JPH07181390A - Compact macro-lens - Google Patents

Compact macro-lens

Info

Publication number
JPH07181390A
JPH07181390A JP5323788A JP32378893A JPH07181390A JP H07181390 A JPH07181390 A JP H07181390A JP 5323788 A JP5323788 A JP 5323788A JP 32378893 A JP32378893 A JP 32378893A JP H07181390 A JPH07181390 A JP H07181390A
Authority
JP
Japan
Prior art keywords
group
lens
object side
focusing
photographing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5323788A
Other languages
Japanese (ja)
Inventor
Kenji Konno
賢治 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP5323788A priority Critical patent/JPH07181390A/en
Publication of JPH07181390A publication Critical patent/JPH07181390A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a compact macro-lens having a relatively small delivering quantity in focusing, and capable of performing a high power photographing having a photographing distance to some degree. CONSTITUTION:This lens is formed of, in order from object side, a first group Gr1 having negative refracting power, a second group Gr2 having positive refracting power, and a third group Gr3 having positive refracting power. An affocal system is substantially formed by the Gr1 and Gr2, and at the focusing from infinite object side to near object side, all the Gr1-Gr3 are moved on the object side and focused so that the air space between the Gr1 and Gr2 is slightly reduced, and the air space between the Gr2 and Gr3 is slightly increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マクロレンズに関する
ものであり、更に詳しくはマクロレンズ内蔵型コンパク
トカメラ用のマクロレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a macro lens, and more particularly to a macro lens for a compact camera incorporating a macro lens.

【0002】[0002]

【従来の技術】近年、コンパクトカメラにおいて、近接
撮影距離の短縮に対する要望が高まっている。
2. Description of the Related Art In recent years, there has been an increasing demand for shortening the close-up shooting distance in compact cameras.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のコンパ
クトカメラでは、近接物体にフォーカシングする際に像
面が倒れるため、十分な近接撮影性能を得ることができ
なかった。また、一般の撮影レンズでは、フォーカシン
グにおける繰り出し量を小さくすると、同じ撮影倍率で
も撮影距離が短くなってしまい、実際の撮影においては
不利であった。
However, the conventional compact camera cannot obtain sufficient close-up shooting performance because the image plane falls when focusing on a close-up object. Further, in a general photographing lens, if the extension amount in focusing is reduced, the photographing distance becomes short even at the same photographing magnification, which is disadvantageous in actual photographing.

【0004】本発明は、このような状況に鑑みてなされ
たものであって、フォーカシングにおける繰り出し量が
比較的小さく、ある程度の撮影距離を有する高倍率撮影
が可能でコンパクトなマクロレンズを提供することを目
的とする。
The present invention has been made in view of such a situation, and provides a compact macro lens which has a relatively small amount of extension in focusing and is capable of high magnification photographing with a certain photographing distance. With the goal.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るマクロレンズは、物体側から順に、負
の屈折力を有する第1群と,正の屈折力を有する第2群
と,正の屈折力を有する第3群とから成る撮影光学系に
おいて、前記第1群と前記第2群とでほぼアフォーカル
系を形成し、無限遠物体側から近接物体側へのフォーカ
シングに際して、前記第1群と前記第2群との空気間隔
がわずかに減少し、前記第2群と前記第3群との空気間
隔がわずかに増大するように、前記第1群から第3群ま
でをいずれも物体側へ移動させて合焦を行うことを特徴
とする。
In order to achieve the above object, a macro lens according to the present invention comprises, in order from the object side, a first group having a negative refractive power and a second group having a positive refractive power. , In a photographing optical system including a third group having a positive refractive power, the first group and the second group form an afocal system, and at the time of focusing from the infinite object side to the near object side, From the first group to the third group, the air gap between the first group and the second group is slightly reduced, and the air gap between the second group and the third group is slightly increased. Both are characterized by moving to the object side to perform focusing.

【0006】本発明では、上記のように負・正・正の3
群構成において、フォーカシングにフローティングを採
用することにより、良好な性能を維持しつつマクロ撮影
を可能にしている。つまり、上記アフォーカル系によっ
て第2群を通る軸上光線が平行に近くなるので、近接物
体へのフォーカシングの際に、第1群と第2群との空気
間隔及び第2群と第3群との空気間隔をわずかに変化さ
せても、球面収差等に変化を与えずに像面湾曲の補正を
行うことができ、このため、無限遠撮影から近接撮影ま
で、収差変動を小さくすることができるのである。
In the present invention, as described above, the negative, positive, and positive 3
In the group structure, by adopting floating for focusing, macro photography is possible while maintaining good performance. That is, since the axial rays passing through the second lens group become close to parallel due to the afocal system, the air gap between the first lens group and the second lens group and the second lens group and the third lens group during focusing on a near object. The field curvature can be corrected without changing the spherical aberration and the like even if the air space between and is slightly changed. Therefore, the aberration variation can be reduced from infinity shooting to close-up shooting. You can do it.

【0007】また、上記のフォーカシング方式は、ほぼ
全体繰り出しに近いので、全系の焦点距離の変動を小さ
くすることができる。このため、高倍率撮影時の撮影距
離をある程度長くすることができるので、上記構成は実
際の使用において有利である。
Further, since the focusing method described above is almost the same as the entire extension, the fluctuation of the focal length of the entire system can be reduced. Therefore, the photographing distance at the time of high-magnification photographing can be lengthened to a certain extent, and the above configuration is advantageous in actual use.

【0008】本発明の構成において、以下の条件式(1)
〜(4)を満足することが望ましい。 0.2<f/f2<1.0 …(1) 1.0<D2/D1<1.2 …(2) D1=D3 …(3) -0.1<f/f1,2<0.3 …(4) 但し、 f :全系の焦点距離 f2:第2群の焦点距離 Di:第i群の移動量(ここで、i=1,2,3) f1,2:第1群と第2群との合成焦点距離 である。
In the configuration of the present invention, the following conditional expression (1)
It is desirable to satisfy (4). 0.2 <f / f 2 <1.0 ... (1) 1.0 <D 2 / D 1 <1.2 ... (2) D 1 = D 3 ... (3) -0.1 <f / f 1,2 <0.3 ... (4) where , F: focal length of the entire system f 2 : focal length of the second group D i : amount of movement of the i-th group (where i = 1,2,3) f 1,2 : first and second groups And is the combined focal length.

【0009】条件式(1)は、第2群の焦点距離と全系の
焦点距離との比を与えている。条件式(1)の下限を超え
ると、近接時に発生する負の像面湾曲を抑えることが困
難になる。条件式(1)の上限を超えると、近接時に像面
湾曲が正に過大に発生する。
Conditional expression (1) gives the ratio between the focal length of the second lens unit and the focal length of the entire system. If the lower limit of conditional expression (1) is exceeded, it will be difficult to suppress the negative field curvature that occurs during proximity. If the upper limit of conditional expression (1) is exceeded, the curvature of field will be excessively large when approaching.

【0010】また、条件式(1)の上限を超えると、高倍
率撮影時での各群の移動量が大きくなる。特に、第2群
の移動量が大きくなると、無限遠撮影時に第1群と第2
群との軸上間隔を大きくする必要があり、そのためコン
パクト性を損なうことになる。条件式(1)の下限を超え
ると、高倍率撮影時の撮影距離を長く保つことが困難に
なる。
If the upper limit of conditional expression (1) is exceeded, the amount of movement of each group during high-magnification photography becomes large. In particular, when the amount of movement of the second lens group becomes large, the first lens group and the second lens group will move during infinity shooting.
It is necessary to increase the axial distance from the group, which impairs compactness. If the lower limit of conditional expression (1) is exceeded, it will be difficult to maintain a long shooting distance during high-magnification shooting.

【0011】条件式(2)は、第1群と第2群との移動量
の比を与えている。条件式(2)の下限を超えると、近接
時に発生する負の像面湾曲を抑えることが困難になる。
条件式(2)の上限を超えると、近接時に像面湾曲が正に
過大に発生する。
Conditional expression (2) gives the ratio of the amount of movement of the first and second groups. When the value goes below the lower limit of the conditional expression (2), it becomes difficult to suppress the negative curvature of field that occurs when approaching.
If the upper limit of conditional expression (2) is exceeded, the curvature of field will be excessively large when approaching.

【0012】条件式(3)は、第1群と第3群とが一体で
移動することを示している。一体で移動することによ
り、鏡筒の構成が簡単になる。逆に、条件式(3)を満足
しないと、非常に複雑な鏡筒構成になり、それがコスト
の上昇につながることになる。
Conditional expression (3) indicates that the first group and the third group move integrally. By moving as a unit, the configuration of the lens barrel becomes simple. On the contrary, if the conditional expression (3) is not satisfied, the lens barrel structure becomes very complicated, which leads to an increase in cost.

【0013】条件式(4)は、第1群と第2群の合成焦点
距離と全系の焦点距離との比を与えている。条件式(4)
の上限を超えると、近接時に球面収差が負に過大に発生
する。条件式(4)の下限を超えると、近接時に発生する
正の球面収差を抑えることが困難になる。
Conditional expression (4) gives the ratio of the combined focal length of the first and second lens units to the focal length of the entire system. Conditional expression (4)
When the value exceeds the upper limit of, spherical aberration is excessively negatively generated when close to each other. If the lower limit of conditional expression (4) is exceeded, it will be difficult to suppress positive spherical aberration that occurs at the time of proximity.

【0014】本発明を、物体側から順に、像側に凸の負
メニスカスレンズから成る第1群と,物体側に凸の正メ
ニスカスレンズ及び物体側に凸の負メニスカスレンズか
ら成る第2群と,両凸正レンズ及び両凹負レンズから成
る第3群とで構成すると、全系が5枚のレンズから成る
ためにレンズ全厚が小さくなる結果、コンパクトな構成
にすることができる。ここで、第2群及び第3群に非球
面を設けると、更なる性能向上を図ることができる。
The present invention comprises, in order from the object side, a first group consisting of a negative meniscus lens convex to the image side, and a second group consisting of a positive meniscus lens convex to the object side and a negative meniscus lens convex to the object side. If the third lens unit is composed of a biconvex positive lens and a biconcave negative lens, the entire system is composed of five lenses, so that the total lens thickness is small, so that a compact structure can be obtained. Here, if aspherical surfaces are provided in the second group and the third group, it is possible to further improve the performance.

【0015】上記のような構成にすることによって、無
限遠物体から近接物体まで良好な結像性能を有する撮影
光学系を得ることができる。
With the above-mentioned structure, it is possible to obtain a photographic optical system having a good imaging performance from an infinitely distant object to a near object.

【0016】[0016]

【実施例】以下、本発明に係るマクロレンズの実施例を
示す。但し、各実施例中、fは全系の焦点距離、FNOは
Fナンバーを示し、ri(i=1,2,3,...)は物体側から数え
てi番目の面の曲率半径、di(i=1,2,3,...)は物体側から
数えてi番目の軸上面間隔を示し、Ni(i=1,2,3,...),νi
(i=1,2,3,...)は物体側から数えてi番目のレンズのd線
に対する屈折率,アッベ数を示す。
EXAMPLES Examples of macro lenses according to the present invention will be shown below. However, in each embodiment, f is the focal length of the entire system, FNO is the F number, ri (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, di (i = 1,2,3, ...) is the i-th axial upper surface distance counted from the object side, and Ni (i = 1,2,3, ...), νi
(i = 1,2,3, ...) Indicates the refractive index and Abbe number of the i-th lens for the d-line counting from the object side.

【0017】尚、各実施例中、曲率半径に*印を付した
面は非球面で構成された面であることを示し、非球面の
面形状を表わす以下の数1の式で定義するものとする。
It should be noted that in each of the embodiments, the surface with a radius of curvature marked with * indicates that it is a surface composed of an aspherical surface, and is defined by the following formula 1 representing the surface shape of the aspherical surface. And

【0018】[0018]

【数1】 [Equation 1]

【0019】但し、数1の式中、 x :距離yでの光軸方向の非球面頂点からの変位量 y :光軸に垂直な方向の距離 C0:非球面頂点における曲率 ε:2次曲面パラメータ Ai:i次の非球面係数 である。However, in the equation (1), x: amount of displacement from the aspherical vertex in the optical axis direction at a distance y: distance in the direction perpendicular to the optical axis C 0 : curvature at the aspherical vertex ε: quadratic Surface parameter Ai: i-th order aspherical coefficient.

【0020】<実施例1> f=51.00 FNO=4.08 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 -34.601 d1 1.945 N1 1.67339 ν1 29.25 r2 -81.583 d2 2.122 r3 13.124 d3 2.000 N2 1.80420 ν2 46.50 r4 21.023 d4 1.591 r5* 25.462 d5 1.500 N3 1.80358 ν3 25.38 r6* 16.110 d6 5.478 r7 25.823 d7 3.000 N4 1.76780 ν4 49.47 r8* -34.553 d8 3.000 r9 -45.470 d9 1.500 N5 1.58144 ν5 40.89 r10 23.265<Example 1> f = 51.00 FNO = 4.08 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 -34.601 d1 1.945 N1 1.67339 ν1 29.25 r2 -81.583 d2 2.122 r3 13.124 d3 2.000 N2 1.80420 ν2 46.50 r4 21.023 d4 1.591 r5 * 25.462 d5 1.500 N3 1.80 358 ν3 25.38 r6 * 16.110 d6 5.478 r7 25.823 d7 3.000 N4 1.76780 ν4 49.47 r8 * -34.553 d8 3.000 r9 -45.470 d9 1.500 N5 1.58144 ν5.

【0021】[非球面係数] r5 : ε=0.3785 A4=0.12165952×10-3 A6=-0.22882786×10-5 A8=0.50122213×10-7 A10=-0.60770994×10-9 A12=0.25968980×10-11 r6 : ε=0.3158 A4=0.20507513×10-3 A6=-0.18850322×10-5 A8=0.20794483×10-7 A10=0.75567714×10-9 A12=-0.14674397×10-10 r8 : ε=0.5646 A4=0.13666592×10-4 A6=-0.57265074×10-7 A8=0.27496503×10-9 A10=0.16291024×10-10 A12=-0.18871881×10-12 [Aspherical coefficient] r5: ε = 0.3785 A4 = 0.12165952 × 10 -3 A6 = -0.22882786 × 10 -5 A8 = 0.50122213 × 10 -7 A10 = -0.60770994 × 10 -9 A12 = 0.25968980 × 10 -11 r6: ε = 0.3158 A4 = 0.20507513 × 10 -3 A6 = -0.18850322 × 10 -5 A8 = 0.20794483 × 10 -7 A10 = 0.75567714 × 10 -9 A12 = -0.14674397 × 10 -10 r8: ε = 0.5646 A4 = 0.13666592 × 10 -4 A6 = -0.57265074 × 10 -7 A8 = 0.27496503 × 10 -9 A10 = 0.16291024 × 10 -10 A12 = -0.18871881 × 10 -12

【0022】<実施例2> f=51.00 FNO=4.08 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 -43.970 d1 1.945 N1 1.67339 ν1 29.25 r2 -296.109 d2 2.122 r3 11.976 d3 2.000 N2 1.80420 ν2 46.50 r4 16.878 d4 1.591 r5* 21.414 d5 1.500 N3 1.80358 ν3 25.38 r6* 15.074 d6 5.478 r7 23.543 d7 3.000 N4 1.76780 ν4 49.47 r8* -40.121 d8 3.000 r9 -77.333 d9 1.500 N5 1.58144 ν5 40.89 r10 21.243<Example 2> f = 51.00 FNO = 4.08 [Radius of curvature] [Axis upper surface spacing] [Refractive index] [Abbe number] r1 -43.970 d1 1.945 N1 1.67339 ν1 29.25 r2 -296.109 d2 2.122 r3 11.976 d3 2.000 N2 1.80420 ν2 46.50 r4 16.878 d4 1.591 r5 * 21.414 d5 1.500 N3 1.80358 ν3 25.38 r6 * 15.074 d6 5.478 r7 23.543 d7 3.000 N4 1.76780 ν4 49.47 r8 * -40.121 d8 3.000 r9 -77.333 d9 1.500 N5 1.58144 105.

【0023】[非球面係数] r5 : ε=-0.6485 A4=0.86197339×10-4 A6=-0.11068942×10-6 A8=-0.17597132×10-7 A10=0.44803792×10-9 A12=-0.30106206×10-11 r6 : ε=0.3005 A4=0.16172453×10-3 A6=0.26757421×10-6 A8=-0.22170621×10-7 A10=0.79812461×10-9 A12=-0.60754747×10-11 r8 : ε=0.8191 A4=0.17523841×10-4 A6=-0.23081150×10-7 A8=0.11590827×10-8 A10=-0.28136889×10-10 A12=0.22741227×10-12 [Aspherical coefficient] r5: ε = -0.6485 A4 = 0.86197339 × 10 -4 A6 = -0.11068942 × 10 -6 A8 = -0.17597132 × 10 -7 A10 = 0.44803792 × 10 -9 A12 = -0.30106206 × 10 -11 r6: ε = 0.3005 A4 = 0.16172453 × 10 -3 A6 = 0.26757421 × 10 -6 A8 = -0.22170621 × 10 -7 A10 = 0.79812461 × 10 -9 A12 = -0.60754747 × 10 -11 r8: ε = 0.8191 A4 = 0.17523841 × 10 -4 A6 = -0.23081150 × 10 -7 A8 = 0.11590827 × 10 -8 A10 = -0.28136889 × 10 -10 A12 = 0.22741227 × 10 -12

【0024】<実施例3> f=51.00 FNO=4.08 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 -37.530 d1 1.945 N1 1.75000 ν1 25.14 r2 -59.687 d2 2.122 r3 11.114 d3 2.000 N2 1.80420 ν2 46.50 r4 15.182 d4 1.591 r5* 22.727 d5 1.500 N3 1.80358 ν3 25.38 r6* 14.355 d6 5.478 r7 25.808 d7 3.000 N4 1.76780 ν4 49.47 r8* -40.986 d8 3.000 r9 -55.888 d9 1.500 N5 1.56567 ν5 43.02 r10 24.953<Embodiment 3> f = 51.00 FNO = 4.08 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 -37.530 d1 1.945 N1 1.75000 ν1 25.14 r2 -59.687 d2 2.122 r3 11.114 d3 2.000 N2 1.80420 ν2 46.50 r4 15.182 d4 1.591 r5 * 22.727 d5 1.500 N3 1.80358 ν3 25.38 r6 * 14.355 d6 5.478 r7 25.808 d7 3.000 N4 1.76780 ν4 49.47 r8 * -40.986 d8 3.000 r9 -55.888 d9 1.500 N5 1.5653 r5 43.956710

【0025】[非球面係数] r5 : ε=-1.0344 A4=0.71835431×10-4 A6=0.90529916×10-6 A8=-0.56481224×10-7 A10=0.14527613×10-8 A12=-0.12363902×10-10 r6 : ε=0.3219 A4=0.15343583×10-3 A6=0.12038775×10-5 A8=-0.34916121×10-7 A10=0.11699775×10-8 A12=-0.77506914×10-11 r8 : ε=-0.4054 A4=0.11945229×10-4 A6=-0.10320729×10-6 A8=0.25816250×10-8 A10=-0.38679635×10-10 A12=0.21046511×10-12 [0025] [aspherical coefficients] r5: ε = -1.0344 A4 = 0.71835431 × 10 -4 A6 = 0.90529916 × 10 -6 A8 = -0.56481224 × 10 -7 A10 = 0.14527613 × 10 -8 A12 = -0.12363902 × 10 - 10 r6: ε = 0.3219 A4 = 0.15343583 × 10 -3 A6 = 0.12038775 × 10 -5 A8 = -0.34916121 × 10 -7 A10 = 0.11699775 × 10 -8 A12 = -0.77506914 × 10 -11 r8: ε = -0.4054 A4 = 0.11945229 × 10 -4 A6 = -0.10320729 × 10 -6 A8 = 0.25816250 × 10 -8 A10 = -0.38679635 × 10 -10 A12 = 0.21046511 × 10 -12

【0026】<実施例4> f=51.00 FNO=4.08 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 -34.488 d1 1.945 N1 1.83350 ν1 21.00 r2 -42.128 d2 2.000 r3 11.280 d3 2.000 N2 1.80420 ν2 46.50 r4 15.690 d4 1.591 r5* 24.967 d5 1.500 N3 1.80358 ν3 25.38 r6* 14.499 d6 4.978 r7 31.555 d7 3.000 N4 1.76780 ν4 49.47 r8* -34.654 d8 3.000 r9 -44.539 d9 1.500 N5 1.54072 ν5 47.20 r10 27.915<Example 4> f = 51.00 FNO = 4.08 [Radius of curvature] [Space between upper surfaces of axes] [Refractive index] [Abbe number] r1 -34.488 d1 1.945 N1 1.83350 ν1 21.00 r2 -42.128 d2 2.000 r3 11.280 d3 2.000 N2 1.80420 ν2 46.50 r4 15.690 d4 1.591 r5 * 24.967 d5 1.500 N3 1.80358 ν3 25.38 r6 * 14.499 d6 4.978 r7 31.555 d7 3.000 N4 1.76780 ν4 49.47 r8 * -34.654 d8 3.000 r9 -44.539 d9 1.500 N5 1.54072 ν5 47.50

【0027】[非球面係数] r5 : ε=-1.3859 A4=0.71976031×10-4 A6=0.73802308×10-6 A8=-0.47127891×10-7 A10=0.10520051×10-8 A12=-0.69934596×10-11 r6 : ε=0.4787 A4=0.14333159×10-3 A6=0.18975852×10-5 A8=-0.70323124×10-7 A10=0.14914081×10-8 A12=-0.39514393×10-11 r8 : ε=-0.3371 A4=0.42492408×10-5 A6=-0.21842196×10-6 A8=0.68685337×10-8 A10=-0.10775119×10-9 A12=0.59876438×10-12 [0027] [aspherical coefficients] r5: ε = -1.3859 A4 = 0.71976031 × 10 -4 A6 = 0.73802308 × 10 -6 A8 = -0.47127891 × 10 -7 A10 = 0.10520051 × 10 -8 A12 = -0.69934596 × 10 - 11 r6: ε = 0.4787 A4 = 0.14333159 × 10 -3 A6 = 0.18975852 × 10 -5 A8 = -0.70323124 × 10 -7 A10 = 0.14914081 × 10 -8 A12 = -0.39514393 × 10 -11 r8: ε = -0.3371 A4 = 0.42492408 × 10 -5 A6 = -0.21842196 × 10 -6 A8 = 0.68685337 × 10 -8 A10 = -0.10775119 × 10 -9 A12 = 0.59876438 × 10 -12

【0028】<実施例5> f=51.00 FNO=4.08 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 -40.213 d1 1.945 N1 1.73300 ν1 28.24 r2 -101.460 d2 2.122 r3 10.716 d3 2.000 N2 1.80420 ν2 46.50 r4 16.132 d4 1.591 r5* 20.773 d5 1.500 N3 1.80358 ν3 25.38 r6* 13.834 d6 5.478 r7 26.746 d7 3.000 N4 1.76780 ν4 49.47 r8* -49.843 d8 3.000 r9 -37.619 d9 1.500 N5 1.56567 ν5 43.02 r10 33.736<Example 5> f = 51.00 FNO = 4.08 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 -40.213 d1 1.945 N1 1.73300 ν1 28.24 r2 -101.460 d2 2.122 r3 10.716 d3 2.000 N2 1.80420 ν2 46.50 r4 16.132 d4 1.591 r5 * 20.773 d5 1.500 N3 1.80358 ν3 25.38 r6 * 13.834 d6 5.478 r7 26.746 d7 3.000 N4 1.76780 ν4 49.47 r8 * -49.843 d8 3.000 r9 -37.619 d9 1.500 N5 1.5656710 ν43.

【0029】[非球面係数] r5 : ε=-0.9455 A4=0.11760101×10-3 A6=0.12629534×10-5 A8=-0.56919076×10-7 A10=0.13759374×10-8 A12=-0.11675943×10-10 r6 : ε=0.2869 A4=0.22673611×10-3 A6=0.20790283×10-5 A8=-0.26038619×10-7 A10=0.10491854×10-8 A12=-0.37925711×10-11 r8 : ε=0.5878 A4=0.14614978×10-4 A6=-0.11575168×10-6 A8=0.18047347×10-8 A10=-0.24025808×10-10 A12=0.32402464×10-13 [0029] [aspherical coefficients] r5: ε = -0.9455 A4 = 0.11760101 × 10 -3 A6 = 0.12629534 × 10 -5 A8 = -0.56919076 × 10 -7 A10 = 0.13759374 × 10 -8 A12 = -0.11675943 × 10 - 10 r6: ε = 0.2869 A4 = 0.22673611 × 10 -3 A6 = 0.20790283 × 10 -5 A8 = -0.26038619 × 10 -7 A10 = 0.10491854 × 10 -8 A12 = -0.37925711 × 10 -11 r8: ε = 0.5878 A4 = 0.146 14978 × 10 -4 A6 = -0.11575168 × 10 -6 A8 = 0.18047347 × 10 -8 A10 = -0.24025808 × 10 -10 A12 = 0.32402464 × 10 -13

【0030】図1,図3,図5,図7及び図9は、前記
実施例1〜実施例5にそれぞれ対応する無限遠物体距離
の撮影状態におけるレンズ構成図であり、その無限遠物
体撮影状態から最近接物体撮影状態へのフォーカシング
に際する第1群Gr1,第2群Gr2及び第3群Gr3
の移動をそれぞれ矢印で示している。
1, FIG. 3, FIG. 5, FIG. 7 and FIG. 9 are lens configuration diagrams in the photographing state of the object distance at infinity corresponding to Embodiments 1 to 5, respectively. The first group Gr1, the second group Gr2, and the third group Gr3 upon focusing from the state to the closest object photographing state
Each movement is indicated by an arrow.

【0031】無限遠物体撮影状態から最近接物体撮影状
態へのフォーカシングによって、第1群Gr1と第2群
Gr2との間の軸上面間隔d2及び第2群Gr2と第3群
Gr3との間の軸上面間隔d6は、上記コンストラクショ
ンデータの値(無限遠物体距離)から次のように変化す
る。
By focusing from the object photographing state at infinity to the closest object photographing state, the axial upper surface distance d2 between the first group Gr1 and the second group Gr2 and between the second group Gr2 and the third group Gr3 are set. The axial upper surface distance d6 changes as follows from the value of the construction data (object distance at infinity).

【0032】実施例1では、d2=2.122からd2=0.056,d6
=5.478からd6=7.543となり、実施例2では、d2=2.122か
らd2=0.021,d6=5.478からd6=7.578となり、実施例3で
は、d2=2.122からd2=0.682,d6=5.478からd6=6.918とな
り、実施例4では、d2=2.000からd2=0.620,d6=4.978か
らd6=6.358となり、実施例5では、d2=2.122からd2=0.0
53,d6=5.478からd6=7.547となる。
In the first embodiment, d2 = 2.122 to d2 = 0.056, d6
= 5.478 to d6 = 7.543, and in Example 2, d2 = 2.122 to d2 = 0.021, d6 = 5.478 to d6 = 7.578, and in Example 3, d2 = 2.122 to d2 = 0.682, d6 = 5.478 to d6 = 6.918. In Example 4, d2 = 2.000 to d2 = 0.620, d6 = 4.978 to d6 = 6.358, and in Example 5, d2 = 2.122 to d2 = 0.0.
53, d6 = 5.478 to d6 = 7.547.

【0033】実施例1〜実施例5は、いずれも、物体側
より順に、物体側に凹(像側に凸)の負メニスカスレンズ
から成る第1群Gr1と,物体側に凸の正メニスカスレ
ンズ及び像側に凹(物体側に凸)の負メニスカスレンズ
(両面が非球面)から成る第2群Gr2と,両凸の正レン
ズ(像側の面が非球面)及び両凹の負レンズから成る第3
群Gr3とから、全系5枚で構成されている。
In each of Examples 1 to 5, the first group Gr1 is composed of a negative meniscus lens concave to the object side (convex toward the image side) and a positive meniscus lens convex to the object side in order from the object side. And a negative meniscus lens concave on the image side (convex on the object side)
A second group Gr2 composed of (aspherical surfaces on both sides), a third lens composed of a biconvex positive lens (aspherical surface on the image side) and a biconcave negative lens.
From the group Gr3, it is composed of 5 sheets in total.

【0034】図2,図4,図6,図8及び図10は、前
記実施例1〜実施例5にそれぞれ対応する収差図であ
る。各図中、[A]は無限遠物体距離の撮影状態における
収差を示し、[B]は最近接物体撮影状態での収差を示し
ている。なお、各図[B]の収差は、実施例1,2では共
役長0.221mにD1:D2:D3=1:1.05:1でフォーカシン
グした際のものであり、実施例3,4では共役長0.220
mにD1:D2:D3=1:1.04:1でフォーカシングした際の
ものであり、実施例5では共役長0.223mにD1:D2:D3
=1:1.05:1で、フォーカシングした際のものである。
2, FIG. 4, FIG. 6, FIG. 8 and FIG. 10 are aberration charts corresponding to the first to fifth embodiments. In each drawing, [A] shows the aberration in the shooting state at the infinite object distance, and [B] shows the aberration in the closest object shooting state. The aberrations in each figure [B] are obtained when focusing was performed at a conjugate length of 0.221 m with D 1 : D 2 : D 3 = 1: 1.05: 1 in Examples 1 and 2. Then conjugate length 0.220
m when D 1 : D 2 : D 3 = 1: 1.04: 1 was used for focusing, and in Example 5, the conjugate length was 0.223 m and D 1 : D 2 : D 3
= 1: 1.05: 1, when focusing.

【0035】また、実線(d)はd線に対する球面収差を
表わし、破線(SC)は正弦条件を表わす。さらに、破線
(DM)と実線(DS)は、それぞれメリディオナル面とサ
ジタル面での非点収差を表わしている。
The solid line (d) represents the spherical aberration for the d line, and the broken line (SC) represents the sine condition. Furthermore, the dashed line
(DM) and solid line (DS) represent astigmatism on the meridional surface and the sagittal surface, respectively.

【0036】各実施例における前記条件式(1)及び(4)に
それぞれ対応するf/f2及びf/f1,2の値を表1に示す。
また、各実施例における前記条件式(2)中のD2/D1の値
及び条件式(3)中のD1(=D3)の値を表2に示す。
Table 1 shows the values of f / f 2 and f / f 1,2 corresponding to the conditional expressions (1) and (4) in each example.
Table 2 shows the value of D 2 / D 1 in the conditional expression (2) and the value of D 1 (= D 3 ) in the conditional expression (3) in each example.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、物
体側から順に、負の屈折力を有する第1群と,正の屈折
力を有する第2群と,正の屈折力を有する第3群とから
成る撮影光学系において、前記第1群と前記第2群とで
ほぼアフォーカル系を形成しているので、第2群を通る
軸上光線は平行に近くなる。ここで、無限遠物体側から
近接物体側へのフォーカシングに際して、第1群と第2
群との空気間隔がわずかに減少し、第2群と第3群との
空気間隔がわずかに増大するように、第1群から第3群
までをいずれも物体側へ移動させて合焦を行う構成とな
っているので、フォーカシングにおける繰り出し量が比
較的小さく、ある程度の撮影距離を有する高倍率撮影が
可能となる。また、前記空気間隔の変化はわずかである
ため、球面収差等に変化を与えることなく像面湾曲の補
正ができ、このため、無限遠撮影から近接撮影まで、小
さな収差変動で合焦を行うことができるコンパクトなマ
クロレンズを実現することができる。そして、このフォ
ーカシング方式は、ほぼ全体繰出しに近いので、全系の
焦点距離の変動を小さくすることができる。このため、
高倍率撮影時の撮影距離をある程度長くすることができ
る。
As described above, according to the present invention, the first group having negative refracting power, the second group having positive refracting power, and the first group having positive refracting power are arranged in this order from the object side. In a photographing optical system including three groups, the first group and the second group substantially form an afocal system, so that the axial rays passing through the second group are nearly parallel. Here, when focusing from the infinity object side to the near object side, the first group and the second group
All of the first to third groups are moved toward the object side so that the air distance to the group is slightly decreased and the air distance between the second group and the third group is slightly increased. With this configuration, the amount of extension in focusing is relatively small, and high-magnification shooting with a certain shooting distance is possible. Further, since the change in the air gap is slight, it is possible to correct the field curvature without changing the spherical aberration and the like. Therefore, focusing can be performed with a small aberration variation from infinity photography to close-up photography. It is possible to realize a compact macro lens capable of Further, since this focusing method is almost the same as the whole feeding, it is possible to reduce the fluctuation of the focal length of the entire system. For this reason,
The shooting distance during high-magnification shooting can be lengthened to some extent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment of the present invention.

【図2】本発明の実施例1の収差図。FIG. 2 is an aberration diagram of Example 1 of the present invention.

【図3】本発明の実施例2のレンズ構成図。FIG. 3 is a lens configuration diagram of a second embodiment of the present invention.

【図4】本発明の実施例2の収差図。FIG. 4 is an aberration diagram of Example 2 of the present invention.

【図5】本発明の実施例3のレンズ構成図。FIG. 5 is a lens configuration diagram of a third embodiment of the present invention.

【図6】本発明の実施例3の収差図。FIG. 6 is an aberration diagram for Example 3 of the present invention.

【図7】本発明の実施例4のレンズ構成図。FIG. 7 is a lens configuration diagram of Example 4 of the present invention.

【図8】本発明の実施例4の収差図。FIG. 8 is an aberration diagram for Example 4 of the present invention.

【図9】本発明の実施例5のレンズ構成図。FIG. 9 is a lens configuration diagram of a fifth embodiment of the present invention.

【図10】本発明の実施例5の収差図。FIG. 10 is an aberration diagram of Example 5 of the present invention.

【符号の説明】[Explanation of symbols]

Gr1 …第1群 Gr2 …第2群 Gr3 …第3群 Gr1 ... 1st group Gr2 ... 2nd group Gr3 ... 3rd group

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物体側から順に、負の屈折力を有する第1
群と,正の屈折力を有する第2群と,正の屈折力を有す
る第3群とから成る撮影光学系において、 前記第1群と前記第2群とでほぼアフォーカル系を形成
し、無限遠物体側から近接物体側へのフォーカシングに
際して、前記第1群と前記第2群との空気間隔がわずか
に減少し、前記第2群と前記第3群との空気間隔がわず
かに増大するように、前記第1群から第3群までをいず
れも物体側へ移動させて合焦を行うことを特徴とするマ
クロレンズ。
1. A first lens element having a negative refractive power in order from the object side.
In a photographing optical system composed of a group, a second group having a positive refractive power, and a third group having a positive refractive power, the first group and the second group form an afocal system, During focusing from the object side at infinity to the near object side, the air space between the first group and the second group slightly decreases, and the air space between the second group and the third group slightly increases. As described above, the macro lens, wherein all the first to third groups are moved to the object side for focusing.
JP5323788A 1993-12-22 1993-12-22 Compact macro-lens Pending JPH07181390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5323788A JPH07181390A (en) 1993-12-22 1993-12-22 Compact macro-lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5323788A JPH07181390A (en) 1993-12-22 1993-12-22 Compact macro-lens

Publications (1)

Publication Number Publication Date
JPH07181390A true JPH07181390A (en) 1995-07-21

Family

ID=18158626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5323788A Pending JPH07181390A (en) 1993-12-22 1993-12-22 Compact macro-lens

Country Status (1)

Country Link
JP (1) JPH07181390A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747817B2 (en) 2001-11-27 2004-06-08 Olympus Corporation Macro lens, and camera comprising the same
US7286303B2 (en) 2005-06-21 2007-10-23 Tamron Co., Ltd. Macro lens
JP2008191672A (en) * 2008-02-08 2008-08-21 Olympus Corp Macro lens and camera equipped with the same
JP2011180225A (en) * 2010-02-26 2011-09-15 Nikon Corp Imaging lens, optical apparatus including imaging lens and method for manufacturing imaging lens
US8395849B2 (en) 2010-09-22 2013-03-12 Nikon Corporation Imaging lens, optical apparatus equipped with imaging lens and method for manufacturing imaging lens
JP2013235239A (en) * 2012-04-12 2013-11-21 Konica Minolta Inc Macro lens and image capturing device
KR20160095935A (en) * 2015-02-04 2016-08-12 삼성전자주식회사 Photographing lens system and photographing apparatus having the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747817B2 (en) 2001-11-27 2004-06-08 Olympus Corporation Macro lens, and camera comprising the same
US7286303B2 (en) 2005-06-21 2007-10-23 Tamron Co., Ltd. Macro lens
JP2008191672A (en) * 2008-02-08 2008-08-21 Olympus Corp Macro lens and camera equipped with the same
JP4509192B2 (en) * 2008-02-08 2010-07-21 オリンパス株式会社 Macro lens and camera equipped with the same
JP2011180225A (en) * 2010-02-26 2011-09-15 Nikon Corp Imaging lens, optical apparatus including imaging lens and method for manufacturing imaging lens
US8625209B2 (en) 2010-02-26 2014-01-07 Nikon Corporation Imaging lens, optical apparatus including imaging lens and method for manufacturing imaging lens
US8395849B2 (en) 2010-09-22 2013-03-12 Nikon Corporation Imaging lens, optical apparatus equipped with imaging lens and method for manufacturing imaging lens
JP2013235239A (en) * 2012-04-12 2013-11-21 Konica Minolta Inc Macro lens and image capturing device
KR20160095935A (en) * 2015-02-04 2016-08-12 삼성전자주식회사 Photographing lens system and photographing apparatus having the same

Similar Documents

Publication Publication Date Title
JP4123683B2 (en) Zoom lens
JP3416690B2 (en) Small zoom lens
JP2003050352A (en) Zoom lens and optical equipment using the same
US6191895B1 (en) Zoom lens system
JPH0667093A (en) High-power zoom lens
JPH1020193A (en) Zoom lens
JPH10148756A (en) Compact wide-angle zoom lens
JPH10246854A (en) Compact wide-angle lens
JPH0921952A (en) Zoom lens
JPH10282416A (en) Zoom lens
JP3302063B2 (en) Rear focus compact zoom lens
JPH07311339A (en) Compact zoom lens
JPH10161028A (en) Zoom lens
JPH08234102A (en) Two-group zoom lens
JP2000187157A (en) Zoom lens and image pickup device
JPH1082954A (en) Wide-angle zoom lens
JPH07181389A (en) Compact macro-lens
JPH07181390A (en) Compact macro-lens
JPH10333037A (en) Zoom lens
JPH0990222A (en) Zoom lens
JP2004109559A (en) Zoom lens system
JPH0894930A (en) Variable power lens system for copying
JPH11249017A (en) Three-group zoom lens
JP2000275524A (en) Zoom lens
JP2623871B2 (en) Zoom lens with simple configuration

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9