JPH0829560B2 - Multi-layer film molding method - Google Patents
Multi-layer film molding methodInfo
- Publication number
- JPH0829560B2 JPH0829560B2 JP62031082A JP3108287A JPH0829560B2 JP H0829560 B2 JPH0829560 B2 JP H0829560B2 JP 62031082 A JP62031082 A JP 62031082A JP 3108287 A JP3108287 A JP 3108287A JP H0829560 B2 JPH0829560 B2 JP H0829560B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- liquid crystal
- annular slit
- crystal polymer
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
- B29C48/335—Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
- B29C48/337—Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging at a common location
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/10—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/14—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
- B29C48/147—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle
- B29C48/1472—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle at the die nozzle exit zone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/21—Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2791/00—Shaping characteristics in general
- B29C2791/004—Shaping under special conditions
- B29C2791/007—Using fluid under pressure
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱液晶ポリマーとポリエステル樹脂とを共押
出法によつて、強度特性に優れた多層フイルムを成形す
る方法に関するものである。TECHNICAL FIELD The present invention relates to a method for forming a multilayer film having excellent strength properties by a coextrusion method using a thermal liquid crystal polymer and a polyester resin.
近年、繊維、フイルム又は成形品の何れかを問わず剛
性、耐熱性、寸法安定性の優れた素材に対する要望が高
まつている。ポリエステルは剛性に優れ、広範な用途に
用いられるに到つているが、製品によつてはより高い耐
熱性、寸法安定性が要求されている。そこで最近は耐熱
性に優れた液晶ポリエステルが注目を集めている。特に
注目されるようになつたのは、J.P.S.P.C.Ed14(197
6),2043および特公昭56−18016号公報にW.Jジヤクソン
がポリエチレンテレフタレートとアセトキシ安息香酸と
からなる熱液晶性高分子を発表してからである。しかし
ながらこれらの液晶ポリマーは溶融状態で高度な配向性
を示し、その結果機械的物性に大きな異方性を示し、フ
イルム成形した際には縦方向に過度に分子配向したフイ
ルムしか得られず、それ故フイルムが縦裂けしやすく、
実用に供し得るフイルムを得るのは難かしかつた。In recent years, there has been an increasing demand for materials having excellent rigidity, heat resistance and dimensional stability regardless of whether they are fibers, films or molded products. Although polyester is excellent in rigidity and has come to be used in a wide range of applications, some products are required to have higher heat resistance and dimensional stability. Therefore, liquid crystal polyester, which has excellent heat resistance, has recently attracted attention. The one that has received particular attention is JPSPCEd 14 (197
6), 2043 and Japanese Examined Patent Publication No. 56-18016, after WJ Jackson announced a thermo-liquid crystalline polymer composed of polyethylene terephthalate and acetoxybenzoic acid. However, these liquid crystal polymers show a high degree of orientation in the molten state, resulting in a large anisotropy in mechanical properties, and when the film is formed, only a film having excessive molecular orientation in the longitudinal direction can be obtained. The late film is easy to tear vertically,
It was difficult to obtain a film that could be put to practical use.
このフイルムの分子配向の問題を解決するための種々
の方法が提案されている。例えば、一軸方向に分子配向
したフイルムを互いに配向方向が交叉するように貼り合
わせ、強度的に方向性を持たない高強度のフイルムを得
る方法、あるいはインフレーシヨン成形を行なう際にブ
ローアツプ比(径を拡大された筒状樹脂の直径とダイの
環状スリツトの直径の比)を大きく採り縦方向と横方向
の配向の程度を一致させて縦横の強度を均一とする方法
等が挙げられる。Various methods have been proposed to solve the problem of the molecular orientation of the film. For example, uniaxially molecularly oriented films are laminated so that the orientation directions intersect with each other to obtain a high-strength film that has no directionality in strength, or a blow-up ratio (diameter The ratio of the diameter of the expanded cylindrical resin and the diameter of the annular slit of the die) is increased to make the degree of orientation in the longitudinal direction and the degree of orientation in the lateral direction equal, and to make the strength in the longitudinal and lateral directions uniform.
しかしながら前者の方法ではフイルムを貼り合わせた
ものであるため、フイルムの肉厚が増加するばかりでな
く、製膜工程に加えて貼り合せ工程も必要であり、か
つ、操作が煩雑である等の欠点を有しており、また後者
の方法ではブローアツプ比が大きいため、バブル(径を
拡大するため筒状フイルムの内部に空気等を封入した風
船状部分)が安定せずに破裂したり、得られたフイルム
の厚みむらが大きい等の欠点を有している。However, in the former method, since the films are laminated, not only the thickness of the film is increased, but also the laminating step is required in addition to the film forming step, and the operation is complicated. Since the latter method has a large blow-up ratio, bubbles (balloon-shaped parts in which air etc. is enclosed inside the cylindrical film to enlarge the diameter) burst and could not be obtained. However, there are drawbacks such as large thickness unevenness of the film.
従来技術の上記問題点を改良すべく、本発明者等は先
に熱液晶ポリマーをダイリツプと中子を相互に反対方向
に回転できる回転ダイを用いて、特定の回転数で回転さ
せながらインフレーシヨン成形することにより、縦横方
向にほぼ等配向した引張り強度に優れたフイルムを得る
成形法を提案した。In order to improve the above-mentioned problems of the prior art, the inventors of the present invention first used a rotary die capable of rotating the thermal liquid crystal polymer in the die lip and the core in mutually opposite directions, and inflated them while rotating at a specific rotational speed. We proposed a molding method that obtains a film that is almost equally oriented in the vertical and horizontal directions and that has excellent tensile strength by forming a film.
しかしながら、上記提案方法では得られるフイルムの
引張り強度は優れているものの、タフネスに欠けるため
引裂強度(特にノツチ有り引裂強度)はまだ十分には改
善されていない。However, although the film obtained by the above-mentioned method has excellent tensile strength, its tear strength (particularly, notched tear strength) has not been sufficiently improved due to lack of toughness.
本発明者等は上記した熱液晶ポリマーフイルムの問題
点を解決するべく鋭意検討を重ねた結果、熱液晶ポリマ
ーとポリエステル樹脂とをダイリツプと中子が相互に反
対方向に回転できる回転ダイを設けたインフレーシヨン
成形装置(特公昭54−44307号参照)を用いて、該回転
ダイを特定の回転数で回転させながら共押出成形して多
層フイルムとすることにより縦横両方向にほぼ等配向し
た引張り強度及び引裂強度共に優れたフイルムが得られ
ることを見出し、本発明を完成した。The present inventors have conducted extensive studies to solve the problems of the above-mentioned thermal liquid crystal polymer film, and as a result, provided a rotary die capable of rotating the thermal liquid crystal polymer and the polyester resin in mutually opposite directions. Using an inflation molding device (see Japanese Examined Patent Publication No. 54-44307), the rotary die is coextruded while being rotated at a specific rotational speed to form a multilayer film, so that the tensile strength is approximately equal in both longitudinal and lateral directions. It was found that a film excellent in both tear strength and tear strength can be obtained, and the present invention has been completed.
すなわち本発明の要旨は、環状スリットを介して配置
されており且つ少くとも一方が回転し得るようになって
いるダイリップ及び中子、並びにそれぞれ環状スリット
に開口する複数の樹脂供給孔を有する熱液晶ポリマーの
樹脂流路及びポリエステル樹脂の樹脂流路を備えている
ダイを有するインフレーション成形装置を用いて、熱液
晶ポリマーとポリエステル樹脂とを環状スリットに隣り
合った状態で供給しつつ共押出成形するに際し、ダイリ
ップ及び中子を相互に反対方向に回転させるか又はその
一方のみを回転させ、且つその際の下記(1)式で示さ
れる回転指数(S)と下記(2)式で示される回転数
(N)とが 1≦N/S≦10 なる関係を満足するようにすることを特徴とする多層フ
イルムの成形方法に存する。That is, the gist of the present invention is a thermal liquid crystal having a die lip and a core which are arranged through an annular slit and at least one of which is rotatable, and a plurality of resin supply holes which are respectively opened in the annular slit. When using an inflation molding apparatus having a die having a resin resin flow channel and a polyester resin flow channel, when coextruding while supplying the thermal liquid crystal polymer and the polyester resin in a state of being adjacent to the annular slit. , The die lip and the core are rotated in mutually opposite directions, or only one of them is rotated, and at that time, the rotation index (S) shown by the following formula (1) and the number of rotations shown by the following formula (2). A method for forming a multilayer film is characterized in that (N) and the relationship of 1 ≦ N / S ≦ 10 are satisfied.
但し G:環状スリットの巾(m/m) MFI:成形温度における熱液晶ポリマーのメルトフローイ
ンデックス(g/10分) t:フイルムの厚み(m/m) BUR:ブローアップ比 D:環状スリットの径(m/m) N=ダイリップの回転数(r.p.m)+中子の回転数(r.
p.m)・・・(2) 本発明に使用し得る熱液晶ポリマーとしては、溶融成
形が可能で溶融時に液晶性を示すポリマーであればいか
なるものでもよいが、例えば下記〔I〕〜〔V〕のポリ
エステル、即ち 〔I〕実質的な構造単位が、 からなるもの。 However, G: Width of annular slit (m / m) MFI: Melt flow index of thermal liquid crystal polymer at molding temperature (g / 10 minutes) t: Thickness of film (m / m) BUR: Blow-up ratio D: Annular slit Diameter (m / m) N = die lip rotation speed (rpm) + core rotation speed (r.
pm) (2) The thermo-liquid crystal polymer usable in the present invention may be any polymer as long as it can be melt-molded and exhibits liquid crystallinity when melted. For example, the following [I] to [V] Of polyester, that is, [I] a substantial structural unit, Consisting of.
からなるもの。 Consisting of.
(式中XはC1〜C5の炭化水素基、ハロゲン原子、アルコ
キシ基又はフエノキシ基を示す)、 (式中Yは、O、S、SO2、CO、アルキレン基、又はア
ルキリデン基又はなしを示し、R1〜R8は水素原子、ハロ
ゲン原子又は炭化水素基を示す)からなるもの。 (In the formula, X represents a C 1 to C 5 hydrocarbon group, a halogen atom, an alkoxy group or a phenoxy group), (Wherein Y represents O, S, SO 2 , CO, an alkylene group, or an alkylidene group or none, and R 1 to R 8 represent a hydrogen atom, a halogen atom or a hydrocarbon group).
(式中XはC1〜C5の炭化水素基、ハロゲン原子、アルコ
キシ基又はフエノキシ基を示す)、 (式中Yは、O、S、SO2、CO、アルキレン基又はアル
キリデン基又はなしを示し、R1〜R8は水素原子、ハロゲ
ン原子又は炭化水素基を示す)からなるもの。 (In the formula, X represents a C 1 to C 5 hydrocarbon group, a halogen atom, an alkoxy group or a phenoxy group), (Wherein Y represents O, S, SO 2 , CO, an alkylene group or an alkylidene group or none, and R 1 to R 8 represent a hydrogen atom, a halogen atom or a hydrocarbon group).
〔V〕一般式(J)で表わされるジカルボン酸ユニツ
ト、 (式中、R1の少なくとも60モル%以上は1,4−フエニレ
ン基であり、40モル%以下が1,4−フエニレン基以外のC
6〜C16の2価の芳香族炭化水素基、C4〜C20の2価の脂
環式炭化水素基またはC1〜C40の2価の脂肪族炭化水素
基を示す。但し、芳香族炭化水素基(1,4−フエニレン
基を含めて)のベンゼン環の水素原子はハロゲン原子、
C1〜C4のアルキル基またはアルコキシ基で置換されてい
てもよい) 一般式(K)で表わされるグリコールユニツト −O−R2−O− ・・・・・(K) (式中、R2はC1〜C20の2価の脂肪族炭化水素基またはC
4〜C20の2価の脂環式炭化水素基を示す) および一般式(L)で表わされるオキシカルボン酸ユ
ニツト (式中、R3の少なくとも60モル%以上は1,4−フエニレ
ン基であり、40モル%以下が1,4−フエニレン基以外のC
6〜C16の2価の芳香族炭化水素基を示す。但し、芳香族
炭化水素基(1,4−フエニレン基を含めて)のベンゼン
環の水素原子はハロゲン原子、C1〜C4のアルキル基また
はアルコキシ基で置換されていてもよい) からなるが、 オキシカルボン酸ユニツト(L)の一部はグリコール
ユニツト(K)の一部とエーテル結合により結合して一
般式(M) (式中、R2およびR3は(K)および(L)式におけるR2
およびR3と同意義である) で表わされるユニツトを構成している場合もあり、 ジカルボン酸ユニツト(J)の含有量が10〜40モル%
であり、 ジカルボン酸ユニット(J)とオキシカルボン酸ユニ
ツト(L)の合計量に対するオキシカルボン酸ユニツト
(L)の割合(L)/{(J)+(L)}が30〜80モル
%であり、 グリコールユニツト(K)とオキシカルボン酸ユニツ
ト(L)の合計量に対するオキシカルボン酸ユニツト
(L)の割合(L)/{(K)+(L)}が30〜80モル
%であり、 グリコールユニツト(K)に対するユニツト(M)の
割合(M)/(K)が0〜50モル%であり、 フエノールとテトラクロルエタンの1:1(重量比)の
混合液中0.5g/dlの濃度で30℃で測定した対数粘度ηinh
が0.4dl/g以上である共重合ポリエステルであるもの。[V] a dicarboxylic acid unit represented by the general formula (J), (In the formula, at least 60 mol% or more of R 1 is a 1,4-phenylene group, and 40 mol% or less is C other than 1,4-phenylene group.
Divalent aromatic hydrocarbon group having 6 -C 16, a divalent alicyclic divalent aliphatic hydrocarbon group or a hydrocarbon group C 1 -C 40 of C 4 -C 20. However, the hydrogen atom of the benzene ring of the aromatic hydrocarbon group (including 1,4-phenylene group) is a halogen atom,
It may be substituted with a C 1 -C 4 alkyl group or an alkoxy group) Glycol unit represented by the general formula (K) —O—R 2 —O— (K) (wherein R is 2 is a C 1 to C 20 divalent aliphatic hydrocarbon group or C
4 divalent an alicyclic hydrocarbon group) and the general formula (L) oxycarboxylic acid represented by Yunitsuto the -C 20 (In the formula, at least 60 mol% or more of R 3 is a 1,4-phenylene group, and 40 mol% or less is C other than 1,4-phenylene group.
6 represents a divalent aromatic hydrocarbon group having -C 16. However, the hydrogen atom of the benzene ring of the aromatic hydrocarbon group (including the 1,4-phenylene group) may be substituted with a halogen atom, a C 1 -C 4 alkyl group or an alkoxy group) A part of the oxycarboxylic acid unit (L) is bonded to a part of the glycol unit (K) by an ether bond to give a compound of the general formula (M) (Wherein, R 2 and R 3 R 2 in (K) and (L) formula
And R 3 have the same meaning) and the content of the dicarboxylic acid unit (J) is 10 to 40 mol%.
And the ratio (L) / {(J) + (L)} of the oxycarboxylic acid unit (L) to the total amount of the dicarboxylic acid unit (J) and the oxycarboxylic acid unit (L) is 30 to 80 mol%. The ratio (L) / {(K) + (L)} of the oxycarboxylic acid unit (L) to the total amount of the glycol unit (K) and the oxycarboxylic acid unit (L) is 30 to 80 mol%, The ratio (M) / (K) of the unit (M) to the glycol unit (K) is 0 to 50 mol%, and 0.5 g / dl of a 1: 1 (weight ratio) mixture of phenol and tetrachloroethane Logarithmic viscosity ηinh measured at a concentration of 30 ℃
Is a copolyester having a ratio of 0.4 dl / g or more.
等が挙げられる。Etc.
また更に、上記したもののほか、下記〔VI〕〜〔XX〕
のポリエステル、即ち 〔VI〕実質的な構造単位が (式中X及びYは−H、−C1、−Br又は-CH3を示し、Z
は 又は を示す)からなるもの。Furthermore, in addition to the above, the following [VI] to [XX]
Of polyester, that is, [VI] the substantial structural unit (Wherein X and Y are -H,-C1, shown -Br or -CH 3, Z
Is Or )).
(式中X及びYは−H、−C1又はCH3を示す)からなる
もの。 (Wherein X and Y are -H,-C1 or CH 3 are shown) made of.
からなるもの。 Consisting of.
からなるもの。 Consisting of.
からなるもの。 Consisting of.
からなるもの。 Consisting of.
からなるもの。 Consisting of.
からなるもの。 Consisting of.
からなるもの。 Consisting of.
(式中XはC1、Br、CH3を示す)からなるもの。 (Wherein X is C1, Br, showing a CH 3) That Is a.
からなるもの。 Consisting of.
からなるもの。 Consisting of.
からなるもの。 Consisting of.
からなるもの。 Consisting of.
等が挙げられる。中でも〔I〕〜〔V〕に示したものが
好適に用いられる。Etc. Among them, those shown in [I] to [V] are preferably used.
本発明において、熱液晶性ポリマーとしてポリエチレ
ンテレフタレートとヒドロキシ安息香酸又はアセトキシ
安息香酸をアシル化剤の存在下及び必要に応じて触媒の
存在下で接触、反応させて共重合オリゴマーを生成させ
た後に、重合して得られる共重合ポリエステルが特に好
ましい。アシル化剤としては無水酢酸が好ましく、その
使用量としてはヒドロキシ安息香酸の1.25倍以上が好適
である。In the present invention, polyethylene terephthalate and a hydroxybenzoic acid or acetoxybenzoic acid as a thermo-liquid crystalline polymer are contacted and reacted in the presence of an acylating agent and, if necessary, in the presence of a catalyst, to produce a copolymerized oligomer, Copolymerized polyesters obtained by polymerization are particularly preferred. Acetic anhydride is preferable as the acylating agent, and the amount thereof used is preferably 1.25 times or more that of hydroxybenzoic acid.
上記共重合ポリエステルの製造法としては、例えば、
ポリエチレンテレフタレートとヒドロキシ安息香酸をア
シル化剤と共に反応容器に入れ、130〜250℃で30分以
上、好ましくは1〜3時間反応させ共重合オリゴマーを
得、次いで240〜300℃で重合させ生成物を得る。As the method for producing the copolymerized polyester, for example,
Polyethylene terephthalate and hydroxybenzoic acid are put together with an acylating agent in a reaction vessel, reacted at 130 to 250 ° C for 30 minutes or more, preferably 1 to 3 hours to obtain a copolymer oligomer, and then polymerized at 240 to 300 ° C to obtain a product. obtain.
または、ポリエチレンテレフタレートとヒドロキシ安
息香酸をまず130〜250℃で30分、好ましくは1〜3時間
反応させ共重合オリゴマーとした後、アシル化剤を加え
100〜250℃で30分以上反応させアシル化を行ない、次い
で240〜300℃で重合し生成物を得ることもできる。Alternatively, polyethylene terephthalate and hydroxybenzoic acid are first reacted at 130 to 250 ° C for 30 minutes, preferably 1 to 3 hours to form a copolymer oligomer, and then an acylating agent is added.
It is also possible to carry out reaction at 100 to 250 ° C for 30 minutes or more for acylation, and then to polymerize at 240 to 300 ° C to obtain a product.
この際、各段階で適当な触媒を使用することができ
る。共重合オリゴマーの生成段階で錫化合物(例えば、
酢酸第一錫)が有効であり、最後の重合反応では亜鉛化
合物(例えば、酢酸亜鉛)が有効である。触媒の添加量
は生成ポリマーに対し50〜5000ppm、好ましくは200〜20
00ppmである。At this time, an appropriate catalyst can be used in each stage. A tin compound (for example,
Stannous acetate) is effective, and zinc compounds (eg, zinc acetate) are effective in the last polymerization reaction. The amount of catalyst added is 50-5000 ppm, preferably 200-20, relative to the polymer produced.
It is 00 ppm.
上記共重合ポリエステルを製造するためのポリエチレ
ンテレフタレートとヒドロキシ安息香酸との原料供給割
合はポリエチレンテレフタレート5〜35モル%に対し、
ヒドロキシ安息香酸95〜65モル%の割合が好適である。The raw material supply ratio of polyethylene terephthalate and hydroxybenzoic acid for producing the above copolymerized polyester is 5 to 35 mol% of polyethylene terephthalate,
A proportion of 95-65 mol% hydroxybenzoic acid is preferred.
一方、ポリエステル樹脂としてはポリエチレンテレフ
タレート、ポリブチレンテレフタレート等があげられ、
特に分子量が5000以上のもの、望ましくは1万〜5万の
範囲のポリエチレンテレフタレートが好適である。On the other hand, examples of the polyester resin include polyethylene terephthalate and polybutylene terephthalate.
Particularly, polyethylene terephthalate having a molecular weight of 5,000 or more, preferably 10,000 to 50,000 is suitable.
ポリエチレンテレフタレートとしてはテレフタル酸お
よびエチレングリコールからなるホモポリマー及びテレ
フタル酸、エチレングリコールにさらに第三成分を共重
合させたコポリマーが挙げられ、いずれも使用できる。
第三成分としては通常、イソフタル酸、ナフタレンジカ
ルボン酸などの芳香族ジカルボン酸、p−ヒドロキシ安
息香酸などのオキシカルボン酸、プロピレングリコー
ル、テトラメチレングリコール、ネオペンチルグリコー
ルなどのアルキレングリコール、ポリエチレングリコー
ルなどのポリアルキレングリコール等が用いられる。コ
ポリマー中の第三成分の比率は通常、15モル%以下であ
る。Examples of polyethylene terephthalate include homopolymers of terephthalic acid and ethylene glycol, and copolymers of terephthalic acid and ethylene glycol with which a third component is further copolymerized, and any of these can be used.
The third component is usually an aromatic dicarboxylic acid such as isophthalic acid or naphthalenedicarboxylic acid, an oxycarboxylic acid such as p-hydroxybenzoic acid, an alkylene glycol such as propylene glycol, tetramethylene glycol or neopentyl glycol, or a polyethylene glycol. Polyalkylene glycol or the like is used. The proportion of the third component in the copolymer is usually 15 mol% or less.
また、本発明に使用されるインフレーシヨンフイルム
は成形装置としては通常、用いられる形式のものならい
ずれでも使用可能であるが、成形ダイは通常のサーキユ
ラダイとは異なり、環状ダイと中子とを相互に反対方向
に回転できる回転ダイが用いられる。本発明で用いられ
るダイの一例を第1図に示す。In addition, the inflation film used in the present invention can be used as a molding apparatus in any of the types normally used, but the molding die is different from a normal circular die, and includes an annular die and a core. A rotating die is used which can rotate in mutually opposite directions. An example of the die used in the present invention is shown in FIG.
第1図において、該ダイは環状スリツト(1)を介し
て相互に反対方向に回転させ得る可動ダイリツプ
(2)、中子(3)及び該環状スリツト(1)に熱液晶
ポリマーを供給する樹脂流路(4)並びにポリエステル
樹脂を供給する樹脂流路(5)から構成されている。In FIG. 1, the die is a resin for supplying a thermo-liquid crystal polymer to a movable die lip (2), a core (3) and the annular slit (1) which can be rotated in opposite directions via the annular slit (1). It is composed of a flow channel (4) and a resin flow channel (5) for supplying a polyester resin.
本発明においては熱液晶ポリマーとポリエステル樹脂
とを上記した回転ダイを装着したインフレーシヨンフイ
ルム成形装置を用いて特定の成形条件で成形する。In the present invention, the thermal liquid crystal polymer and the polyester resin are molded under specific molding conditions by using the inflation film molding apparatus equipped with the above rotary die.
まず、インフレーシヨン成形装置において、熱液晶ポ
リマーは樹脂流路(4)を経て、第2図の樹脂供給孔a
から、また、ポリエステル樹脂は樹脂流路(5)を経
て、第2図の樹脂供給孔bからそれぞれ隣り合つた状態
で環状スリツト(1)に供給される。この状態におい
て、可動ダイリツプ(2)及び中子(3)はそれぞれ逆
方向、すなわち第3図に示す矢印に示したように反対方
向に各々回転されており、環状スリツト(1)内のaか
らの熱液晶ポリマー及びbからのポリエステル樹脂は可
動ダイリツプ(2)及び中子(3)の回転の方向に引か
れ、第3図に示すように斜めに積層した状態となる。こ
のようにすることによりaからの熱液晶ポリマーとbか
らのポリエステル樹脂の接合面積が増し、強固な接合が
得られ、可動ダイリツプ(2)と中子(3)の回転数を
調節することにより積層数の種々異なる任意の多層フイ
ルムを得ることができる。また、可動ダイリツプ(2)
と中子(3)を逆方向に回転させているため環状スリツ
ト(1)から押出されたフイルムは押出方向と回転方向
の複合された方向に配向することになるので、フイルム
全体としては斜めに分子配向したフイルムが得られる。
このフイルムの分子配向の程度は可動ダイリツプ及び中
子の回転数、樹脂の押出速度及び引取速度等を調節する
ことにより、適宜選択決定される。First, in the inflation molding apparatus, the thermo-liquid crystal polymer passes through the resin flow path (4) and then the resin supply hole a shown in FIG.
Further, the polyester resin is supplied to the annular slit (1) through the resin flow path (5) in a state of being adjacent to each other through the resin supply holes b in FIG. In this state, the movable die lip (2) and the core (3) are respectively rotated in the opposite directions, that is, in the opposite directions as shown by the arrows shown in FIG. 3, from the a in the annular slit (1). The thermal liquid crystal polymer (1) and the polyester resin (2) are pulled in the direction of rotation of the movable die lip (2) and the core (3), and are obliquely laminated as shown in FIG. By doing so, the bonding area of the thermal liquid crystal polymer from a and the polyester resin from b is increased, a strong bond is obtained, and the rotational speeds of the movable die lip (2) and the core (3) are adjusted. It is possible to obtain an arbitrary multi-layer film having a different number of laminated layers. The movable die lip (2)
Since the core (3) is rotated in the opposite direction, the film extruded from the annular slit (1) is oriented in a combined direction of the extruding direction and the rotating direction, so that the film as a whole is oblique. A molecularly oriented film is obtained.
The degree of molecular orientation of the film is appropriately selected and determined by adjusting the rotational speeds of the movable die lip and the core, the extrusion speed of the resin, and the take-up speed.
本発明においては、フイルムの引張強度及び引裂強度
共に優れたフイルムを製造するために、可動ダイリツプ
(2)及び中子(3)の回転数(可動ダイリツプ、及び
中子を同時に反対方向に回転させる場合には両者の回転
数の和、あるいはいずれか一方のみを回転させるときは
その回転数)を、下記(1)式で示される回転指数
(S)の値以上で、且つ、S値の10倍以下好ましくはS
値の1.2倍〜10倍、さらに好ましくはS値の3倍〜10倍
の範囲内に調節して行う。In the present invention, in order to produce a film having both excellent tensile strength and tear strength, the rotational speed of the movable die lip (2) and the core (3) (the movable die lip and the core are simultaneously rotated in opposite directions). In this case, the sum of the rotation speeds of both, or the rotation speed when only one of them is rotated) is greater than or equal to the value of the rotation index (S) represented by the following formula (1) and is equal to 10 of the S value. Not more than twice, preferably S
The value is adjusted to 1.2 times to 10 times, more preferably 3 times to 10 times the S value.
ここでS:回転指数 G:環状スリツトの幅(m/m) MFI:成形温度における熱液晶ポリマーのメルトフローイ
ンデツクス(g/10分) t:フイルムの厚み(m/m) BUR:ブローアツプ比 D:環状スリツトの径(m/m) を表わす。 Where S: rotation index G: width of annular slit (m / m) MFI: melt flow index (g / 10 min) of thermotropic liquid crystal polymer at molding temperature t: film thickness (m / m) BUR: blow-up ratio D: Diameter of annular slit (m / m).
なお、上記の回転指数(S)は本発明の成形操作条件
の重要な指数であり、使用樹脂の流動性(MFI)、フイ
ルム厚み(t)、ブローアツプ比(BUR)、使用ダイの
スリツト幅(G)及びスリツト径(D)により、必要な
最低トータル回転数(r.p.m)を規定するものである。The above rotation index (S) is an important index of the molding operation conditions of the present invention, and the fluidity (MFI) of the resin used, the film thickness (t), the blow-up ratio (BUR), the slit width of the die used ( G) and the slit diameter (D) define the required minimum total rotational speed (rpm).
上記に規定した回転数が回転指数(S)よりも小さな
回転数の場合には得られるフイルムの強度は、従来の高
ブローアツプ比での成形品と大差がなく、本発明の効果
を十分発揮し得ない。また、該回転数が回転指数(S)
の10倍より多い場合には、熱液晶ポリマー及びポリエス
テル樹脂が横方向に過度に配向を受け物性が低下し、更
に成形装置の耐久性の点からやや問題となる恐れがあり
好ましくない。When the number of rotations defined above is smaller than the number of rotations (S), the strength of the film obtained is not much different from that of the conventional molded article with a high blow-up ratio, and the effect of the present invention is sufficiently exhibited. I don't get it. Further, the rotation speed is the rotation index (S)
When it is more than 10 times, the thermal liquid crystal polymer and the polyester resin are excessively oriented in the lateral direction to deteriorate the physical properties, and there is a possibility that it may cause a slight problem in terms of durability of the molding apparatus, which is not preferable.
また、樹脂の押出速度及び引取速度は通常インフレー
シヨン成形で行われる程度の速度とされる。In addition, the extrusion speed and the take-up speed of the resin are the speeds that are usually used in inflation molding.
上記熱液晶ポリマーとポリエステル樹脂とを共押出イ
ンフレーシヨン成形する際の成形温度は熱液晶ポリマー
のメルトフローインデツクスが20g/10分以下、好ましく
は0.02〜20g/10分、更に好ましくは0.2〜10g/10分の範
囲になる温度で行なわれる。メルトフローインデツクス
が上記上限より大きいとバブルの安定性が不良となり、
好ましくない。The molding temperature in the coextrusion inflation molding of the thermal liquid crystal polymer and the polyester resin is a melt flow index of the thermal liquid crystal polymer is 20 g / 10 minutes or less, preferably 0.02 to 20 g / 10 minutes, more preferably 0.2 to It is performed at a temperature in the range of 10 g / 10 minutes. If the melt flow index is larger than the above upper limit, the stability of bubbles becomes poor,
Not preferred.
本発明において、メルトフローインデツクスとは上記
熱液晶ポリマーをインフレーシヨン成形温度においてJI
S K 6760に準拠して測定した値(g/10分)である。In the present invention, the melt flow index means that the above-mentioned thermal liquid crystal polymer is
The value (g / 10 minutes) measured according to SK 6760.
本発明に用いられるブローアツプ比は0.6〜5程度で
あり、好ましくは1〜3程度である。The blow-up ratio used in the present invention is about 0.6 to 5, preferably about 1 to 3.
また、ダイの径(D)としては、ブローアツプ比と製
品幅との関係で選択され、特に制限はない。The diameter (D) of the die is selected according to the relationship between the blow-up ratio and the product width and is not particularly limited.
さらに成形されるフイルムの厚み(t)としては、2
〜300μ好ましくは5〜200μの範囲であり、熱液晶ポリ
マー/ポリエステル樹脂の層比は10/90〜90/10の範囲で
ある。The thickness (t) of the film to be formed is 2
˜300 μ, preferably in the range of 5 to 200 μ, and the layer ratio of thermionic liquid crystal polymer / polyester resin is in the range of 10/90 to 90/10.
このようにして得られた多層フイルムは熱液晶ポリマ
ーの特徴である強度、剛直性及び寸法安定性を有し、ポ
リエステル樹脂のタフネスを合わせ持つ、強度特性に優
れたものである。The multi-layer film thus obtained has the strength, rigidity and dimensional stability characteristic of the thermal liquid crystal polymer, and also has the toughness of the polyester resin and excellent strength characteristics.
実施例1 (1)熱液晶ポリマーの製造法 ポリエチレンテレフタレートオリゴマー(ηinh=0.1
1dl/g)28.8Kg(150モル)とp−ヒドロキシ安息香酸4
8.3Kg(350モル)、及び無水酢酸40.8Kgおよび酢酸第一
錫22.32Kgを攪拌機がついた重合槽に仕込み、窒素で3
回パージした後、重合槽を150℃に加熱し、1時間攪拌
し、酢酸を留出させながら170℃で1時間、さらに240℃
で1時間攪拌した。更に重合槽温度を275℃にあげ、酢
酸を留出させながら徐々に減圧し、30分後には0.15mmHg
とした。次に重合系をN2で常圧に戻し酢酸亜鉛二水和物
を40.8g添加した後0.18mmHgの真空下に6時間攪拌し重
合を完了し、重合槽より抜き出し、ペレタイザーにてペ
レツト化した。Example 1 (1) Method for producing thermal liquid crystal polymer Polyethylene terephthalate oligomer (ηinh = 0.1
1dl / g) 28.8Kg (150mol) and p-hydroxybenzoic acid 4
8.3 kg (350 mol), 40.8 kg of acetic anhydride and 22.32 kg of stannous acetate were charged into a polymerization tank equipped with a stirrer, and the amount of nitrogen was adjusted to 3
After purging twice, heat the polymerization tank to 150 ° C, stir for 1 hour, and distill acetic acid at 170 ° C for 1 hour, then 240 ° C.
It was stirred for 1 hour. The temperature of the polymerization tank was further raised to 275 ° C and the pressure was gradually reduced while distilling out acetic acid. After 30 minutes, 0.15 mmHg
And Next, the polymerization system was returned to normal pressure with N 2 , 40.8 g of zinc acetate dihydrate was added, and the mixture was stirred under a vacuum of 0.18 mmHg for 6 hours to complete the polymerization, withdrawn from the polymerization tank and pelletized with a pelletizer. .
(2)多層フイルムの成形方法 モダンマシナリー(株)製デルサー65φ型押出機に環
状スリツト径100mmφ、環状スリツト幅(ダイリツプの
ギヤツプ)0.7mmで且つダイリツプ及び中子を環状スリ
ツトを介して相互に反対方向に回転できるスパイラル状
の回転ダイ(図1に示す形状の回転ダイ)を取り付けた
インフレーシヨン成形装置を用いて、上記(1)で得ら
れた熱液晶ポリマー及び分子量2万のポリエチレンテレ
フタレートをそれぞれ樹脂流路(4)及び(5)を経
て、樹脂供給孔a及びbから環状スリツト(1)に供給
する。成形温度280℃、成形温度における熱液晶ポリマ
ーのMFI2.0g/10分、ブローアツプ比(BURと称す)1.2、
ドラフト率12及び第1表に示す回転数の条件下で共押出
して50μの多層フイルムを製造した。得られたフイルム
につき、下記の測定法にて評価した。結果を表1に示
す。(2) Multi-layer film forming method A Dersar 65φ extruder manufactured by Modern Machinery Co., Ltd. has an annular slit diameter of 100 mmφ, an annular slit width (die lip gear tip) of 0.7 mm, and the die lip and the core are opposed to each other through the annular slit. The thermal liquid crystal polymer obtained in the above (1) and the polyethylene terephthalate having a molecular weight of 20,000 were used by using an inflation molding apparatus equipped with a spiral rotary die (a rotary die having a shape shown in FIG. 1) capable of rotating in a direction. The resin is supplied from the resin supply holes a and b to the annular slit (1) through the resin flow paths (4) and (5), respectively. Molding temperature of 280 ℃, MFI of thermionic polymer at molding temperature of 2.0g / 10min, blow-up ratio (called BUR) 1.2,
A 50 μ multilayer film was produced by coextrusion under the conditions of a draft ratio of 12 and the number of revolutions shown in Table 1. The obtained film was evaluated by the following measuring methods. The results are shown in Table 1.
測定法 引張り強度 フイルムを短冊状に切り取り、引張り試験機にて500m
m/分にて引張り、フイルムが切断する時の強度を読みと
る JIS Z1702 エルメンドルフ引裂強度 JIS P8116−1973に準拠して測定した。Measurement method Tensile strength Cut the film into strips and use a tensile tester to measure 500m
Tensile strength was measured at m / min, and the strength at which the film was cut was read. Measured according to JIS Z1702 Elmendorf tear strength JIS P8116-1973.
ドラフト率の定義 ρm:溶融時の比容積 ρf:フイルムの比容積 G:ダイギヤツプ t:フイルム厚み BUR:ブロー比 実施例2 回転数を表1に示す条件に変えた以外は実施例1と同
じようにしてフイルムを成形した。結果を表1に示す。Definition of draft rate ρ m : Specific volume upon melting ρ f : Specific volume of film G: Die gear tape t: Film thickness BUR: Blow ratio Example 2 The same as Example 1 except that the rotation speed was changed to the conditions shown in Table 1. The film was molded. The results are shown in Table 1.
比較例1 回転を停止した以外は実施例1と同じようにしてフイ
ルムを成形した。結果を表1に示す。Comparative Example 1 A film was formed in the same manner as in Example 1 except that the rotation was stopped. The results are shown in Table 1.
比較例2 実施例1において、PETの押出をストツプさせて液晶
ポリマー単独で成形を行なつた場合である。結果を表1
に示す。Comparative Example 2 This is a case where the extrusion of PET was stopped and the liquid crystal polymer alone was molded in Example 1. The results are shown in Table 1.
Shown in
比較例3 回転数を表1に示す条件に変えた以外は実施例1と同
じようにしてフイルムを成形した。結果を表1に示す。Comparative Example 3 A film was formed in the same manner as in Example 1 except that the rotation speed was changed to the conditions shown in Table 1. The results are shown in Table 1.
比較例4 回転数を表1に示す条件に変えた以外は実施例1と同
じようにしてフイルムを成形した。結果を表1に示す。Comparative Example 4 A film was formed in the same manner as in Example 1 except that the rotation speed was changed to the conditions shown in Table 1. The results are shown in Table 1.
〔発明の効果〕 本発明によれば、熱液晶ポリマーからなる引裂強度、
引張強度等に優れたフイルムが得られ、更に液晶ポリマ
ーの用途範囲を広げるものである。 [Effects of the Invention] According to the present invention, the tear strength of the thermo-liquid crystal polymer,
A film excellent in tensile strength and the like can be obtained, and the application range of the liquid crystal polymer is further expanded.
第1図は本発明に用いるダイの一例を示す縦断面図、第
2図、第3図は2種のダイ流路のダイ内配置を示す部分
平面図である。 図中(1)は環状スリツト、(2)はダイリツプ、
(3)は中子、(4)は熱液晶ポリマー用樹脂流路、
(5)はポリエステル用樹脂流路をそれぞれ示す。FIG. 1 is a vertical cross-sectional view showing an example of a die used in the present invention, and FIGS. 2 and 3 are partial plan views showing the arrangement of two types of die channels in the die. In the figure, (1) is an annular slit, (2) is a die slip,
(3) is a core, (4) is a resin flow path for thermal liquid crystal polymer,
(5) shows the resin flow paths for polyester.
Claims (1)
少くとも一方が回転し得るようになっているダイリップ
及び中子、並びにそれぞれ環状スリットに開口する複数
の樹脂供給孔を有する熱液晶ポリマーの樹脂流路及びポ
リエステル樹脂の樹脂流路を備えているダイを有するイ
ンフレーション成形装置を用いて、熱液晶ポリマーとポ
リエステル樹脂とを環状スリットに隣り合った状態で供
給しつつ共押出成形するに際し、ダイリップ及び中子を
相互に反対方向に回転させるか又はその一方のみを回転
させ、且つその際の下記(1)式で示される回転指数
(S)と下記(2)式で示される回転数(N)とが 1≦N/S≦10 なる関係を満足するようにすることを特徴とする多層フ
イルムの成形方法。 但し、 G:環状スリットの幅(m/m) MFI:成形温度における熱液晶ポリマーのメルトフローイ
ンデックス(g/10分) t:フイルムの厚み(m/m) BUR:ブローアップ比 D:環状スリットの径(m/m) N=ダイリップの回転数(r.p.m)+中子の回転数(r.
p.m)・・・(2)1. A thermal liquid crystal polymer having a die lip and a core arranged through an annular slit, at least one of which is rotatable, and a plurality of resin supply holes each opening in the annular slit. Using an inflation molding device having a die having a resin flow path and a resin flow path of a polyester resin, the co-extrusion molding is performed while co-extruding while supplying the thermal liquid crystal polymer and the polyester resin in the state of being adjacent to the annular slit. And the core are rotated in mutually opposite directions, or only one of them is rotated, and at that time, the rotation index (S) shown by the following formula (1) and the rotation speed (N shown by the following formula (2) ) And 1 satisfy the relationship of 1 ≦ N / S ≦ 10. However, G: Width of annular slit (m / m) MFI: Melt flow index of thermal liquid crystal polymer at molding temperature (g / 10 minutes) t: Thickness of film (m / m) BUR: Blow-up ratio D: Annular slit Diameter (m / m) N = rotation speed of die lip (rpm) + rotation speed of core (r.
pm) ・ ・ ・ (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62031082A JPH0829560B2 (en) | 1987-02-13 | 1987-02-13 | Multi-layer film molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62031082A JPH0829560B2 (en) | 1987-02-13 | 1987-02-13 | Multi-layer film molding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63199622A JPS63199622A (en) | 1988-08-18 |
JPH0829560B2 true JPH0829560B2 (en) | 1996-03-27 |
Family
ID=12321497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62031082A Expired - Lifetime JPH0829560B2 (en) | 1987-02-13 | 1987-02-13 | Multi-layer film molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0829560B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0289616A (en) * | 1988-09-28 | 1990-03-29 | Daicel Chem Ind Ltd | Film and manufacture thereof |
JPH02239006A (en) * | 1989-03-10 | 1990-09-21 | Bando Chem Ind Ltd | Conveyor belt and its manufacture |
DE69034011T2 (en) * | 1989-06-16 | 2003-08-14 | Foster-Miller, Inc. | LIQUID CRYSTAL POLYMER FILM |
US5405565A (en) * | 1990-09-28 | 1995-04-11 | Daicel Chemical Industries, Ltd. | Method of manufacturing laminated films |
US5336464A (en) * | 1992-11-20 | 1994-08-09 | Hoechst Celanese Corporation | Extrusion blow molding of thermotropic liquid crystalline polymers |
US5882741A (en) * | 1996-01-26 | 1999-03-16 | Foster-Miller, Inc. | Members having a multiaxially oriented coating of thermotropic liquid crystalline polymer and method and apparatus for producing such members |
WO1997027039A1 (en) * | 1996-01-26 | 1997-07-31 | Foster-Miller, Inc. | Die with grooved feed zone for extruding polymer |
US6692804B1 (en) * | 1997-02-27 | 2004-02-17 | Guill Tool & Engineering Co., Inc. | High strength extruded tubular product and method for making said product |
US20030009151A1 (en) * | 2001-07-03 | 2003-01-09 | Scimed Life Systems, Inc. | Biaxially oriented multilayer polymer tube for medical devices |
US10899889B2 (en) * | 2016-06-24 | 2021-01-26 | Sumitomo Chemical Company, Limited | Aromatic polysulfone and aromatic polysulfone composition |
CN115157622B (en) * | 2022-06-15 | 2023-09-05 | 华南理工大学 | Multilayer melt spiral interweaving orientation coextrusion blow molding die and method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5444307A (en) * | 1977-09-13 | 1979-04-07 | Kubota Ltd | Piling method |
JPS562127A (en) * | 1979-06-22 | 1981-01-10 | Teijin Ltd | Manufacturing method for film of polyester |
-
1987
- 1987-02-13 JP JP62031082A patent/JPH0829560B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63199622A (en) | 1988-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5728442B2 (en) | Multilayer sealant film | |
EP0244445B1 (en) | Laminated structures of polyethylene terephthalate and elastomeric copolyesterethers | |
EP0404803B1 (en) | Multilayered sheets having excellent adhesion | |
JPH0829560B2 (en) | Multi-layer film molding method | |
JP2009279923A (en) | Biaxially oriented multilayer polyester film | |
TW201210820A (en) | Multilayer film | |
JP2003342393A (en) | Polyester soft film for dicing tape | |
WO2005105440A1 (en) | Easy tear biaxially stretched polyester based film | |
JPH0722957B2 (en) | Method for forming thermal liquid crystal polymer film | |
JPS59230049A (en) | Low gas permeability polyester composition and products thereof | |
JP4563090B2 (en) | Polyester resin composition, heat-shrinkable polyester film comprising the resin composition, molded article and container | |
JP5271124B2 (en) | Biaxially oriented multilayer laminated polyester film | |
EP0400703A1 (en) | Adhesive based on a thermoplastic polyester with an aluminium compound incorporated therein | |
JPS6295213A (en) | Laminated film and manufacture thereof | |
JP2012092259A (en) | Biaxially oriented polyester film | |
JP3555911B2 (en) | Multi-layer structure | |
WO2009091072A1 (en) | Polyester resin, process for production of the same, and biaxially oriented polyester film comprising the same | |
JP5710938B2 (en) | Biaxially oriented polyester film | |
JPH0261391B2 (en) | ||
JP2003342397A (en) | Transparent biaxially stretched polyester film, its manufacturing method, stream barrier film and food packaging film | |
JP2003342394A (en) | Polyester soft film for protective film | |
JPS61243826A (en) | Polyester film and its production | |
JP2000037837A5 (en) | ||
JP2004106410A (en) | Multilayered molded object | |
JPS61241147A (en) | Polyester laminated molded shape and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |