JPH0829576A - Flaw detector at welded part of nozzle - Google Patents

Flaw detector at welded part of nozzle

Info

Publication number
JPH0829576A
JPH0829576A JP6185378A JP18537894A JPH0829576A JP H0829576 A JPH0829576 A JP H0829576A JP 6185378 A JP6185378 A JP 6185378A JP 18537894 A JP18537894 A JP 18537894A JP H0829576 A JPH0829576 A JP H0829576A
Authority
JP
Japan
Prior art keywords
nozzle
flaw detection
probe
flaw
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6185378A
Other languages
Japanese (ja)
Inventor
Yuji Nishi
雄司 西
Mutsuo Hoshiyama
六雄 星山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6185378A priority Critical patent/JPH0829576A/en
Publication of JPH0829576A publication Critical patent/JPH0829576A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain a flaw detector at the welded part of a nozzle by which the flaw can be detected with high accuracy regardless of the spreading of a beam irradiated from a probe. CONSTITUTION:A truck is run along the outer circumference of a nozzle. When a plurality of probes are moved along a flaw detection arm fixed to the truck, a control means controls the rotary mechanism 31 mounted on one 18a of the plurality of probes 18, 18a, 18b, which is shifted from the central axis of the flaw detection arm, such that the incident direction of ultrasonic wave from the probe 18a is matched constantly with the center of nozzle depending on the moving position in the radiating direction of nozzle. Consequently, the flaw can be detected while directing all probes toward the center of nozzle regardless of the moving position. This structure enhances accuracy in the location of flaw thus realizing high accuracy flaw detection without causing deterioration of accuracy due to spreading of ultrasonic beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、原子炉圧力容器や化
学プラントの圧力容器等の機器本体に溶接されたノズル
の溶接部の健全性を探傷するノズル溶接部の探傷装置に
関し、複数の探触子を常にノズル中心を向くようにして
走査できるようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flaw detection device for a nozzle welded portion for detecting the soundness of a welded portion of a nozzle welded to a device body such as a reactor pressure vessel or a pressure vessel of a chemical plant. The tentacle is always directed toward the center of the nozzle so that scanning can be performed.

【0002】[0002]

【従来の技術】原子炉圧力容器や化学プラントの圧力容
器等の機器は、その安全性の確保のため定期的な検査が
義務づけられており、例えば原子炉圧力容器などには非
破壊検査を主とする供用期間中検査が行われている。
2. Description of the Related Art Equipment such as reactor pressure vessels and pressure vessels of chemical plants are required to undergo regular inspections to ensure their safety. For example, non-destructive inspections are mainly applied to reactor pressure vessels. The inspection is conducted during the in-service period.

【0003】例えば原子炉圧力容器の検査対象の一つに
図3(a),(b)に示すようなノズル(円管状)1と
原子炉圧力容器2の胴部(円筒状)とが溶接される溶接
部3がある。
For example, as one of the inspection objects of the reactor pressure vessel, the nozzle (cylindrical) 1 and the body (cylindrical) of the reactor pressure vessel 2 as shown in FIGS. 3 (a) and 3 (b) are welded. There is a welded part 3.

【0004】この溶接部3は複雑な3次元の鞍形形状で
あることから機械による自動探傷が難しいとされていた
が、既に自動的に探傷する探傷装置が開発されており、
図4に示すような構造となっている。
Since the welded portion 3 has a complicated three-dimensional saddle shape, it has been difficult to perform automatic flaw detection by a machine, but a flaw detection device for automatically flaw detection has already been developed.
The structure is as shown in FIG.

【0005】この探傷装置10は、ノズル1の肩部分の
外周面に沿って走行する駆動機構を備えた永久磁石の走
行輪11とノズル1の肩部分の傾斜面に沿って転動する
永久磁石のガイド輪12とを1組として走行方向前後に
それぞれ1組ずつ取付けられるとともに、走行方向中央
部にノズル1の側面に沿って転動する2個の支持輪13
が取付けられた走行台車14を備えており、この走行台
車14にLMガイドとラック・ピニオンなどでノズル1
の軸方向に移動するスライド台15を搭載し、このスラ
イド台15の先端部にノズル1の放射方向に配置される
探傷アーム16がノズル1の軸方向に移動できるように
支持してある。この探傷アーム16には、LMガイドと
ラック・ピニオンなどで探傷アーム16に沿って移動す
る探触子取付台17が探傷アーム16と直角に装着され
ており、探触子取付台17に照射角度を0,45,60
度とする3個の超音波探傷用の探触子18,18a,1
8bが取付けられている。そして、スライド台15と探
傷アーム16との間に押圧シリンダ19が連結してあ
り、探傷アーム16ごと3個の探触子18,18a,1
8bをノズル1の溶接部3に押し付けることができるよ
うに構成してある。
The flaw detection device 10 includes a running wheel 11 of a permanent magnet having a drive mechanism that runs along the outer peripheral surface of the shoulder portion of the nozzle 1 and a permanent magnet rolling along the inclined surface of the shoulder portion of the nozzle 1. The two guide wheels 12 are attached to the front and rear sides in the traveling direction, respectively, and the two supporting wheels 13 roll along the side surface of the nozzle 1 at the center in the traveling direction.
It is equipped with a traveling carriage 14 to which the nozzle 1 is attached by an LM guide and a rack and pinion.
The slide base 15 that moves in the axial direction is mounted, and the flaw detection arm 16 arranged in the radial direction of the nozzle 1 is supported at the tip of the slide base 15 so as to be movable in the axial direction of the nozzle 1. A probe mount 17 that moves along the flaw detection arm 16 with an LM guide and a rack and pinion is attached to the flaw detection arm 16 at a right angle to the flaw detection arm 16, and the probe attachment base 17 has an irradiation angle. 0,45,60
3 ultrasonic probe 18, 18a, 1
8b is attached. A pressing cylinder 19 is connected between the slide base 15 and the flaw detection arm 16, and the three flaw detection arms 16 each have three probes 18, 18a, 1a.
8b can be pressed against the weld 3 of the nozzle 1.

【0006】また、これら探触子18,18a,18b
は、図5に示すように、探触子取付台17にジンバル機
構20を介して先端面をあらゆる方向に傾けることがで
きるように取付けてある。
Further, these probes 18, 18a, 18b
As shown in FIG. 5, is attached to a probe mount 17 via a gimbal mechanism 20 so that the tip surface can be tilted in any direction.

【0007】そこで、探傷に当たっては、走行台車14
をノズル1の外周に沿って走行させるX軸回りの回転
と、探触子取付台17を探傷アーム16に沿って移動す
るY軸に沿う走行と、スライド台15をノズル軸方向に
動かすX軸に沿う走行とを組み合わせながら、押圧シリ
ンダ19によって超音波探傷用の探触子18,18a,
18bを探傷部であるノズル外周の溶接部3に押し付け
るようにして鞍形形状に倣わせ、自動的に超音波探傷試
験を行うようにしている
Therefore, the traveling carriage 14 is used for flaw detection.
Rotation around the X-axis for traveling along the outer circumference of the nozzle 1, traveling along the Y-axis for moving the probe mounting base 17 along the flaw detection arm 16, and X-axis for moving the slide base 15 in the nozzle axial direction. The probe 18 for ultrasonic flaw detection, 18a,
18b is pressed against the welded portion 3 on the outer circumference of the nozzle, which is a flaw detection portion, so as to follow the saddle shape, and an ultrasonic flaw detection test is automatically performed.

【0008】[0008]

【発明が解決しようとする課題】ところが、この探傷装
置10で溶接線に垂直方向に超音波ビームを入射して探
傷する場合に、図6(a)に示すように、3つの探触子
18,18a,18bのうちノズル1の放射方向に取付
けられている探触子18は探傷範囲Lの間を探傷アーム
16に沿ってY軸方向に移動しても入射方向が変化しな
いが、両側に取付けられている探触子18a,18bは
探傷範囲Lのうち外側Aでは、入射方向が放射方向に対
して角度αだけずれるとともに、探傷範囲Lの内側Bで
は入射方向に対して角度βだけずれてしまい、欠陥の位
置の検出精度に超音波のビームの広がりによる影響を受
けるという問題がある。
However, when an ultrasonic beam is injected in the direction perpendicular to the welding line in the flaw detection device 10 for flaw detection, as shown in FIG. 6 (a), three probes 18 are provided. , 18a, 18b, the probe 18 attached in the radial direction of the nozzle 1 does not change its incident direction even if it moves in the Y-axis direction along the flaw detection arm 16 between the flaw detection ranges L, but on both sides. The attached probes 18a and 18b are displaced from the flaw detection range L by an angle α with respect to the radial direction on the outer side A, and on the inner side B of the flaw detection range L by an angle β with respect to the incident direction. Therefore, there is a problem that the detection accuracy of the defect position is affected by the spread of the ultrasonic beam.

【0009】また、この探傷装置10で溶接線に平行に
ビームを入射して探傷する場合にも同様に、図6(b)
に示すように、3つの探触子18,18a,18bのう
ちノズル1の放射方向両側に取付けられている探触子1
8a,18bは探傷範囲Lのうち外側Aでは、入射方向
が放射方向に対して角度αだけずれるとともに、中間部
Cでは角度γだけずれてしまい、欠陥の位置の検出精度
に超音波のビームの広がりによる影響を受けるという問
題がある。
Further, in the case where the beam is incident on the flaw detection device 10 in parallel with the welding line to detect a flaw, the flaw detection device 10 is also shown in FIG.
As shown in FIG. 3, among the three probes 18, 18 a, 18 b, the probes 1 mounted on both sides of the nozzle 1 in the radial direction are shown.
8a and 18b, in the outer side A of the flaw detection range L, the incident direction is deviated from the radial direction by an angle α, and the intermediate portion C is deviated by an angle γ. There is a problem of being affected by the spread.

【0010】この発明は、かかる従来技術に鑑みてなさ
れたもので、探触子から照射されるビームの広がりの影
響を受けること無く高精度に探傷することができるノズ
ル溶接部の探傷装置を提供しようとするものである。
The present invention has been made in view of the above prior art, and provides a flaw detection device for a nozzle welded portion capable of performing flaw detection with high accuracy without being affected by the spread of the beam emitted from the probe. Is what you are trying to do.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
この発明のノズル溶接部の探傷装置は、機器本体に溶接
されたノズルの溶接部を探傷する装置において、ノズル
の外周に沿って倣い走行可能な走行台車と、この走行台
車のノズルの放射方向に立設されるとともに、機器本体
側に移動可能な探傷アームと、この探傷アームに沿って
移動可能かつノズル放射直角方向に並べて設けられる複
数の探触子と、これら探触子のうち探傷アーム中心線上
に無いものに設けられ探触子の先端探触面に垂直な回転
軸回りに回転する回転機構と、これら回転機構を備えた
探触子をノズル放射方向の移動位置により探触子の先端
探触面の回転位置を制御する前記回転機構の制御手段と
からなることを特徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above problems, a nozzle welded portion flaw detection apparatus of the present invention is an apparatus for flaw detection of a nozzle welded portion welded to an equipment body. A possible traveling carriage, and a flaw detection arm that is erected in the radial direction of the nozzle of this traveling carriage and that is movable toward the equipment body side, and a plurality of movable along the flaw detection arm that are arranged side by side in the direction perpendicular to the nozzle radiation. Probe, a rotation mechanism that is provided on one of these probes that is not located on the center line of the flaw detection arm and that rotates about a rotation axis that is perpendicular to the probe surface of the probe, and a probe that includes these rotation mechanisms. The control means of the rotating mechanism controls the rotational position of the probe surface at the tip of the probe by moving the probe in the radial direction of the nozzle.

【0012】[0012]

【作用】このノズル溶接部の探傷装置によれば、ノズル
の外周に沿って走行台車を倣い走行させ、この走行台車
に取付けた探傷アームに沿って複数の探触子を移動させ
る場合に、探触子のうちノズル中心軸を中心とする同心
円上にないものに設けた回転機構をノズル放射方向の移
動位置により制御装置で探触子の先端探触面をこれと垂
直な軸回りに回転制御するようにしており、移動位置に
かかわらず全ての探触子殻の超音波の入射方向を最適に
して探傷できるようになる。
According to this flaw detection apparatus for the nozzle welded portion, when the traveling carriage is made to travel along the outer periphery of the nozzle and a plurality of probes are moved along the flaw detection arm attached to the traveling carriage, A rotating mechanism provided on a part of the probe that is not on a concentric circle centered on the center axis of the nozzle is controlled by the controller to rotate the probe surface of the tip of the probe about an axis perpendicular to this, depending on the movement position in the nozzle radial direction. Therefore, regardless of the movement position, flaw detection can be performed by optimizing the incident direction of ultrasonic waves of all the probe shells.

【0013】これにより、欠陥位置の検出精度が向上
し、超音波などのビームの広がりによる精度低下を招く
ことなく、高精度の探傷ができるようになる。
As a result, the detection accuracy of the defect position is improved, and the flaw detection can be performed with high accuracy without lowering the accuracy due to the spread of the beam such as ultrasonic waves.

【0014】[0014]

【実施例】以下、この発明の一実施例を図面に基づき詳
細に説明する。図1はこの発明のノズル溶接部の探傷装
置にかかる一実施例の探触子部分の平面図及び断面図で
ある。このノズル溶接部の探傷装置30は、探触子1
8,18a,18bの取付部分の構造以外は、図4によ
って既に説明した探傷装置10と同一であるので、同一
部分の説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a plan view and a sectional view of a probe portion of an embodiment of a flaw detection device for a nozzle welded portion of the present invention. The flaw detection device 30 for the nozzle welded portion is the probe 1
The structure is the same as that of the flaw detector 10 already described with reference to FIG. 4 except for the structure of the mounting portions of 8, 18a, and 18b, and the description of the same portions will be omitted.

【0015】このノズル溶接部の探傷装置30では、探
傷アーム16に沿って移動可能な探触子取付台17に取
付けられる探触子のうち、ノズル1の中心軸をを中心と
する同心円上(放射方向)からずれて取付けられる両側
の探触子18a,18bに回転機構31が設けられる。
In the flaw detection device 30 for the nozzle welded portion, among the probes mounted on the probe mounting base 17 movable along the flaw detection arm 16, a concentric circle centered on the central axis of the nozzle 1 ( The rotating mechanism 31 is provided on the probes 18a and 18b on both sides which are mounted so as to be displaced from the radial direction).

【0016】この回転機構31は、ノズル1の中心軸
(X軸)と平行な軸(ノズル軸方向の回転軸)回り(探
触子18a,18bの先端探触面に垂直な軸回り)に探
触子18a,18bをそれぞれ回転するものである。回
転機構31は、探触子取付台17にベース32が取付け
られ、このベース32にベアリング33を介してリング
ギヤ34の回転軸が回転可能に取付けてある。
The rotating mechanism 31 rotates around an axis (rotating axis in the nozzle axis direction) parallel to the central axis (X axis) of the nozzle 1 (around an axis perpendicular to the tip sensing surfaces of the probes 18a and 18b). The probes 18a and 18b are each rotated. In the rotating mechanism 31, a base 32 is attached to the probe mount 17, and a rotating shaft of a ring gear 34 is rotatably attached to the base 32 via a bearing 33.

【0017】このリングギヤ34には、一体にジンバル
機構20の外枠21が取付けてあり、ジンバル機構20
が探触子18a,18bの先端探触面と垂直な軸回り
(ノズル軸方向と平行な回転軸回り)に回転することが
できるようにしてある。このリングギヤ34と噛み合う
ピニオンを備えたDCギヤモータ35がベース32に取
付けられるとともに、リングギヤ34と噛み合うピニオ
ンを備えたポテンショメータ36がベース32に取付け
てある。そして、これらDCギヤモータ35及びポテン
ショメータ36が制御装置37と接続され、探触子1
8,18a,18bの移動位置の検出信号が入力され、
これに基づき探触子18a,18bの回転角度を制御し
て設定するようにしてある。
An outer frame 21 of the gimbal mechanism 20 is integrally attached to the ring gear 34, and the gimbal mechanism 20 is attached.
Is rotatable about an axis perpendicular to the probe surfaces of the tips of the probes 18a and 18b (a rotation axis parallel to the nozzle axis direction). A DC gear motor 35 having a pinion that meshes with the ring gear 34 is attached to the base 32, and a potentiometer 36 having a pinion that meshes with the ring gear 34 is attached to the base 32. The DC gear motor 35 and the potentiometer 36 are connected to the control device 37, and the probe 1
The detection signals of the moving positions of 8, 18a, 18b are input,
Based on this, the rotation angles of the probes 18a and 18b are controlled and set.

【0018】また、ジンバル機構20の外枠21の内側
には内枠22が配置され、内枠22の両側がピン23で
回動可能に外枠21に取付けてあり、さらに、内枠22
の内側に探触子18a(18b)が配置され、内枠22
を支持するピン23と直交する方向の両側のピン24で
回動可能に内枠22に取付けてある(図5も参照のこ
と)。
An inner frame 22 is arranged inside the outer frame 21 of the gimbal mechanism 20, both sides of the inner frame 22 are rotatably attached to the outer frame 21 by pins 23, and further, the inner frame 22.
The probe 18a (18b) is arranged inside the
It is rotatably attached to the inner frame 22 by the pins 24 on both sides in a direction orthogonal to the pin 23 that supports (see also FIG. 5).

【0019】したがって、探触子18a(18b)はジ
ンバル機構20によって先端面をあらゆる角度に向ける
ことができるとともに、回転機構31によって探触子1
8a,18bの先端探触面をこれに垂直な軸回り(ノズ
ル軸方向(X軸方向)に平行な回転軸回り)に回転する
ことができ、この探触子18a(18b)の回転量を制
御装置37によりポテンショメータ36およびDCギヤ
モータ35で任意に設定することができる。
Therefore, the tip of the probe 18a (18b) can be oriented at any angle by the gimbal mechanism 20, and the probe 1 can be rotated by the rotating mechanism 31.
The tip probe surfaces of 8a and 18b can be rotated about an axis perpendicular thereto (about a rotation axis parallel to the nozzle axis direction (X axis direction)), and the rotation amount of this probe 18a (18b) can be changed. It can be arbitrarily set by the controller 37 by the potentiometer 36 and the DC gear motor 35.

【0020】このような回転機構31を備えたノズル溶
接部の探傷装置30では、ノズル1の溶接部3の探傷に
当たっては、走行台車14の永久磁石で作られた走行輪
11を駆動機構で駆動するとともに、永久磁石で作られ
たガイド輪12をノズル1の肩部分の傾斜面に沿って走
行させることを組合わせて倣い走行させ、これによって
走行台車14をノズル1の外周に沿って走行させるX軸
回りの回転を行うことと、探触子取付台17を探傷アー
ム16に沿って図示しない駆動機構で移動するノズル放
射方向の移動であるY軸に沿う走行と、スライド台15
を図示しない駆動機構でノズル軸方向に動かすX軸に沿
う走行とを組み合わせることで、原子炉圧力容器2に溶
接されたノズル1の外周の鞍形形状の溶接部3に倣わせ
て探触子取付台17を移動するようにする。
In the flaw detection device 30 for the nozzle welded portion provided with such a rotating mechanism 31, when the flaw detection of the welded portion 3 of the nozzle 1 is performed, the traveling wheel 11 made of the permanent magnet of the traveling carriage 14 is driven by the drive mechanism. In addition, the guide wheel 12 made of a permanent magnet is made to travel along the inclined surface of the shoulder portion of the nozzle 1 in combination to cause the traveling travel, and thereby the traveling carriage 14 travels along the outer periphery of the nozzle 1. Rotation around the X-axis, traveling along the Y-axis, which is movement of the probe mount 17 along the flaw detection arm 16 by a drive mechanism (not shown) in the nozzle radial direction, and slide base 15
Is combined with traveling along the X-axis, which is moved in the nozzle axial direction by a drive mechanism (not shown), so as to follow the saddle-shaped welded portion 3 of the outer periphery of the nozzle 1 welded to the reactor pressure vessel 2 and the probe. The mount 17 is moved.

【0021】この探触子取付台17の探傷アーム16に
沿うY軸方向の移動の際、予めY軸方向の移動位置に対
する探触子18a(18b)の入射方向をノズル中心に
一致させるために必要な回転角度を求めておき、例えば
移動位置A,B,Cに対して角度をα,β,γと求めて
おき、移動位置を探触子取付台17の駆動機構内のエン
コーダで検出し、制御装置37によりこの移動位置に対
応した角度になるようポテンショメータ36およびDC
ギヤモータ35で探触子18a(18b)の回転量を制
御する。
When the probe mount 17 is moved along the flaw detection arm 16 in the Y-axis direction, the incident direction of the probe 18a (18b) with respect to the movement position in the Y-axis direction is made to coincide with the center of the nozzle. The required rotation angle is obtained, for example, the angles are obtained as α, β, γ with respect to the moving positions A, B, C, and the moving position is detected by an encoder in the drive mechanism of the probe mount 17. , The controller 37 adjusts the potentiometer 36 and DC so that the angle corresponds to this moving position.
The gear motor 35 controls the amount of rotation of the probe 18a (18b).

【0022】このように探触子18a(18b)の回転
量を設定した状態で、押圧シリンダ19によって超音波
探傷用の探触子18,18a,18bを探傷部であるノ
ズル外周の溶接部3に探傷アーム16ごと押し付けるよ
うにして超音波探傷試験を行う。 そして、Y軸方向に
沿って探傷位置を変える場合には、探触子18a(18
b)の入射方向をノズル中心に向くように設定して超音
波探傷試験を行うことを繰り返して溶接部3全体を探傷
する。
With the amount of rotation of the probe 18a (18b) set in this way, the ultrasonic welding flaw detection probes 18, 18a, and 18b are welded to the welding portion 3 on the outer periphery of the nozzle, which is the flaw detection portion, by the pressing cylinder 19. The ultrasonic flaw detection test is performed by pressing the flaw detection arm 16 together with the flaw detection arm 16. When changing the flaw detection position along the Y-axis direction, the probe 18a (18
The ultrasonic detection test is repeated by setting the incident direction of b) toward the center of the nozzle to detect the entire welded portion 3.

【0023】このように探触子18a(18b)の入射
方向をノズル中心に一致させて探傷を行うことができる
ので、探傷によって欠陥が検出された場合にもその位置
を正確に知ることができる。
As described above, since the flaw detection can be performed by making the incident direction of the probe 18a (18b) coincident with the center of the nozzle, even if the flaw is detected by the flaw detection, its position can be accurately known. .

【0024】なお、探触子18bについては、探触子1
8aと同一角度逆方向に回転するようにすることは言う
までもない。
For the probe 18b, the probe 1 is used.
It goes without saying that it is rotated in the same direction as that of 8a but in the opposite direction.

【0025】このように構成されたノズル溶接部の探傷
装置30では、探触子取付台17に取付けられる探触子
18,18a,18bのうち、ノズル放射方向からずら
して配置される2つの探触子18a,18bをノズル中
心軸と平行な回転軸回りに回転できるように回転機構3
1を介して取付け、しかも、探触子アーム16上の位置
によってその回転角度をポテンショメータ36およびD
Cギヤモータ35でノズル中心を向くように設定できる
ようにしてあり、例えば図2に示すように、ノズル1の
溶接線に垂直にビームを入射する場合を表わすA,Bの
位置やノズル1の溶接線に平行にビームを入射する場合
を表わすCの位置のいずれにあっても常に、ビームの入
射方向をノズル中心に一致させて探傷することができ
る。
In the flaw detector 30 for the nozzle welded portion constructed as described above, of the probes 18, 18a, 18b mounted on the probe mount 17, two probes arranged so as to be displaced from the nozzle radiation direction are used. A rotating mechanism 3 is provided so that the tentacles 18a and 18b can be rotated around a rotation axis parallel to the central axis of the nozzle.
1, and the rotation angle of the probe arm 16 depends on the position on the probe arm 16.
The C gear motor 35 can be set so as to face the center of the nozzle. For example, as shown in FIG. 2, the positions of A and B and the welding of the nozzle 1 representing the case where the beam is incident perpendicularly to the welding line of the nozzle 1 are shown. It is possible to detect flaws by always making the incident direction of the beam coincide with the center of the nozzle regardless of the position of C, which represents the case where the beam is incident parallel to the line.

【0026】したがって、このノズル溶接部の探傷装置
30によれば、従来ビームの拡がりを利用して欠陥の有
無を探傷していたのに対し、溶接部3の欠陥の有無のみ
ならず、欠陥の存在位置まで精度良く検出することが可
能となる。
Therefore, according to the flaw detection device 30 for the nozzle welded portion, the presence or absence of a defect is conventionally detected by utilizing the spread of the beam. It is possible to accurately detect the existing position.

【0027】[0027]

【発明の効果】以上、一実施例とともに具体的に説明し
たようにこの発明のノズル溶接部の探傷装置によれば、
ノズルの外周に沿って走行台車を倣い走行させ、この走
行台車に取付けた探傷アームに沿って複数の探触子を移
動させる場合に、探触子のうちノズル中心軸を中心とす
る同心円上にないものに設けた回転機構をノズル放射方
向の移動位置により制御装置で探触子の先端探触面をこ
れと垂直な軸回りに回転制御するようにしたので、移動
位置にかかわらず全ての探触子殻の超音波の入射方向を
最適にして探傷試験をすることできる。
As described above in detail with reference to the embodiment, according to the flaw detection device for a nozzle welded portion of the present invention,
When moving the traveling carriage along the outer circumference of the nozzle and moving multiple probes along the flaw detection arm attached to this traveling carriage, place the probe on a concentric circle centered on the nozzle center axis. The rotating mechanism provided for the non-existing device is designed to control the rotation of the probe surface of the probe tip about an axis perpendicular to this by the moving position in the nozzle radial direction, so that all probes can be moved regardless of the moving position. The flaw detection test can be performed by optimizing the incident direction of ultrasonic waves on the tentacle shell.

【0028】これにより、欠陥位置の検出精度が向上
し、超音波などのビームの広がりによる精度低下を招く
ことなく、高精度の探傷ができ、欠陥の有無のみなら
ず、欠陥の存在位置を高精度に検出することができる。
As a result, the detection accuracy of the defect position is improved, high-accuracy flaw detection can be performed without lowering the accuracy due to the spread of the beam such as ultrasonic waves, and the existence position of the defect can be increased as well as the presence or absence of the defect. It can be detected accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のノズル溶接部の探傷装置にかかる一
実施例の探触子部分の平面図及び断面図である。
FIG. 1 is a plan view and a cross-sectional view of a probe portion of an embodiment of a flaw detection device for a nozzle welded portion of the present invention.

【図2】この発明のノズル溶接部の探傷装置によるビー
ムの入射方向の説明図であり、A,Bは溶接線に垂直方
向に超音波ビームを入射して探傷する場合を、Cは溶接
線に平行にビームを入射して探傷する場合をそれぞれ示
す。
FIG. 2 is an explanatory view of a beam incident direction by a flaw detection device for a nozzle welded portion according to the present invention, where A and B indicate a case where an ultrasonic beam is incident in a direction perpendicular to a welding line for flaw detection, and C indicates a welding line. The case is shown in which the beam is incident parallel to and the flaw detection is performed.

【図3】この発明のノズル溶接部の探傷装置による探傷
対象の一例である原子炉圧力容器とノズルとの溶接部の
説明斜視図および説明展開図である。
FIG. 3 is an explanatory perspective view and an explanatory development view of a welded portion between a reactor pressure vessel and a nozzle, which is an example of an object to be inspected by the inspection apparatus for a nozzle welded portion of the present invention.

【図4】従来のノズル溶接部の探傷装置をノズルに装着
した状態で示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing a conventional flaw detection apparatus for a nozzle welded portion mounted on a nozzle.

【図5】従来のノズル溶接部の探傷装置の探触子の取付
構造を示す正面図である。
FIG. 5 is a front view showing a probe mounting structure of a conventional flaw detection device for a nozzle welded portion.

【図6】従来のノズル溶接部の探傷装置によるビームの
入射方向の説明図であり、(a)は溶接線に垂直方向に
超音波ビームを入射して探傷する場合を、(b)は溶接
線に平行にビームを入射して探傷する場合をそれぞれ示
す。
6A and 6B are explanatory views of a beam incident direction by a conventional flaw detection apparatus for a nozzle welded portion, in which FIG. 6A shows a case where an ultrasonic beam is incident in a direction perpendicular to a welding line for flaw detection, and FIG. The case where the beam is incident parallel to the line for flaw detection is shown.

【符号の説明】[Explanation of symbols]

1 ノズル 2 原子炉圧力容器(機器本体) 3 溶接部 30 ノズル溶接部の探傷装置 11 走行輪 12 ガイド輪 13 支持輪 14 走行台車 15 スライド台 16 探傷アーム 17 探触子取付台 18,18a,18b 探触子 19 押圧シリンダ 20 ジンバル機構 21 外枠 22 内枠 23,24 ピン 31 回転機構 32 ベース 33 ベアリング 34 リングギヤ 35 DCギヤモータ 36 ポテンショメータ A,B,C 探触子の移動位置 L 探傷範囲 X軸 ノズル中心軸 Y軸 ノズル放射方向 α,β,γ ビームのずれ角度 DESCRIPTION OF SYMBOLS 1 Nozzle 2 Reactor pressure vessel (equipment main body) 3 Welding part 30 Nozzle welding part flaw detector 11 Traveling wheel 12 Guide wheel 13 Supporting wheel 14 Traveling trolley 15 Slide platform 16 Testing arm 17 Probe mount 18, 18, a, 18b Probe 19 Pressing cylinder 20 Gimbal mechanism 21 Outer frame 22 Inner frame 23, 24 pin 31 Rotating mechanism 32 Base 33 Bearing 34 Ring gear 35 DC gear motor 36 Potentiometer A, B, C Moving position of the probe L Detecting range X-axis nozzle Center axis Y axis Nozzle radial direction α, β, γ Beam deviation angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機器本体に溶接されたノズルの溶接部を探
傷する装置において、ノズルの外周に沿って倣い走行可
能な走行台車と、この走行台車のノズルの放射方向に立
設されるとともに、機器本体側に移動可能な探傷アーム
と、この探傷アームに沿って移動可能かつノズル放射直
角方向に並べて設けられる複数の探触子と、これら探触
子のうち探傷アーム中心線上に無いものに設けられ探触
子の先端探触面に垂直な回転軸回りに回転する回転機構
と、これら回転機構を備えた探触子をノズル放射方向の
移動位置により探触子の先端探触面の回転位置を制御す
る前記回転機構の制御手段とからなることを特徴とする
ノズル溶接部の探傷装置。
1. A device for detecting a welded portion of a nozzle welded to a main body of a device, wherein a traveling carriage capable of following the outer periphery of the nozzle and a traveling carriage that is erected in a radial direction of the nozzle of the traveling carriage. A flaw detection arm that can move toward the equipment body, a plurality of probes that can move along this flaw detection arm and are arranged side by side in the direction perpendicular to the nozzle radiation, and those that are not on the flaw detection arm center line The rotation mechanism that rotates about a rotation axis that is perpendicular to the tip probe surface of the probe and the probe equipped with these rotation mechanisms moves the probe in the nozzle radial direction to determine the rotation position of the tip probe surface of the probe. And a control unit for controlling the rotating mechanism for controlling the above.
JP6185378A 1994-07-14 1994-07-14 Flaw detector at welded part of nozzle Pending JPH0829576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6185378A JPH0829576A (en) 1994-07-14 1994-07-14 Flaw detector at welded part of nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6185378A JPH0829576A (en) 1994-07-14 1994-07-14 Flaw detector at welded part of nozzle

Publications (1)

Publication Number Publication Date
JPH0829576A true JPH0829576A (en) 1996-02-02

Family

ID=16169761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6185378A Pending JPH0829576A (en) 1994-07-14 1994-07-14 Flaw detector at welded part of nozzle

Country Status (1)

Country Link
JP (1) JPH0829576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280144A (en) * 2021-11-17 2022-04-05 东方电气集团东方锅炉股份有限公司 Angle-rotatable ultrasonic probe and ultrasonic detection method for weld defects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280144A (en) * 2021-11-17 2022-04-05 东方电气集团东方锅炉股份有限公司 Angle-rotatable ultrasonic probe and ultrasonic detection method for weld defects
CN114280144B (en) * 2021-11-17 2023-12-08 东方电气集团东方锅炉股份有限公司 Rotatable angle ultrasonic probe and weld defect ultrasonic detection method

Similar Documents

Publication Publication Date Title
US4474064A (en) Ultrasonic flaw detector
KR200436664Y1 (en) Apparatus for positioning a radial emission part of undestroyed tester to protect against radiation exposure
JPS6045371B2 (en) Inspection device holder for ultrasonic inspection of connection seat pipe joints, conduit joints, and connection seat pipe edges of pressure vessels.
US4526037A (en) Nozzle inner radius inspection system
JP4528711B2 (en) Working device and working method
US5571968A (en) Apparatus for mounting a plurality of ultrasonic probes for movement in specified directions for detecting defects in a body
CN111562311B (en) Ultrasonic flaw detection method, device and system
JPH0829576A (en) Flaw detector at welded part of nozzle
US4131027A (en) Apparatus for ultrasonic inspection of the welding seam of large pipes
JP2680130B2 (en) Ultrasonic inspection equipment
JP4585080B2 (en) Nuclear pressure vessel seat surface inspection system
JP3591000B2 (en) Nozzle ultrasonic flaw detector
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
CN108106571A (en) A kind of inner-walls of duct laser detector
JPH01191053A (en) Ultrasonic flaw detection traveling device
JPS6367137B2 (en)
JPH09133283A (en) Pipeline inspecting radiation exposure device
JPS60228957A (en) Apparatus for holding ultrasonic flaw detector for piping
JPH08338896A (en) Ultrasonic flaw detector for nozzle
JPH0664028B2 (en) Ultrasonic flaw detection method
JPH03104787A (en) Running control apparatus
JP2530844B2 (en) Ultrasonic automatic flaw detector
JPH07174731A (en) Method and equipment for ultrasonic flaw detection
JPH0540111A (en) Working truck equipment
JPH08304360A (en) Flaw detecting device of nuclear reactor pressure vessel nozzle part