97281 × 10 -16 A16 = 0.11662 × 10 -16 r6: ε = 1.0000 A3 = -0.39590 × 10 -3 A4 = 0.15951 × 10 -3 A5 = -0.12888 × 10 -4 A6 = -0.44656 × 10 -6 A7 = 0.32917 × 10 -7 A8 = 0.43345 × 10 -7 A9 = -0.52406 × 10 -8 A10 = 0.11651 × 10 -9 A11 = 0.17720 × 10 -10 A12 = -0.24774 × 10 -11 A13 = 0.11959 × 10 -12

【0030】<実施例6> f=38.9〜55.0〜115.0,FNO=4.6〜6〜9.4 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1* 34.453 d1 2.500 N1 1.84506 ν1 23.66 r2* 22.366 d2 4.982〜5.382〜5.782 r3 191.825 d3 5.629 N2 1.51680 ν2 64.20 r4 -12.491 d4 16.125〜10.565〜3.450 r5* -63.720 d5 3.300 N3 1.52510 ν3 56.38 r6* -31.000 d6 5.000 〜4.800〜4.700 r7 -10.477 d7 1.000 N4 1.69680 ν4 56.47 r8 -39.144 Σd=38.537〜33.177〜26.362<Example 6> f = 38.9 to 55.0 to 115.0, FNO = 4.6 to 6 to 9.4 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 * 34.453 d1 2.500 N1 1.84506 ν1 23.66 r2 * 22.366 d2 4.982 ~ 5.382 ~ 5.782 r3 191.825 d3 5.629 N2 1.51680 ν2 64.20 r4 -12.491 d4 16.125 ~ 10.565 ~ 3.450 r5 * -63.720 d5 3.300 N3 1.52510 ν3 56.38 r6 * -31.000 d6 5.000 ~ 4.800 ~ 4.477 d7 1.7 r7 -1. N4 1.69680 ν4 56.47 r8 -39.144 Σd = 38.537〜33.177〜26.362

【0031】[非球面係数] r1 : ε=1.0000 A4=-0.24501×10-4 A6=-0.64766×10-6 A8=0.74688×10-9 A10=0.60940×10-10 A12=-0.15886×10-11 r2 : ε=1.0000 A4=0.64119×10-4 A6=-0.74232×10-6 A8=0.28566×10-7 A10=-0.18723×10-9 A12=-0.11707×10-11 r5 : ε=1.0000 A3=-0.36273×10-3 A4=0.25883×10-3 A5=-0.49150×10-4 A6=0.48261×10-5 A7=0.12476×10-6 A8=-0.43416×10-7 A9=-0.51793×10-9 A10=0.33534×10-9 A11=0.93800×10-11 A12=-0.15875×10-11 A13=0.33841×10-15 A14=0.59366×10-15 A15=0.97281×10-16 A16=0.11662×10-16 r6 : ε=1.0000 A3=-0.38200×10-3 A4=0.14506×10-3 A5=-0.18352×10-4 A6=-0.74497×10-6 A7=0.24741×10-7 A8=0.48388×10-7 A9=-0.41416×10-8 A10=0.38072×10-10 A11=-0.41547×10-12 A12=-0.31830×10-11 A13=0.37609×10-12 [0031] [aspherical coefficients] r1: ε = 1.0000 A4 = -0.24501 × 10 -4 A6 = -0.64766 × 10 -6 A8 = 0.74688 × 10 -9 A10 = 0.60940 × 10 -10 A12 = -0.15886 × 10 - 11 r2: ε = 1.0000 A4 = 0.64 119 × 10 -4 A6 = -0.74232 × 10 -6 A8 = 0.28566 × 10 -7 A10 = -0.18723 × 10 -9 A12 = -0.11707 × 10 -11 r5: ε = 1.0000 A3 = -0.36273 × 10 -3 A4 = 0.25883 × 10 -3 A5 = -0.49150 × 10 -4 A6 = 0.48261 × 10 -5 A7 = 0.12476 × 10 -6 A8 = -0.43416 × 10 -7 A9 = -0.51793 × 10 -9 A10 = 0.33534 × 10 -9 A11 = 0.93800 × 10 -11 A12 = -0.15875 × 10 -11 A13 = 0.33841 × 10 -15 A14 = 0.59366 × 10 -15 A15 = 0.97281 × 10 -16 A16 = 0.11662 × 10 -16 r6: ε = 1.0000 A3 = -0.38 200 × 10 -3 A4 = 0.14506 × 10 -3 A5 = -0.18352 × 10 -4 A6 = -0.74497 × 10 -6 A7 = 0.24741 × 10 -7 A8 = 0.48388 × 10 -7 A9 = -0.414 16 × 10 -8 A10 = 0.38072 × 10 -10 A11 = -0.41547 × 10 -12 A12 = -0.31830 × 10 -11 A13 = 0.37609 × 10 -12

【0032】図1〜図6は、実施例1〜実施例6に対応
するレンズ構成図であり、広角端(W)でのレンズ配置を
示している。図中の軌跡m1〜m4は、それぞれ第1群
(Gr1),第2群(Gr2),第3群(Gr3)及び第4群
(Gr4)の広角端(W)から望遠端(T)にかけてのズーミ
ング時の移動を模式的に示している。
FIGS. 1 to 6 are lens configuration diagrams corresponding to Examples 1 to 6, showing the lens arrangement at the wide-angle end (W). Trajectories m1 to m4 in the figure are the first group, respectively.
(Gr1), second group (Gr2), third group (Gr3) and fourth group
The movement of (Gr4) from the wide-angle end (W) to the telephoto end (T) during zooming is schematically shown.

【0033】実施例1〜実施例6は、物体側より順に、
像側に凹の負メニスカスレンズ{第1レンズ(G1)},両
凸の正レンズ{第2レンズ(G2)},像側に凸の正メニス
カスレンズ{第3レンズ(G3)}及び物体側に凹の負メニ
スカスレンズ{第4レンズ(G4)}から構成されており、
第1レンズ(G1)の両面及び第3レンズ(G3)の両面は
非球面になっている。
Examples 1 to 6 are, in order from the object side,
Negative meniscus lens concave to image side {first lens (G1)}, biconvex positive lens {second lens (G2)}, positive meniscus lens convex to image side {third lens (G3)} and object side It is composed of a concave negative meniscus lens {fourth lens (G4)},
Both surfaces of the first lens (G1) and both surfaces of the third lens (G3) are aspherical surfaces.

【0034】実施例1〜3は、第1レンズ(G1)から成
る負の屈折力を有する第1群(Gr1)と,第2レンズ
(G2)から成る正の屈折力を有する第2群(Gr2)と,
第3レンズ(G3)及び第4レンズ(G4)から成る負の屈
折力を有する第3群(Gr3)とで構成されている。そし
て、広角端(W)から望遠端(T)にかけてのズーミングに
おいて、第1群(Gr1)と第2群(Gr2)との間隔(d2)
は単調に拡がる。
In Examples 1 to 3, the first lens unit (Gr1) having a negative refracting power and the second lens unit consisted of the first lens unit (G1).
A second group (Gr2) having a positive refractive power composed of (G2),
It is composed of a third lens unit (G3) and a third lens unit (Gr3) having a negative refracting power and composed of a fourth lens unit (G4). Then, in zooming from the wide-angle end (W) to the telephoto end (T), the distance (d2) between the first group (Gr1) and the second group (Gr2)
Spreads monotonically.

【0035】実施例4は、第1レンズ(G1)及び第2レ
ンズ(G2)から成る正の屈折力を有する第1群(Gr1)
と,第3レンズ(G3)から成る正の屈折力を有する第2
群(Gr2)と,第4レンズ(G4)から成る負の屈折力を
有する第3群(Gr3)とで構成されている。そして、ズ
ーミングに際しては第2群(Gr2)と第3群(Gr3)と
が移動するが、その広角端(W)から望遠端(T)にかけて
のズーミングにおいて、第2群(Gr2)と第3群(Gr
3)との間隔(d6)は狭まる。
In the fourth embodiment, the first lens unit (Gr1) having a positive refractive power and composed of the first lens (G1) and the second lens (G2).
And a second lens having a positive refractive power composed of a third lens (G3)
It is composed of a group (Gr2) and a third group (Gr3) composed of a fourth lens (G4) and having a negative refractive power. Then, during zooming, the second group (Gr2) and the third group (Gr3) move, but during zooming from the wide-angle end (W) to the telephoto end (T), the second group (Gr2) and the third group (Gr2) move. Group (Gr
The distance (d6) from 3) becomes narrower.

【0036】実施例5及び実施例6は、第1レンズ(G
1)から成る負の屈折力を有する第1群(Gr1)と,第
2レンズ(G2)から成る正の屈折力を有する第2群(G
r2)と,第3レンズ(G3)から成る正の屈折力を有す
る第3群(Gr3)と,第4レンズ(G4)から成る負の屈
折力を有する第4群(Gr4)とで構成されている。そし
て、広角端(W)から望遠端(T)にかけてのズーミングに
おいて、第1群(Gr1)と第2群(Gr2)との間隔(d2)
は拡がり、第3群(Gr3)と第4群(Gr4)との間隔(d
6)は狭まる。
In Examples 5 and 6, the first lens (G
1) having a negative refracting power, the first group (Gr1), and the second lens (G2) having a positive refracting power, the second group (Gr1).
r2), a third lens unit (Gr3) having a positive refractive power composed of a third lens (G3), and a fourth lens unit (Gr4) having a negative refractive power composed of a fourth lens (G4). ing. Then, in zooming from the wide-angle end (W) to the telephoto end (T), the distance (d2) between the first group (Gr1) and the second group (Gr2)
Spread, and the distance between the third group (Gr3) and the fourth group (Gr4) (d
6) narrows.

【0037】図7〜図12は、それぞれ実施例1〜実施
例6に対応する収差図である。各図中、(W)は広角端,
(M)は中間焦点距離(ミドル),(T)は望遠端での収差を
示している。また、実線(d)はd線に対する収差、一点
鎖線(g)はg線に対する収差を表わし、破線(SC)は正
弦条件を表わす。さらに、破線(DM)と実線(DS)は、
それぞれメリディオナル面とサジタル面での非点収差を
表わしている。
7 to 12 are aberration diagrams corresponding to Examples 1 to 6, respectively. In each figure, (W) is the wide-angle end,
(M) shows the intermediate focal length (middle), and (T) shows the aberration at the telephoto end. The solid line (d) shows the aberration for the d line, the alternate long and short dash line (g) shows the aberration for the g line, and the broken line (SC) shows the sine condition. Furthermore, the broken line (DM) and the solid line (DS) are
Each represents astigmatism on the meridional surface and the sagittal surface.

【0038】図13〜図18は、それぞれ実施例1〜実
施例6に対応する倍率色収差図である。各図中、(W)は
広角端,(M)は中間焦点距離(ミドル),(T)は望遠端で
の収差を示している。また、実線(g)はg線に対する収
差、破線(c)はc線に対する収差を表わす。
13 to 18 are lateral chromatic aberration diagrams corresponding to Examples 1 to 6, respectively. In each figure, (W) shows the aberration at the wide-angle end, (M) shows the intermediate focal length (middle), and (T) shows the aberration at the telephoto end. Further, the solid line (g) represents the aberration with respect to the g-line, and the broken line (c) represents the aberration with respect to the c-line.

【0039】実施例1〜実施例6における条件式(1)〜
条件式(4)に対応する値を、レンズ構成と併せて表1に
示す。
Conditional Expression (1) in Examples 1 to 6
The values corresponding to the conditional expression (4) are shown in Table 1 together with the lens configuration.

【0040】[0040]

【表1】 [Table 1]

【0041】実施例4のように、広角端(W)から望遠端
(T)にかけてのズーミングにおいて第2群(Gr2)と第
3群(Gr3)との間隔{第3レンズ(G3)と第4レンズ
(G4)との間隔(d6)}を狭めることによって、広角端
(W),望遠端(T)で倍率色収差(軸外色収差)が小さく抑
えられることを、間隔(d6)を一定とした場合と比較して
説明する。表2に、それぞれの1次の色収差係数(軸外)
を示す。
As in Example 4, from the wide-angle end (W) to the telephoto end
In zooming to (T), the distance between the second lens unit (Gr2) and the third lens unit (Gr3) {third lens (G3) and fourth lens
By narrowing the distance (d6) from (G4),
The reduction of lateral chromatic aberration (off-axis chromatic aberration) at (W) and the telephoto end (T) will be described in comparison with the case where the interval (d6) is constant. Table 2 shows each primary chromatic aberration coefficient (off-axis)
Indicates.

【0042】表2中の(*1)に関し、本タイプのズームレ
ンズでは、広角端(W)の倍率色収差特性はマイナス方向
であることが収差図から分かる。この量は、より高次の
収差で発生していると考えられる。1次収差領域では、
これを補正できる方が良く、従って、実施例4で広角端
(W)の値がプラスに大きくなっているのは、補正する方
向である。また、(*2)に関し、逆に望遠端(T)ではプラ
スの係数が小さくなるのが望ましい。
Regarding (* 1) in Table 2, it can be seen from the aberration diagram that the chromatic aberration of magnification at the wide-angle end (W) is negative in this type of zoom lens. It is considered that this amount is caused by higher-order aberrations. In the first-order aberration region,
It is better to be able to correct this.
The positive value of (W) is in the direction of correction. Regarding (* 2), conversely, it is desirable that the positive coefficient becomes small at the telephoto end (T).

【0043】表2中の(*3)に関し、広角端(W)から望遠
端(W)にかけてレンズ間隔(d6)を狭めると、望遠端(W)
における第1群(Gr1)と第2群(Gr2)との間隔(d2)
を一定にするという前提のもとでは、第1群(Gr1)の
パワーが大きくなる。結果として、広角端(W)では、第
4レンズ(G4)後面の近軸光線の光線高が大きく、主光
線の光線高が小さくなり、軸外の色収差係数がプラスに
大きくなる。また、望遠端(T)では、第4レンズ(G4)
前面の主光線の光線高が小さくなり、その結果、軸外の
色収差係数がマイナスに大きくなる。
Regarding (* 3) in Table 2, when the lens interval (d6) is narrowed from the wide-angle end (W) to the telephoto end (W), the telephoto end (W)
(D2) between the first group (Gr1) and the second group (Gr2) in
The power of the first lens unit (Gr1) is increased under the assumption that is constant. As a result, at the wide-angle end (W), the paraxial ray height of the rear surface of the fourth lens (G4) is large, the chief ray height is small, and the off-axis chromatic aberration coefficient is positively increased. At the telephoto end (T), the fourth lens (G4)
The ray height of the chief ray on the front surface is reduced, and as a result, the off-axis chromatic aberration coefficient is negatively increased.

【0044】[0044]

【表2】 [Table 2]

【0045】実施例1〜3,5,6のように、広角端
(W)から望遠端(T)にかけてのズーミングにおいて第1
群(Gr1)と第2群(Gr2)との間隔{第1レンズ(G
1)と第2レンズ(G2)との間隔(d2)}を拡げることによ
って、望遠端(T)での軸上色収差及び倍率色収差が小さ
く抑えられることを、実施例1と,間隔(d2)を一定とし
た場合とを比較して説明する。表3に、それぞれの1次
の色収差係数(軸上,軸外)を示す。
As in Examples 1 to 3, 5 and 6, the wide angle end
First in zooming from (W) to the telephoto end (T)
Distance between group (Gr1) and second group (Gr2) {first lens (Gr1)
The distance (d2)} between the first lens and the second lens (G2) is increased to suppress axial chromatic aberration and lateral chromatic aberration at the telephoto end (T) to be small. Will be described in comparison with the case where is constant. Table 3 shows each primary chromatic aberration coefficient (on-axis, off-axis).

【0046】表3中の(*1)に関し、本タイプのズームレ
ンズでは、広角端(W)から望遠端(T)にかけて第1レン
ズ(G1)と第2レンズ(G2)との間隔(d2)を拡げること
で、軸上光の第2レンズ(G2)に当たる近軸光線の光線
高が高くなり、その結果、第2レンズ(G2)の軸上色収
差係数がマイナスに大きくなり、望遠端(T)の軸上色収
差が減少する。
Regarding (* 1) in Table 3, in the zoom lens of this type, the distance (d2) between the first lens (G1) and the second lens (G2) is widened from the wide-angle end (W) to the telephoto end (T). ) Is increased, the height of the paraxial ray that strikes the second lens (G2) of the axial light is increased, and as a result, the axial chromatic aberration coefficient of the second lens (G2) is negatively increased and the telephoto end ( The axial chromatic aberration of (T) is reduced.

【0047】表3中の(*2)に関し、広角端(W)から望遠
端(T)にかけて第1レンズ(G1)と第2レンズ(G2)と
の間隔(d2)を拡げることで、軸外主光線の第1レンズ
(G1)に当たる光線高が高くなり(マイナスに大きく)、
その結果、第1レンズ(G1)の倍率色収差係数がマイナ
スに大きくなり、望遠端(T)の倍率色収差が減少する。
Regarding (* 2) in Table 3, by expanding the distance (d2) between the first lens (G1) and the second lens (G2) from the wide-angle end (W) to the telephoto end (T), First lens of outer chief ray
The height of the ray that hits (G1) is high (negatively large),
As a result, the lateral chromatic aberration coefficient of the first lens (G1) becomes negatively large, and the lateral chromatic aberration at the telephoto end (T) decreases.

【0048】[0048]

【表3】 [Table 3]

【0049】実施例1〜3,5,6のように、広角端
(W)から望遠端(T)にかけてのズーミングにおいて第1
群(Gr1)と第2群(Gr2)との間隔{第1レンズ(G
1)と第2レンズ(G2)との間隔(d2)}を拡げることによ
って、g線の球面収差が小さく抑えられ(d線の球面収
差についても同様である。)、更に単色性能が良くなる
ことを、実施例1と,間隔(d2)を一定とした場合とを比
較して説明する。表4に、それぞれの球面収差係数{第
1レンズ(G1),第2レンズ(G2)のみ}を示す。な
お、表4中の()内はそのうちの非球面分を示す。
As in Examples 1 to 3, 5 and 6, the wide-angle end
First in zooming from (W) to the telephoto end (T)
Distance between group (Gr1) and second group (Gr2) {first lens (Gr1)
By expanding the distance (d2)} between 1) and the second lens (G2), the spherical aberration of the g-line can be suppressed to a small value (the same applies to the spherical aberration of the d-line), and the monochromatic performance is further improved. This will be described by comparing Example 1 with the case where the interval (d2) is constant. Table 4 shows each spherical aberration coefficient {first lens (G1), second lens (G2) only}. In addition, () in Table 4 shows the aspherical surface portion.

【0050】4群4枚タイプのズームレンズでは、望遠
端(T)が長焦点に進むにつれて、g線の球面収差がオー
バーに倒れ、それが性能を限定し、それ以上の長焦点化
を望めないことになっている。表4中の(*1)に関し、広
角端(W)から望遠端(W)へのズーミングにおいて第1レ
ンズ(G1)と第2レンズ(G2)との間隔(d2)を広くする
ことで、広角端(W)での性能を落とさずに、望遠端(T)
の球面収差をg線,d線ともに良くすることができる。
望遠側で発生しているg線,d線の球面収差を、よりア
ンダーに補正するためには、最もオーバーの球面収差を
発生させている第1レンズ(G1)前の非球面形状を弱め
る必要がある。本タイプのズームレンズでは、広角端
(W)から望遠端(T)で第1レンズ(G1)と第2レンズ
(G2)との間隔(d2)を広げることにより、第1レンズ
(G1)の持つ非球面の形状を緩めている。その結果、第
1レンズ(G1)全体で発生する球面収差が小さくなるた
め、トータルのオーバーの球面収差を抑えることができ
た。
In the four-group, four-lens type zoom lens, as the telephoto end (T) advances to the long focus, the spherical aberration of the g-line falls over, which limits the performance, and it is desired to achieve a longer focus. Not supposed to. Regarding (* 1) in Table 4, by widening the distance (d2) between the first lens (G1) and the second lens (G2) in zooming from the wide-angle end (W) to the telephoto end (W), Telephoto end (T) without compromising performance at wide-angle end (W)
The spherical aberration of can be improved for both the g-line and the d-line.
In order to correct the spherical aberrations of the g-line and d-line that are generated on the telephoto side to be more under, it is necessary to weaken the aspherical shape in front of the first lens (G1) that generates the most over-spherical aberration. There is. With this type of zoom lens, the wide-angle end
First lens (G1) and second lens from (W) to the telephoto end (T)
By increasing the distance (d2) from (G2), the first lens
The aspherical shape of (G1) is loosened. As a result, the spherical aberration generated in the entire first lens (G1) becomes small, and the total spherical aberration can be suppressed.

【0051】[0051]

【表4】 [Table 4]

【0052】[0052]

【発明の効果】以上説明したように本発明によれば、広
角端から望遠端にかけてのズーミングにおいて倍率色収
差の変動が小さい、低コストで小型のズームレンズを実
現することができる。また、性能の向上と共に、スペッ
クの更なる拡大が可能である。
As described above, according to the present invention, it is possible to realize a low-cost and small-sized zoom lens in which variation in lateral chromatic aberration is small during zooming from the wide-angle end to the telephoto end. In addition, performance can be improved and specifications can be further expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment of the present invention.

【図2】本発明の実施例2のレンズ構成図。FIG. 2 is a lens configuration diagram of a second embodiment of the present invention.

【図3】本発明の実施例3のレンズ構成図。FIG. 3 is a lens configuration diagram of a third embodiment of the present invention.

【図4】本発明の実施例4のレンズ構成図。FIG. 4 is a lens configuration diagram of a fourth embodiment of the present invention.

【図5】本発明の実施例5のレンズ構成図。FIG. 5 is a lens configuration diagram of a fifth embodiment of the present invention.

【図6】本発明の実施例6のレンズ構成図。FIG. 6 is a lens configuration diagram of a sixth embodiment of the present invention.

【図7】本発明の実施例1の収差図。FIG. 7 is an aberration diagram of Example 1 of the present invention.

【図8】本発明の実施例2の収差図。FIG. 8 is an aberration diagram of Example 2 of the present invention.

【図9】本発明の実施例3の収差図。FIG. 9 is an aberration diagram of Example 3 of the present invention.

【図10】本発明の実施例4の収差図。FIG. 10 is an aberration diagram of Example 4 of the present invention.

【図11】本発明の実施例5の収差図。FIG. 11 is an aberration diagram of Example 5 of the present invention.

【図12】本発明の実施例6の収差図。FIG. 12 is an aberration diagram of Example 6 of the present invention.

【図13】本発明の実施例1の倍率色収差図。FIG. 13 is a lateral chromatic aberration diagram of Example 1 of the present invention.

【図14】本発明の実施例2の倍率色収差図。FIG. 14 is a lateral chromatic aberration diagram of the second embodiment of the present invention.

【図15】本発明の実施例3の倍率色収差図。FIG. 15 is a diagram showing lateral chromatic aberration of Example 3 of the present invention.

【図16】本発明の実施例4の倍率色収差図。FIG. 16 is a lateral chromatic aberration diagram of the fourth embodiment of the present invention.

【図17】本発明の実施例5の倍率色収差図。FIG. 17 is a lateral chromatic aberration diagram of the fifth embodiment of the present invention.

【図18】本発明の実施例6の倍率色収差図。FIG. 18 is a lateral chromatic aberration diagram of Example 6 of the present invention.

【符号の説明】[Explanation of symbols]

Gr1 …第1群 Gr2 …第2群 Gr3 …第3群 Gr4 …第4群 Gr1 ... 1st group Gr2 ... 2nd group Gr3 ... 3rd group Gr4 ... 4th group

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力を有する第1
群と,正の屈折力を有する第2群と,負の屈折力を有す
る第3群とから成るズームレンズであって、 第1群は負・正の2枚構成であって少なくとも1面が非
球面であり、 ズーミングに際して少なくとも第2群と第3群とが移動
し、広角端から望遠端にかけてのズーミングにおいて第
2群と第3群との間隔が狭まり、次の条件を満足するこ
とを特徴とする小型のズームレンズ; 0.01<M23/Z<5 但し、 M23:ズーミング時の第2群と第3群との移動量の差 Z :ズーム比 である。
1. A first lens element having a positive refractive power in order from the object side.
A zoom lens comprising a group, a second group having a positive refracting power, and a third group having a negative refracting power, wherein the first group has a negative / positive two-lens structure and at least one surface is It is an aspherical surface, and at least the second lens group and the third lens group move during zooming, and the distance between the second lens group and the third lens group narrows during zooming from the wide-angle end to the telephoto end, so that the following conditions are satisfied. Characteristic small-sized zoom lens; 0.01 <M 23 / Z <5, where M 23 is a difference in movement amount between the second group and the third group during zooming, and Z is a zoom ratio.
【請求項2】物体側より順に、負の屈折力を有する第1
群と,正の屈折力を有する第2群と,負の屈折力を有す
る第3群とから成るズームレンズであって、 第3群は2枚以上のレンズから成り、 広角端から望遠端にかけてのズーミングにおいて第1群
と第2群との間隔が単調に拡がり、次の条件を満足する
ことを特徴とする小型のズームレンズ; 0.01<M12/Z<5 但し、 M12:ズーミング時の第1群と第2群との移動量の差 Z :ズーム比 である。
2. A first lens element having a negative refractive power in order from the object side.
A zoom lens comprising a group, a second group having a positive refractive power, and a third group having a negative refractive power, wherein the third group is composed of two or more lenses, and from the wide-angle end to the telephoto end. In zooming, a small zoom lens characterized in that the distance between the first group and the second group monotonically expands and the following condition is satisfied: 0.01 <M 12 / Z <5 where M 12 : during zooming It is the difference Z in the amount of movement between the first group and the second group: zoom ratio.
【請求項3】物体側より順に、負の屈折力を有する第1
群と,正の屈折力を有する第2群と,正の屈折力を有す
る第3群と,負の屈折力を有する第4群とから成るズー
ムレンズであって、 広角端から望遠端にかけてのズーミングにおいて第1群
と第2群との間隔が拡がり、第3群と第4群との間隔が
狭まることを特徴とする小型のズームレンズ。
3. A first lens element having a negative refractive power in order from the object side.
A zoom lens comprising a group, a second group having a positive refracting power, a third group having a positive refracting power, and a fourth group having a negative refracting power, the zoom lens comprising a wide-angle end to a telephoto end. A small zoom lens characterized in that a distance between the first group and the second group is widened and a distance between the third group and the fourth group is narrowed during zooming.
JP16218694A 1994-07-14 1994-07-14 Small-sized zoom lens Pending JPH0829687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16218694A JPH0829687A (en) 1994-07-14 1994-07-14 Small-sized zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16218694A JPH0829687A (en) 1994-07-14 1994-07-14 Small-sized zoom lens

Publications (1)

Publication Number Publication Date
JPH0829687A true JPH0829687A (en) 1996-02-02

Family

ID=15749646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16218694A Pending JPH0829687A (en) 1994-07-14 1994-07-14 Small-sized zoom lens

Country Status (1)

Country Link
JP (1) JPH0829687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275518A (en) * 1999-03-24 2000-10-06 Asahi Optical Co Ltd Zoom lens system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275518A (en) * 1999-03-24 2000-10-06 Asahi Optical Co Ltd Zoom lens system

Similar Documents

Publication Publication Date Title
US7161746B2 (en) Fisheye lens
JPH05173071A (en) Wide angle zoom lens
JP4147786B2 (en) Zoom lens
US6191895B1 (en) Zoom lens system
JPH1020193A (en) Zoom lens
JPH0921952A (en) Zoom lens
JP3698134B2 (en) Zoom lens
JP3302063B2 (en) Rear focus compact zoom lens
JPH07311339A (en) Compact zoom lens
JPH10161028A (en) Zoom lens
JPH11174324A (en) Zoom lens
JPH11352402A (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JPH1082954A (en) Wide-angle zoom lens
JP2605386B2 (en) Compact zoom lens
JPH10333037A (en) Zoom lens
JPH11249017A (en) Three-group zoom lens
JPH06130298A (en) Compact zoom lens
JPH0894930A (en) Variable power lens system for copying
JP2000275524A (en) Zoom lens
JPH08262325A (en) Zoom lens
JP2623871B2 (en) Zoom lens with simple configuration
JP4444416B2 (en) Zoom lens
JP2811828B2 (en) Zoom lens having simple configuration and camera having the same
JPH07181390A (en) Compact macro-lens