JPH08295558A - Glass-ceramic sintered compact and its manufacture - Google Patents

Glass-ceramic sintered compact and its manufacture

Info

Publication number
JPH08295558A
JPH08295558A JP7103702A JP10370295A JPH08295558A JP H08295558 A JPH08295558 A JP H08295558A JP 7103702 A JP7103702 A JP 7103702A JP 10370295 A JP10370295 A JP 10370295A JP H08295558 A JPH08295558 A JP H08295558A
Authority
JP
Japan
Prior art keywords
glass
oxide
crystal phases
type crystal
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7103702A
Other languages
Japanese (ja)
Other versions
JP3101967B2 (en
Inventor
Yoshitake Terashi
吉健 寺師
Hideto Yonekura
秀人 米倉
Satoshi Hamano
智 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP07103702A priority Critical patent/JP3101967B2/en
Publication of JPH08295558A publication Critical patent/JPH08295558A/en
Application granted granted Critical
Publication of JP3101967B2 publication Critical patent/JP3101967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To produce a sintered compact which has high permittivity and high strength and is formed from a green compact that can be simultaneously sintered together with metallic wiring by using a green compact contg. at least Zr, Ca, Si, Al, Mg, Zn and B metallic elements for forming a sintered compact contg. ZrO2 crystal phases, spinel type crystal phases, anorthite type crystal phases and a glass phase. CONSTITUTION: In this manufacture, 30 to 70wt.% of SiO2 -Al2 O3 -MgO-ZnO-B2 O3 based glass and 70 to 30wt.% of the total amount in terms of oxide of Ca oxide and Zr oxide (optionally in the form of a compound consisting of them) which are used as filler components are mixed together to obtain a powdery mixture and an adequate amount of a binder is added to the powdery mixture and, thereafter, the resultant mixture is formed into a green compact. Then, the green compact is sintered in a non-oxidizing atmosphere at 800 to 950 deg.C for 0.1 to 5 hours to manufacture the objective sintered compact contg. ZrO2 crystal phases 1, spinel type crystal phases 2, anorthite type crystal phases 3 and a glass phase 5. To manufacture a wiring substrate by using this sintered compact, the above powdery mixture is formed into a green sheet for forming an insulating layer, and then, a wiring pattern is printed on the surface of the green sheet with a metallic paste by a screen process, and simultaneous sintering of the resultant wiring layer and the insulating layer is performed under the above sintering conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス−セラミック焼
結体およびその製造方法に関するものであり、例えば集
積回路(IC)や電子部品を搭載するための基板等に最
適なガラス−セラミック焼結体及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass-ceramic sintered body and a method for manufacturing the same, and for example, a glass-ceramic sintered body most suitable for a substrate for mounting an integrated circuit (IC) or electronic parts. The present invention relates to a body and a manufacturing method thereof.

【0002】[0002]

【従来技術】近年、高度情報化時代を迎え、情報伝送は
より高速化・高周波化が進行する傾向にある。自動車電
話やパーソナル無線等の移動無線、衛星放送、衛星通信
やCATV等のニューメディアでは、機器のコンパクト
化が推し進められており、これに伴い誘電体共振器等の
マイクロ波用回路素子に対しても小型化が強く望まれて
いる。
2. Description of the Related Art In recent years, with the era of advanced information, information transmission tends to be faster and higher in frequency. In mobile radio such as car telephones and personal radios, satellite broadcasting, satellite communications, and new media such as CATV, downsizing of devices is being promoted, and accordingly, microwave circuit elements such as dielectric resonators are being promoted. However, miniaturization is strongly desired.

【0003】このようなマイクロ波用回路素子の大きさ
は、使用電磁波の波長が基準となる。比誘電率εrの誘
電体中を伝播する電磁波の波長λは、真空中の伝播波長
をλ0 とするとλ=λ0 /(εr)1/2 となる。したが
って、回路素子は、使用される回路用基板の誘電率が大
きい程、小型になる。
The size of such a microwave circuit element is based on the wavelength of the electromagnetic wave used. The wavelength λ of the electromagnetic wave propagating through the dielectric having the relative permittivity εr is λ = λ 0 / (εr) 1/2 when the propagation wavelength in vacuum is λ 0 . Therefore, the larger the dielectric constant of the circuit board used, the smaller the size of the circuit element.

【0004】さらに、多層回路基板に種々の電子部品や
入出力端子等を接続する工程上で基板に加わる応力から
基板が破壊したり、欠けを生じたりすることを防止する
為に材料の機械的強度が高いことも要求されている。
Further, in order to prevent the substrate from being broken or chipped due to the stress applied to the substrate in the process of connecting various electronic parts, input / output terminals, etc. to the multilayer circuit board, a mechanical material is used. High strength is also required.

【0005】よって、上述した高誘電率化および高強度
化等の要求を満足するため、例えば、特開平06−13
2621号公報に示すように、樹脂中に無機誘電体粒子
を分散し、また高誘電率ガラス繊維で強化された回路用
基板が提案されている。この回路基板では比誘電率が高
いため機器の小型化を促進でき、また、高誘電率ガラス
繊維で強化されているため高強度である。
Therefore, in order to satisfy the above-mentioned demands for high permittivity and high strength, for example, Japanese Patent Laid-Open No. 06-13
As disclosed in Japanese Patent No. 2621, there has been proposed a circuit board in which inorganic dielectric particles are dispersed in a resin and which is reinforced with a high dielectric constant glass fiber. Since this circuit board has a high relative dielectric constant, it can promote miniaturization of equipment, and has high strength because it is reinforced with a high dielectric constant glass fiber.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、特開
平06−132621号公報に示された回路基板では、
焼成温度が400℃程度であり銅等を配線導体として用
いての多層化、微細な配線化ができないという問題があ
った。
However, in the circuit board disclosed in Japanese Patent Laid-Open No. 06-132621,
Since the firing temperature is about 400 ° C., there is a problem that it is impossible to form a multilayer and fine wiring by using copper or the like as a wiring conductor.

【0007】従って、本発明は、金、銀、銅を配線導体
として多層化が可能となるように800〜950℃で焼
成されるとともに、比誘電率の高く、高強度のガラス−
セラミック焼結体およびその製造方法を提供することを
目的とする。
Therefore, according to the present invention, a glass having a high relative permittivity and a high strength is used while being fired at 800 to 950 ° C. so that gold, silver and copper can be used as a wiring conductor to form a multilayer.
It is an object to provide a ceramic sintered body and a method for manufacturing the same.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、上記問
題点を鋭意検討した結果、ガラスの軟化流動を利用して
800〜950℃で焼成することにより、配線導体とし
て金、銀及び銅を用い多層化、微細配線化が可能である
こと、また、高誘電率のジルコニアおよびカルシウムの
化合物、これと特定のガラスを組み合わせることによっ
て、結晶相としてZrO2 およびアノーサイトを析出さ
せることで高い比誘電率を得ることができ、さらにスピ
ネル型結晶相(MgO・Al2 3 、ZnO・Al2
3 )を析出させることにより高強度化を達成することが
できることを知見し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have made earnest studies on the above-mentioned problems, and as a result, fired at 800 to 950 ° C. by utilizing the softening flow of glass, whereby gold, silver and By using copper, multi-layering and fine wiring are possible, and by combining high-dielectric-constant zirconia and calcium compounds and specific glass, ZrO 2 and anorthite are precipitated as crystal phases. A high relative permittivity can be obtained, and a spinel type crystal phase (MgO.Al 2 O 3 , ZnO.Al 2 O
It was found that high strength can be achieved by precipitating 3 ), and the present invention was accomplished.

【0009】即ち、本発明のガラス−セラミック焼結体
は、金属元素として、少なくともZr、Ca、Si、A
l、Mg、ZnおよびBを含み、ZrおよびCaを酸化
物換算による合量で70〜30重量%と、Si、Al、
Mg、ZnおよびBを酸化物換算による合量で30〜7
0重量%の割合で含むガラス−セラミック焼結体であっ
て、該焼結体が、ZrO2 結晶相と、スピネル型結晶
相、アノーサイト型結晶相およびガラス相を含むことを
特徴とするもので、かかる焼結体を製造する方法とし
て、SiO2 、Al2 3 、MgO、ZnOおよびB2
3 からなるガラスを30〜70重量%と、Ca酸化物
およびZr酸化物あるいはそれらの化合物を酸化物換算
による合量で70〜30重量%となる割合で混合した混
合粉末を、成形後、800℃〜950℃の酸化性雰囲気
中で焼成することを特徴とするものである。
That is, the glass-ceramic sintered body of the present invention contains at least Zr, Ca, Si and A as metal elements.
70% to 30% by weight in terms of oxide of Zr and Ca, including Si, Al, Mg, Zn and B, and Si, Al,
The total amount of Mg, Zn and B converted to oxide is 30 to 7
A glass-ceramic sintered body containing 0% by weight, characterized in that the sintered body contains a ZrO 2 crystal phase, a spinel type crystal phase, an anorthite type crystal phase and a glass phase. As a method for producing such a sintered body, SiO 2 , Al 2 O 3 , MgO, ZnO and B 2
After molding a mixed powder obtained by mixing 30 to 70% by weight of glass made of O 3 with Ca oxide and Zr oxide or a compound thereof at a ratio of 70 to 30% by weight in total in terms of oxide, It is characterized by firing in an oxidizing atmosphere at 800 ° C to 950 ° C.

【0010】ここで、ガラス−セラミック焼結体中にお
ける組成を上記の範囲に限定したのは、Si、Al、M
g、ZnおよびBの酸化物換算による合量が30重量%
より少ないか、言い換えればZrおよびCaの酸化物換
算による合量が70重量%より多いと、800〜950
℃の温度で磁器が十分に緻密化することができず、S
i、Al、Mg、ZnおよびBの酸化物換算による合量
が70重量%より多いか、言い換えればZrおよびCa
の酸化物換算による合量が30重量%より少ないと誘電
率が9より低くなるためである。
Here, the composition in the glass-ceramic sintered body is limited to the above range by Si, Al, M.
The total amount of g, Zn and B converted to oxides is 30% by weight.
If it is less, in other words, if the total amount of Zr and Ca calculated as oxides is more than 70% by weight, it is 800 to 950.
The porcelain could not be fully densified at a temperature of ℃,
Is the total amount of i, Al, Mg, Zn and B calculated as oxides more than 70% by weight, in other words Zr and Ca?
This is because the dielectric constant becomes lower than 9 when the total amount of the oxide conversion is less than 30% by weight.

【0011】なお、ZrはZrO2 換算量で全量中15
〜69重量%、CaはCaO換算で全量中1〜33重量
%の範囲であることが望ましい。それは、Zr量が15
重量%より少ない場合、磁器の誘電率が9より低く、6
9重量%より大きいと、磁器の緻密化温度が1000℃
より高くなり銅導体を用いることができなくなるためで
ある。また、Ca量が1重量%より少ないと磁器の緻密
化温度が950℃より高くなり銅の収縮曲線と大きくず
れ銅導体が剥離してしまうという問題が発生し、33重
量%より多いと磁器の誘電率が9より低くなるためであ
る。
Zr is 15 in the total amount in terms of ZrO 2.
˜69 wt%, and Ca is preferably in the range of 1 to 33 wt% in terms of CaO in the total amount. It has a Zr content of 15
If it is less than wt%, the dielectric constant of porcelain is lower than 9 and 6
If it is more than 9% by weight, the densification temperature of the porcelain is 1000 ° C.
This is because it becomes higher and the copper conductor cannot be used. Further, if the Ca content is less than 1% by weight, the densification temperature of the porcelain becomes higher than 950 ° C., which greatly deviates from the shrinkage curve of copper and the copper conductor peels off. This is because the dielectric constant becomes lower than 9.

【0012】本発明によれば、上記Zr量およびCa量
は、誘電率及び抗折強度の関係から特にZrがZrO2
換算で30〜60重量%、CaがCaO換算で0.01
〜30重量%の割合で含有されることが望ましい。
According to the present invention, the Zr content and Ca content are ZrO 2 in particular because of the relationship between the dielectric constant and the bending strength.
30 to 60% by weight in terms of conversion, Ca is 0.01 in terms of CaO
It is desirable that the content is ˜30 wt%.

【0013】また、本発明のガラス−セラミック焼結体
の組織の概略図を図1に示した。図1に示すように、本
発明のガラス−セラミック焼結体は、ZrO2 結晶相1
と、スピネル型結晶相2、アノ−サイト型結晶3、そし
てSiO2 −Al2 3 −MgO−ZnO−B2 3
らなるガラス相5とから構成されている。ZrO2 結晶
相1は焼結体中における主結晶を構成し、正方晶ZrO
2 として存在する。また、スピネル型結晶相はMgO・
Al2 3 やZnO・Al2 3 の結晶である。さら
に、アノーサイト型結晶相としてはCaAl2 Si2
8 の結晶である。また、この焼結体中にはさらにガーナ
イト相やコージェライト相の他相4が析出する場合があ
るが、これらの結晶はできるだけ少ない方がよい。
A schematic diagram of the structure of the glass-ceramic sintered body of the present invention is shown in FIG. As shown in FIG. 1, the glass-ceramic sintered body of the present invention has a ZrO 2 crystal phase 1
And a spinel-type crystal phase 2, an an-site-type crystal 3, and a glass phase 5 composed of SiO 2 —Al 2 O 3 —MgO—ZnO—B 2 O 3 . The ZrO 2 crystal phase 1 constitutes the main crystal in the sintered body and is composed of tetragonal ZrO 2.
Exists as 2 . The spinel type crystal phase is MgO.
It is a crystal of Al 2 O 3 or ZnO.Al 2 O 3 . Further, as the anorthite type crystal phase, CaAl 2 Si 2 O is used.
8 crystals. Further, in this sintered body, other phases 4 of the garnite phase and the cordierite phase may be further precipitated, but it is preferable that the number of these crystals is as small as possible.

【0014】このように本発明によれば、焼結体中にジ
ルコニア(正方晶)相を主として存在させることにより
比誘電率を向上することができる。また、焼成温度を調
整することにより、焼結体中にスピネル型結晶相を析出
させる。これらの結晶相はガラスのネットワ−クを補強
する形態で存在するため、機械的強度の高い焼結体を得
ることができる。
As described above, according to the present invention, the relative permittivity can be improved by making the zirconia (tetragonal) phase mainly exist in the sintered body. Further, the spinel type crystal phase is precipitated in the sintered body by adjusting the firing temperature. Since these crystal phases exist in a form that reinforces the glass network, a sintered body having high mechanical strength can be obtained.

【0015】しかし、ガラスの結晶化が進みスピネル型
結晶相が増えすぎると比誘電率が低下する場合があるた
め、焼成温度を800℃〜950℃とすることにより機
械的強度が高く、しかも比誘電率が9〜10の焼結体を
得ることができる。
However, if the crystallization of glass progresses and the spinel type crystal phase increases too much, the relative dielectric constant may decrease. Therefore, by setting the firing temperature to 800 ° C. to 950 ° C., the mechanical strength is high and the ratio is high. A sintered body having a dielectric constant of 9 to 10 can be obtained.

【0016】次に、本発明のガラス−セラミック焼結体
を製造するには、出発原料として、SiO2 −Al2
3 −MgO−ZnO−B2 3 系ガラス30〜70重量
%と、フィラー成分としてCa酸化物およびZr酸化物
あるいはそれらの化合物を酸化物換算による合量で70
〜30重量%の割合になるように混合する。
Next, in order to manufacture the glass-ceramic sintered body of the present invention, SiO 2 -Al 2 O is used as a starting material.
3 and -MgO-ZnO-B 2 O 3 based glass 30-70 wt%, the Ca oxide and Zr oxide or a compound thereof as a filler component in a total amount of oxide conversion 70
Mix so that the proportion is about 30% by weight.

【0017】このフィラー成分としては、ZrO2 の粉
末や、焼結過程でZrO2 、CaOを形成し得る炭酸
塩、硝酸塩、酢酸塩等の形態で添加できる他、ZrO2
とCaOとの化合物としてCaZrO3 の形態で添加す
ることもできる。なお、調合組成において、ZrはZr
2 換算で15〜69重量%、CaはCaO換算で1〜
33重量%の割合で配合することが望ましい。なお、C
a化合物は、ガラスとの反応によりアノーサイト型結晶
相を析出させることが重要である。かかる観点からCa
化合物あるいはCaZrO3 粉末は、1.5μm以下、
特に1.0μm以下の微粉末であることが望ましい。
[0017] As the filler component, in addition to be added in powder or ZrO 2, carbonates capable of forming a ZrO 2, CaO during sintering, a nitrate, in the form of such as acetic acid salt, ZrO 2
It can also be added in the form of CaZrO 3 as a compound of CaO and CaO. In the composition, Zr is Zr
O 2 fifteen to sixty-nine wt% in terms of, Ca is 1 in terms of CaO
It is desirable to mix it in a proportion of 33% by weight. Note that C
It is important that the a compound precipitates an anorthite type crystal phase by a reaction with glass. From this viewpoint, Ca
The compound or CaZrO 3 powder is 1.5 μm or less,
In particular, it is desirable that the fine powder is 1.0 μm or less.

【0018】また、フィラー成分であるZrO2 は、Y
2 3 などの安定化剤を添加して正方晶ZrO2 、ある
いは立方晶ZrO2 の形態で添加することが望ましい。
これは単斜晶のジルコニアの場合温度によって相変態
し、これに伴って生じる体積変化により基板にクラック
等が発生するからである。
The filler component ZrO 2 is Y
It is desirable to add a stabilizer such as 2 O 3 in the form of tetragonal ZrO 2 or cubic ZrO 2 .
This is because, in the case of monoclinic zirconia, phase transformation occurs depending on the temperature, and a crack or the like occurs in the substrate due to the volume change caused by the temperature transformation.

【0019】さらに、出発原料として、SiO2 −Al
2 3 −MgO−ZnO−B2 3系ガラスを用いるの
は、この系のガラスを用いることによりスピネル型結晶
相が析出し、この結晶相はガラスのネットワ−クを補強
する形態で存在し、高強度の焼結体を得ることができる
からである。また、このような系のガラスを30〜70
重量%添加したのは、ガラス量が30重量%より少ない
場合には、焼結体の緻密化温度が1000℃より高くな
り銅導体を用いることが出来ず、ガラス量が70重量%
より多いと磁器の抗折強度が低下するためである。
Further, as a starting material, SiO 2 --Al
The 2 O 3 -MgO-ZnO-B 2 O 3 type glass is used because the spinel type crystal phase is precipitated by using this type of glass, and this crystal phase exists in a form that reinforces the network of the glass. This is because a high-strength sintered body can be obtained. In addition, the glass of such a system is 30 to 70
When the amount of glass is less than 30% by weight, the densification temperature of the sintered body is higher than 1000 ° C and the copper conductor cannot be used, and the amount of glass is 70% by weight.
This is because the bending strength of the porcelain decreases when the amount is larger.

【0020】このSiO2 −Al2 3 −MgO−Zn
O−B2 3 系ガラスの添加量は40〜60重量%であ
ることが望ましく、さらには40〜50重量%であるこ
とが望ましい。SiO2 −Al2 3 −MgO−ZnO
−B2 3 系ガラスのより具体的な組成としてはSiO
2 :40〜45重量%、Al2 3 :25〜30重量
%、MgO:8〜12重量%、ZnO:6〜9重量%、
2 3 :8〜11重量%が望ましい。
This SiO 2 --Al 2 O 3 --MgO--Zn
The amount of OB 2 O 3 based glass added is preferably 40 to 60% by weight, more preferably 40 to 50% by weight. SiO 2 -Al 2 O 3 -MgO- ZnO
As a more specific composition of —B 2 O 3 based glass, SiO 2 is used.
2 : 40 to 45% by weight, Al 2 O 3 : 25 to 30% by weight, MgO: 8 to 12% by weight, ZnO: 6 to 9% by weight,
B 2 O 3: 8~11 wt% is desirable.

【0021】上記のような割合で添加混合した混合粉末
に適宜バインダ−を添加した後、所定形状に成形し、N
2 、Ar等の非酸化性雰囲気中において800℃〜95
0℃で0.1〜5時間焼成することにより得られるもの
である。この時の焼成温度が800℃より低いと、磁器
が十分に緻密化せず、950℃を越えると銅導体を用い
ることが出来なくなり、さらに、高誘電率化に寄与する
アノーサイト型結晶が分解し、低誘電率のガーナイトや
コージェライトが生成され、特性が劣化するためであ
る。
After properly adding a binder to the mixed powder which is added and mixed in the above proportions, it is molded into a predetermined shape and N
2 , 800 ° C to 95 in a non-oxidizing atmosphere such as Ar
It is obtained by firing at 0 ° C. for 0.1 to 5 hours. If the firing temperature at this time is lower than 800 ° C, the porcelain will not be sufficiently densified, and if it exceeds 950 ° C, the copper conductor cannot be used, and further, the anorthite type crystal that contributes to higher permittivity is decomposed. However, a low-permittivity garnite or cordierite is generated and the characteristics deteriorate.

【0022】また、かかるガラスセラミッスを用いて配
線基板を作製する場合には、例えば、上記のようにして
調合した混合粉末を公知のテープ成形法、例えばドクタ
ーブレード法、圧延法等に従い、絶縁層形成用のグリー
ンシートを作製した後、そのシートの表面に配線層用の
メタライズとして、Ag、AuやCuの粉末、特にCu
粉末を含む金属ペーストを用いて、シート表面に配線パ
ターンにスクリーン印刷し、場合によってはシートにス
ルーホールを形成してホール内に上記ペーストを充填す
る。その後、複数のシートを積層圧着した後、上述した
条件で焼成することにより、配線層と絶縁層とを同時に
焼成することができる。
When a wiring board is manufactured using such glass ceramics, the mixed powder prepared as described above is insulated by a known tape molding method such as a doctor blade method or a rolling method. After producing a green sheet for forming a layer, as a metallization for a wiring layer on the surface of the sheet, powder of Ag, Au or Cu, particularly Cu
A metal paste containing powder is used to screen-print a wiring pattern on the surface of the sheet, and in some cases a through hole is formed in the sheet to fill the hole with the paste. After that, a plurality of sheets are laminated and pressure-bonded, and then the wiring layer and the insulating layer can be simultaneously fired by firing under the above-described conditions.

【0023】[0023]

【作用】本発明のガラス−セラミック焼結体によれば、
フィラー成分としてZr酸化物およびCa酸化物を含む
ことにより、高誘電率のZrO2 結晶相を析出させ、ガ
ラス成分の一部とCaとの反応によりアノーサイト型結
晶相を析出させ、低誘電率のガラス量を減少させること
で、焼結体全体の誘電率を高めることができる。また、
SiO2 −Al2 3 −MgO−ZnO−B2 3 系ガ
ラスとともにフィラー成分としてCa酸化物を配合する
ことにより、このガラス成分よりスピネル型結晶層を析
出させることにより、焼結体の抗折強度を高めることが
できる。
According to the glass-ceramic sintered body of the present invention,
By including Zr oxide and Ca oxide as a filler component, a high dielectric constant ZrO 2 crystal phase is precipitated, and by reacting a part of the glass component with Ca, an anorthite type crystal phase is precipitated, resulting in a low dielectric constant. The dielectric constant of the whole sintered body can be increased by reducing the amount of glass. Also,
By mixing Ca oxide as a filler component together with the SiO 2 —Al 2 O 3 —MgO—ZnO—B 2 O 3 based glass, a spinel type crystal layer is precipitated from this glass component, and thus the resistance of the sintered body is improved. Folding strength can be increased.

【0024】また、このガラス−セラミック焼結体は、
800〜950℃の温度でAu、AgあるいはCuの内
部配線層と同時に焼成することができるため、これらの
配線導体を具備する多層配線基板や半導体素子収納用パ
ッケージの微細配線化を容易に達成できる。
The glass-ceramic sintered body is
Since it can be fired at the temperature of 800 to 950 ° C. at the same time as the internal wiring layers of Au, Ag, or Cu, it is possible to easily achieve the fine wiring of the multilayer wiring board or the package for housing the semiconductor element, which includes these wiring conductors. .

【0025】[0025]

【実施例】SiO2 −Al2 3 −MgO−ZnO−B
2 3 系結晶性ガラスA(SiO2 :44重量%、Al
2 3 :29重量%、MgO:11重量%、ZnO:7
重量%、B2 3 :9重量%)と、平均粒径が1μm以
下のZrO2 およびCaCO3 を表1の組成に従い混合
した。なお、表1中、試料No.1、2、3、6、10、
13、15、16については平均粒径0.7μmのCa
ZrO3 粉末を添加した。
EXAMPLES SiO 2 -Al 2 O 3 -MgO- ZnO-B
2 O 3 type crystalline glass A (SiO 2 : 44% by weight, Al
2 O 3 : 29% by weight, MgO: 11% by weight, ZnO: 7
% By weight, B 2 O 3 : 9% by weight), and ZrO 2 and CaCO 3 having an average particle size of 1 μm or less were mixed according to the composition shown in Table 1. In Table 1, samples No. 1, 2, 3, 6, 10,
For 13, 15, 16 Ca with an average particle size of 0.7 μm
ZrO 3 powder was added.

【0026】そして、この混合物に有機バインダー、可
塑剤、トルエンを添加し、ドクターブレード法により厚
さ300μmのグリーンシートを作製した。そして、こ
のグリーンシートを5枚積層し、50℃の温度で100
kg/cm2 の圧力を加えて熱圧着した。得られた積層
体を水蒸気含有/窒素雰囲気中で、700℃で脱バイン
ダーした後、乾燥窒素中で表1の条件において焼成して
ガラスセラミック焼結体を得た。
Then, an organic binder, a plasticizer and toluene were added to this mixture, and a green sheet having a thickness of 300 μm was prepared by the doctor blade method. Then, 5 sheets of this green sheet are laminated and 100 at a temperature of 50 ° C.
A pressure of kg / cm 2 was applied for thermocompression bonding. The obtained laminate was debindered at 700 ° C. in a water vapor-containing / nitrogen atmosphere, and then fired in dry nitrogen under the conditions shown in Table 1 to obtain a glass ceramic sintered body.

【0027】得られた焼結体について誘電率、抗折強度
を以下の方法で評価した。誘電率は、試料形状 直径5
0mm、厚み1mmの試料を切り出し、ネットワークア
ナライザー、シンセサイズドスイーパーを用いて空洞共
振器法により測定した。測定では、サファイヤを充填し
た円筒空洞共振器の間に試料の誘電体基板を挟んで測定
した。共振器のTE011 モードの共振特性より、誘電率
を算出した。抗折強度は、試料形状 長さ70mm,厚
さ3mm,幅4mmとし、JIS−C−2141の規定
に準じて3点曲げ試験を行った。測定の結果は表1に示
した。
The dielectric constant and bending strength of the obtained sintered body were evaluated by the following methods. Dielectric constant is sample shape diameter 5
A sample with a thickness of 0 mm and a thickness of 1 mm was cut out and measured by a cavity resonator method using a network analyzer and a synthesized sweeper. In the measurement, the sample dielectric substrate was sandwiched between the sapphire-filled cylindrical resonators. The dielectric constant was calculated from the resonance characteristics of the TE011 mode of the resonator. The bending strength was such that the sample shape had a length of 70 mm, a thickness of 3 mm, and a width of 4 mm, and a three-point bending test was conducted according to JIS-C-2141. The measurement results are shown in Table 1.

【0028】また、比較例として、フィラー成分とし
て、ZrO2 やCaOに代わり、Al2 3 、フォルス
テライトを用いて同様に焼結体を作製し評価した(試料
No.17、18)。また、上記結晶化ガラスに代わり、
SiO2 :55.2重量%、Al2 3 :12重量%、
2 3 :4.4重量%、MgO:20重量%、Zn
O:6.7重量%、Na2 O1.6重量%、ZrO
2 0.1重量%の組成の結晶化ガラスB、SiO2 :6
0.7重量%、Al2 3 :9.3重量%、B2 3
5重量%、MgO:15.4重量%、ZnO8.6重量
%、K2 O1重量%の組成からなる結晶化ガラスCを用
いて、フィラーとして平均粒径が0.7μmのCaZr
3 を用いて同様に評価した(試料No.19,20)。
As a comparative example, a sintered body was similarly prepared by using Al 2 O 3 and forsterite instead of ZrO 2 or CaO as a filler component and evaluated (Sample Nos. 17 and 18). Further, instead of the crystallized glass,
SiO 2 : 55.2% by weight, Al 2 O 3 : 12% by weight,
B 2 O 3: 4.4 wt%, MgO: 20 wt%, Zn
O: 6.7% by weight, Na 2 O 1.6% by weight, ZrO
2 Crystallized glass B having a composition of 0.1% by weight, SiO 2 : 6
0.7% by weight, Al 2 O 3 : 9.3% by weight, B 2 O 3 :
Crystallized glass C having a composition of 5 wt%, MgO: 15.4 wt%, ZnO 8.6 wt%, and K 2 O 1 wt% was used, and CaZr having an average particle size of 0.7 μm was used as a filler.
The O 3 were evaluated in the same manner using (Sample No.19,20).

【0029】[0029]

【表1】 [Table 1]

【0030】表1の結果から明らかなように、結晶相と
してZrO2 、スピネルおよびアノーサイトが析出した
本発明は、いずれも誘電率が9以上、強度が20kg/
mm2 以上の高い値を示し、これらの中でも焼成温度が
830〜900℃のものは、誘電率は11以上、強度2
3kg/mm2 以上と高いものであった。
As is clear from the results of Table 1, in the present invention in which ZrO 2 , spinel and anorthite were precipitated as the crystal phase, the dielectric constant was 9 or more and the strength was 20 kg /
It shows a high value of mm 2 or more. Among these, those having a firing temperature of 830 to 900 ° C. have a dielectric constant of 11 or more and a strength of 2
It was as high as 3 kg / mm 2 or more.

【0031】これに対して、ZrO2 およびCaOの含
有量が70重量%を越える試料No.1では、焼成温度を
1200℃まで高めないと緻密化することができず、比
誘電率も低いものであった。また、ZrO2 およびCa
Oの含有量が30重量%より少ない試料No.16では、
ZrO2 が析出したものの誘電率、強度ともに低いもの
であった。
On the other hand, in the sample No. 1 in which the contents of ZrO 2 and CaO exceed 70% by weight, the densification cannot be achieved unless the firing temperature is raised to 1200 ° C. and the relative dielectric constant is low. Met. In addition, ZrO 2 and Ca
In the sample No. 16 in which the O content is less than 30% by weight,
Although ZrO 2 was deposited, both the dielectric constant and the strength were low.

【0032】また、比較例として、フィラーとしてAl
2 3 を用いた試料No.17やフォルステライトを用い
た試料No.18では、それぞれ誘電率が5、4.5であ
った。また、結晶化ガラスBおよびCを用いた試料No.
19、20では、800℃〜950℃で十分に緻密化で
きず、いずれも高誘電率、高強度の焼結体は得ることが
できなかった。
As a comparative example, Al is used as a filler.
The dielectric constants of sample No. 17 using 2 O 3 and sample No. 18 using forsterite were 5 and 4.5, respectively. In addition, the sample No. using the crystallized glass B and C.
In Nos. 19 and 20, the densification could not be sufficiently carried out at 800 ° C to 950 ° C, and neither of the sintered bodies had high dielectric constant and high strength.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明のガラス−セ
ラミック焼結体は、高い誘電率と強度を有するために、
マイクロ波用回路素子等において小型化が可能となり、
さらに、基板材料の高強度化により入出力端子部に施す
リードの接合や実装における基板の信頼性を向上でき
る。しかも、800〜950℃で焼成されるため、A
u、Ag、Cu等による配線を同時焼成により形成する
ことができる。
As described in detail above, since the glass-ceramic sintered body of the present invention has a high dielectric constant and strength,
It is possible to miniaturize microwave circuit elements etc.,
Further, by increasing the strength of the substrate material, it is possible to improve the reliability of the substrate in joining the leads to the input / output terminal portion and mounting. Moreover, since it is fired at 800 to 950 ° C, A
Wiring made of u, Ag, Cu or the like can be formed by simultaneous firing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガラス−セラミック焼結体の組織の概
略図である。
FIG. 1 is a schematic view of the structure of a glass-ceramic sintered body of the present invention.

【符号の説明】[Explanation of symbols]

1 ZrO2 結晶相 2 スピネル型結晶相 3 アノ−サイト型結晶 5 ガラス相1 ZrO 2 crystal phase 2 spinel type crystal phase 3 anorthite type crystal 5 glass phase

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属元素として、少なくともZr、Ca、
Si、Al、Mg、ZnおよびBを含み、ZrおよびC
aを酸化物換算による合量で全量中70〜30重量%
と、Si、Al、Mg、ZnおよびBを酸化物換算によ
る合量で30〜70重量%の割合で含むガラス−セラミ
ック焼結体であって、該焼結体が、ZrO2 結晶相と、
スピネル型結晶相、アノーサイト型結晶相およびガラス
相を含むことを特徴とするガラス−セラミック焼結体。
1. A metal element comprising at least Zr, Ca,
Includes Si, Al, Mg, Zn and B, Zr and C
70 to 30 wt% of the total amount of a in terms of oxide
And a glass-ceramic sintered body containing Si, Al, Mg, Zn and B in a total amount of 30 to 70% by weight in terms of oxide, wherein the sintered body contains a ZrO 2 crystal phase,
A glass-ceramic sintered body comprising a spinel type crystal phase, an anorthite type crystal phase and a glass phase.
【請求項2】少なくともSiO2 、Al2 3 、Mg
O、ZnOおよびB2 3 を含むガラスを30〜70重
量%と、Ca酸化物およびZr酸化物あるいはそれらの
化合物を酸化物換算による合量で70〜30重量%とな
る割合で混合した混合粉末を成形後、800℃〜950
℃で焼成することを特徴とするガラス−セラミック焼結
体の製造方法。
2. At least SiO 2 , Al 2 O 3 , Mg
A mixture of 30 to 70% by weight of glass containing O, ZnO and B 2 O 3 and 70 to 30% by weight of Ca oxide and Zr oxide or their compounds in terms of total oxide equivalent. 800 ℃ ~ 950 after molding the powder
A method for producing a glass-ceramic sintered body, which comprises firing at ℃.
JP07103702A 1995-04-27 1995-04-27 Glass-ceramic sintered body and method for producing the same Expired - Fee Related JP3101967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07103702A JP3101967B2 (en) 1995-04-27 1995-04-27 Glass-ceramic sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07103702A JP3101967B2 (en) 1995-04-27 1995-04-27 Glass-ceramic sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08295558A true JPH08295558A (en) 1996-11-12
JP3101967B2 JP3101967B2 (en) 2000-10-23

Family

ID=14361095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07103702A Expired - Fee Related JP3101967B2 (en) 1995-04-27 1995-04-27 Glass-ceramic sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3101967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673461B2 (en) * 2000-03-30 2004-01-06 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1293492A1 (en) 1999-12-16 2003-03-19 Tokuyama Corporation Joint body of glass-ceramic and aluminum nitride sintered compact and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673461B2 (en) * 2000-03-30 2004-01-06 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and method for manufacturing same
US7020941B2 (en) 2000-03-30 2006-04-04 Taiyo Yuden Co., Ltd. Method for manufacturing a multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP3101967B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
JP3297569B2 (en) Low temperature firing porcelain composition
JP5056528B2 (en) Insulator ceramic composition and insulator ceramic using the same
EP2397452B1 (en) Sintered body of low temperature cofired ceramic (ltcc) and multilayer ceramic substrate
JPH11228222A (en) Dielectric ceramic composition and ceramic electronic part using the same
JP3843912B2 (en) Glass ceramic material for multilayer circuit board and multilayer circuit board
JP3903781B2 (en) Composite multilayer ceramic electronic component and method for manufacturing the same
JP3101970B2 (en) Glass-ceramic sintered body and method for producing the same
JP3101967B2 (en) Glass-ceramic sintered body and method for producing the same
JP3101971B2 (en) Glass-ceramic sintered body and method for producing the same
JP3311924B2 (en) Porcelain composition and method for producing porcelain
JP3377898B2 (en) Low temperature firing porcelain composition
JP3085636B2 (en) Glass-ceramic sintered body and method for producing the same
JP2002053368A (en) Porcelain excellent in high-frequency characteristic and its manufacturing method
JPH10297960A (en) Ceramic composition baked at low temperature and production of porcelain baked at low temperature
JP3792355B2 (en) High-strength ceramic sintered body, method for producing the same, and wiring board
JP3441940B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JPH10189828A (en) Low-temperature baked ceramic composition and manufacturing method of low-temperature baked ceramic
JPH09208298A (en) Porcelain composition fired at a low temperature
JPH1117294A (en) Wiring board and manufacture of the same
CN113072379A (en) High-dielectric high-mechanical-strength glass ceramic sintered substrate and preparation method thereof
JPH09175855A (en) Low-temperature-baked ceramic composition
JPH11209172A (en) Dielectric porcelain composition and composite dielectric porcelain composition
JP3833340B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain and method for producing low-temperature fired porcelain
JP4395320B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP3085618B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees