JPH08295512A - Separation and purification method of metal element - Google Patents

Separation and purification method of metal element

Info

Publication number
JPH08295512A
JPH08295512A JP7120812A JP12081295A JPH08295512A JP H08295512 A JPH08295512 A JP H08295512A JP 7120812 A JP7120812 A JP 7120812A JP 12081295 A JP12081295 A JP 12081295A JP H08295512 A JPH08295512 A JP H08295512A
Authority
JP
Japan
Prior art keywords
metal element
solution
metal
aqueous
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7120812A
Other languages
Japanese (ja)
Inventor
Satoshi Ibaraki
敏 茨木
Tatsuo Kinoshita
龍生 木下
Chiaki Marumo
千郷 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP7120812A priority Critical patent/JPH08295512A/en
Publication of JPH08295512A publication Critical patent/JPH08295512A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: To remove impurities in a metal element, particularly a rare earth element by solubilizing the metal element with an inorganic aq. solution, extracting the specific metal element by mixing with an organic solvent, stripping the resultant organic layer with an inorganic acid aq. solution, removing the impurities except the specific metal element with a specific activated carbon and adding a salt of an alkali (alkaline earth) metal. CONSTITUTION: The metal element is an rare earth element of lanthanides having atomic number of 57 to 71, Y having atomic number of 39, a base metal such as Cu, Co, Ni, Zn, a noble metal such as Au, Pt, Pd, Rh. The activated carbon >=1000m<2> g inn specific surface area, 20-60Å in average diameter of narrow pore having <=100Å narrow pore diameter is used. As the organic solvent, an extracting agent (organic solvent) exhibiting selectively between rare earth metals, an anionic extracting agent, a cationic extracting agent, a solvation affinitive extracting agent or the like is used. For example, tributyl phosphate is exemplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属元素の分離精製方法
に係り、更に詳細には本発明は特に希土類元素を分離精
製する際の不純物の除去に好適な金属元素の分離精製方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and refining a metal element, and more specifically, the present invention relates to a method for separating and refining a metal element suitable for removing impurities particularly when separating and refining a rare earth element.

【0002】[0002]

【従来の技術】複数の金属元素が混在する系、例えば鉱
石、土壌等より特定の金属元素を選択的に分離精製する
方法として特定の金属を溶媒抽出した後に、酸性水溶液
で逆抽出し、該金属を適当な塩として得るとともに抽出
溶媒を再生する方法がよく知られており、各種金属の分
離精製に於いて広く実施されている。
2. Description of the Related Art As a method for selectively separating and purifying a specific metal element from a system in which a plurality of metal elements are mixed, such as ore and soil, the specific metal is solvent-extracted and then back-extracted with an acidic aqueous solution. A method for obtaining a metal as an appropriate salt and regenerating an extraction solvent is well known, and is widely practiced in separation and purification of various metals.

【0003】よく知られている例としては、ケイ素、鉄、銅、
アルミニウム、タンタル、カルシウム、ニオフ゛等を含有する系より、ニオフ゛また
はニオフ゛化合物を分離精製する際に、これら混合物を溶解
後、メチルエチルケトン、シクロヘキサノン、メチルイソフ゛チルケトンのような脂肪族ケト
ンからなる有機溶媒で、ニオフ゛とタンタルを有機溶媒中に抽出し
た後、希硫酸と接触させてニオフ゛を酸性水溶液中に分離す
る方法、銅、ニッケル、コハ゛ルト、亜鉛のうち少なくとも一種の卑
金属と銀が存在する系に於いて、これら混合物を可溶化
した後、抽出剤としてヒト゛ロキシヒト゛ロキシム類、ヒト゛ロキシキノン類を含
有する有機層により卑金属を抽出した後、硫酸酸性水溶
液等を接触させて、卑金属を分離精製する方法、モリフ゛テン、タ
ンク゛ステンを含有する系に於いてこれら混合物を溶解した
後、これらを含有する水溶液にシ゛ー2ーエチルヘキシルフォスフォリックアシト
゛を接触させて、モリフ゛テン、タンク゛ステンの両者を有機層に抽出し
た後、過酸化水素、過マンカ゛ン酸塩のような酸化剤を含む硫
酸、塩酸、硝酸、フッ酸等の水溶液を接触させてモリフ゛テンのみ
を水溶液側に移行せしめて高純度のモリフ゛テンを回収する方
法、貴金属含有合金から貴金属を分離精製する方法とし
て、硝酸、塩酸の混酸により該合金を溶解した後、該溶液
よりジブチルカルピトール、メチルイソブチルケトン等
の有機溶媒で金を選択的に抽出した後、希塩酸で逆抽出
する方法等がある。
Well-known examples include silicon, iron, copper,
When separating and purifying a nioph or nioph compound from a system containing aluminum, tantalum, calcium, nioph, etc., after dissolving these mixtures, an organic solvent consisting of an aliphatic ketone such as methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, A method in which niobium and tantalum are extracted in an organic solvent and then contacted with dilute sulfuric acid to separate niobium into an acidic aqueous solution, in a system in which at least one base metal of copper, nickel, cobalt and zinc and silver are present. After solubilizing these mixtures, a base metal is extracted by an organic layer containing human oxy-hydroxy oximes and human oxy-quinones as an extractant, and then contacted with a sulfuric acid acidic aqueous solution or the like to separate and purify the base metal, moributene, Mixing these in a system containing tank dust , And then contacting the aqueous solution containing them with di-2-ethylhexylphosphoric acid to extract both molybutene and tank dusten into the organic layer, and then oxidizing agents such as hydrogen peroxide and permanganate. A method of contacting an aqueous solution of sulfuric acid, hydrochloric acid, nitric acid, hydrofluoric acid, etc. containing slag to transfer only molybutene to the aqueous solution side to recover high-purity molybutene, and a method of separating and purifying noble metal from a noble metal-containing alloy include nitric acid and hydrochloric acid. After dissolving the alloy with the mixed acid of, the gold is selectively extracted from the solution with an organic solvent such as dibutyl carbitol and methyl isobutyl ketone, and then back-extracted with dilute hydrochloric acid.

【0004】さらに前述の分離精製方法の好適な例とし
て、希土類元素の分離精製法があり、広く実施されている
ため本明細書に於いては以下これを例にして詳述する。
尚、希土類元素とは原子番号57〜71のランタン系列と称され
る希土類元素と原子番号39のイットリウムを意味するものとす
る。
Further, as a preferable example of the above-mentioned separation / purification method, there is a separation / purification method for rare earth elements, which is widely practiced and will be described in detail in the present specification by taking this as an example.
The rare earth element means a rare earth element having an atomic number of 57 to 71, which is called a lanthanum series, and yttrium having an atomic number of 39.

【0005】希土類元素含有鉱石であるモナザイト、バ
ストネサイト、ゼノタイム等からの希土類元素の分離精
製は、これら鉱石を硫酸水溶液または硝酸水溶液または
塩酸水溶液で浸蝕し、希土類元素を可溶化した後、不溶性
の残留物をろ過、遠心分離等通常の固液分離技術により
除いて得た溶液を用いて行われており、以下この工程を
希土類元素の可溶化工程と呼ぶ。
The separation and purification of rare earth elements from rare earth element-containing ores such as monazite, bastnasite, xenotime, etc. are carried out by eroding these ores with an aqueous solution of sulfuric acid, an aqueous solution of nitric acid or an aqueous solution of hydrochloric acid to solubilize the rare earth element, and then insoluble. The residue is removed by a normal solid-liquid separation technique such as filtration and centrifugation, and the obtained solution is used. This step is hereinafter referred to as a rare earth element solubilization step.

【0006】希土類元素の相互分離は可溶化工程で得た
希土類元素を含有する水性層と水不溶性の抽出剤を含有
する有機層との間で液−液抽出する工程(以下溶媒抽出
工程と呼ぶ)、さらに有機層から希土類元素を逆抽出す
る工程(以下逆抽出工程と呼ぶ)を経て行われる。抽出
剤は希土類元素間で選択性を示すものが用いられ、陰イオン
性抽出剤、陽イオン性抽出剤、溶媒和性抽出剤が用いられる。
これらの例としてはリン酸トリール−ブチル(TB
P)、リン酸トリイソブチル(TIBP)、ブチルホス
ホン酸ジブチル(DBBP)、2−エチルヘキシルホス
ホン酸ジ(2−エチルヘキシル)(DEHEHP)、ト
リ−n−ブチルホスフィンオキシド(TOPO)等があ
る。溶媒抽出時の有機層は場合により抽出剤以外の有機
希釈剤を含有するが、希釈剤としては、ケロシン等の石油留
分、ヘキサン、テ゛カン等のハ゜ラフィン系炭化水素,イソプロピルエー
テル等のエーテル、ベンゼン、キシレン、エチルベンゼ
ン等の芳香族炭化水素等がある。
Mutual separation of rare earth elements is performed by liquid-liquid extraction between an aqueous layer containing a rare earth element obtained in the solubilization step and an organic layer containing a water-insoluble extractant (hereinafter referred to as a solvent extraction step). ), And a step of back-extracting the rare earth element from the organic layer (hereinafter referred to as a back-extraction step). An extractant that exhibits selectivity between rare earth elements is used, and an anionic extractant, a cationic extractant, or a solvate extractant is used.
Examples of these are tolyl-butyl phosphate (TB
P), triisobutyl phosphate (TIBP), butylphosphonate dibutyl (DBBP), 2-ethylhexyl phosphonate di (2-ethylhexyl) (DEHEHP), tri-n-butylphosphine oxide (TOPO) and the like. The organic layer at the time of solvent extraction may optionally contain an organic diluent other than the extractant. Examples of the diluent include petroleum fractions such as kerosene, paraffin hydrocarbons such as hexane and decan, ethers such as isopropyl ether, and benzene. , Xylene, ethylbenzene, and other aromatic hydrocarbons.

【0007】この溶媒抽出工程に於ける複数種の希土類
元素の分離は複数の抽出段階で実施することにより操作
され、各段階は混合ーテ゛カンテーション操作より成る。 溶媒抽出工程で得られる水性層には、有機層に抽出され
なかった鉄、アルミニウム、カルシウム、リン酸塩、ふっ化物等の大部分
が含まれ、有機層には希土類元素、硝酸、塩酸、リン酸等が含
まれる。
Separation of multiple rare earth elements in this solvent extraction process is operated by performing in multiple extraction steps, each step comprising a mixing-decantation operation. The aqueous layer obtained in the solvent extraction step contains most of iron, aluminum, calcium, phosphate, fluoride, etc. that were not extracted in the organic layer, and the organic layer contains rare earth elements, nitric acid, hydrochloric acid, phosphorus. Acids etc. are included.

【0008】希土類元素含有溶液の純度を向上させるた
めに、逆抽出を行う前に、洗浄工程を設けることも可能で
ある。この工程は有機層を塩基性溶液と混合、分離するこ
とにより行われる。 逆抽出工程は、希土類元素を抽出した有機層中に含まれ
る希土類元素を、適当な塩として単離し、抽出溶媒を再使
用するために設けられ、6N以下の塩酸、硝酸溶液を接触さ
せることにより行われる。
In order to improve the purity of the rare earth element-containing solution, it is possible to provide a washing step before performing back extraction. This step is performed by mixing and separating the organic layer with a basic solution. The back-extraction step is provided to isolate the rare earth element contained in the organic layer from which the rare earth element has been extracted, as a suitable salt, and reuse the extraction solvent. Done.

【0009】逆抽出工程から得られた、希土類元素含有
酸性溶液に、金属陽イオンの水酸化物または炭酸塩を含有す
る塩基性溶液を添加することにより、希土類元素の水酸
化物または炭酸塩を得ることができる(以下この工程を
希土類元素塩の回収工程と呼ぶ)。
By adding a basic solution containing a metal cation hydroxide or carbonate to the rare earth element-containing acidic solution obtained from the back extraction step, the rare earth element hydroxide or carbonate is added. (Hereinafter, this step is referred to as a rare earth element salt recovery step).

【0010】少なくとも前述の工程のうち可溶化工程、
溶媒抽出工程、逆抽出工程、金属回収工程を含む、従来よ
り一般に行われている金属元素の分離精製方法に於い
て、特定の金属元素を含有する有機層より、特定の金属元
素を塩酸、硝酸、硫酸等の水溶液で逆抽出した際に、有機
層中に含まれる抽出剤、希釈剤の一部またはその分解物
またはそれらに含有される不純物等の一成分または複数
成分が酸性溶液中に不純物質として溶け込み該溶液が黄
色または黄褐色に着色してしまうため、該溶液に金属陽イ
オンの炭酸塩、または水酸化物等を添加して得られる金属
元素の塩にもこの色が残り、該金属元素塩の商品価値を
著しく損なうという欠点があった。
Of the above-mentioned steps, the solubilization step,
In a conventional metal element separation and purification method including a solvent extraction step, a back-extraction step, and a metal recovery step, a specific metal element is treated with hydrochloric acid or nitric acid from an organic layer containing the specific metal element. , One or more components such as an extractant, a part of the diluent contained in the organic layer or a decomposed product thereof or impurities contained in the extract, when back-extracted with an aqueous solution of sulfuric acid, etc. As a solution, the solution is colored yellow or yellowish brown, and thus this color remains in a salt of a metal element obtained by adding a carbonate of a metal cation, a hydroxide or the like to the solution. There is a drawback that the commercial value of the metal element salt is significantly impaired.

【0011】これらの着色は還元剤等の薬物添加により
回避できることは従来より知られていたが、これらを添
加すると新たにその物質及びその物質の分解物等の残留
による問題が派生するという欠点があり、逆抽出工程で
得られた金属元素含有溶液からの着色原因物質の除去方
法は未だ満足すべき方法が提案されていないのが現状で
ある。
It has been conventionally known that these colorings can be avoided by adding a drug such as a reducing agent. However, the addition of these causes a new problem that the substance and the decomposed product of the substance remain. Therefore, as a method for removing the color-causing substance from the metal element-containing solution obtained in the back-extraction step, a satisfactory method has not yet been proposed.

【0012】[0012]

【発明が解決しようとする課題】本発明者らは鋭意研究
した結果、下記の(a)〜(d)に記載の工程を含む複数の金
属元素が混在する系より、特定の金属元素を選択的に分
離精製する方法に於いて、工程(d)を行う前に工程(c)で
得られる金属元素含有酸性水溶液を比表面積1000(m2/g)
以上で、細孔直径100Å以下の細孔容積が0.30〜1.0(cc/
g)、かつ細孔直径100Å以下の細孔の平均細孔直径が20〜
60Åの範囲の活性炭と接触させ、水溶液中の特定金属以
外の不純物質を除去する工程を含むことを特徴とする金
属元素の分離精製方法を見いだし、本発明を完成したも
のであって、本発明の目的は逆抽出した金属元素含有溶
液中の着色原因物質を除去する方法を提供することにあ
る。
DISCLOSURE OF THE INVENTION As a result of earnest studies by the present inventors, a specific metal element is selected from a system in which a plurality of metal elements are mixed, including the steps described in (a) to (d) below. In the method of selectively separating and purifying, the metal element-containing acidic aqueous solution obtained in step (c) before the step (d) has a specific surface area of 1000 (m 2 / g)
With the above, the volume of pores with a diameter of 100 Å or less is 0.30 to 1.0 (cc /
g), and the average pore diameter of pores with a pore diameter of 100Å or less is 20 to
A method for separating and purifying a metal element, which comprises a step of removing impurities other than a specific metal in an aqueous solution by contacting with activated carbon in the range of 60Å, and completed the present invention. It is an object of the invention to provide a method for removing a coloring-causing substance in a back-extracted metal element-containing solution.

【0013】(a)金属元素を硝酸水溶液または塩酸水溶
液または硫酸水溶液で可溶化する工程。 (b)工程(a)で得た溶液と有機溶媒とを混合し、特定の金
属元素を選択的に有機溶媒中に抽出する工程。 (c)工程(b)より得た有機層を塩酸水溶液または硝酸水溶
液または硫酸水溶液と混合し、特定の金属元素を酸性水
溶液中に逆抽出する工程。 (d)工程(c)より得た特定の金属元素含有酸性溶液にアルカリ
金属、アルカリ土類金属の塩を添加し、特定の金属元素の塩を
得る工程。
(A) A step of solubilizing a metal element with an aqueous nitric acid solution, an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution. (b) A step of mixing the solution obtained in step (a) with an organic solvent and selectively extracting a specific metal element into the organic solvent. (c) A step of mixing the organic layer obtained from step (b) with an aqueous hydrochloric acid solution, an aqueous nitric acid solution or an aqueous sulfuric acid solution, and back-extracting a specific metal element into the acidic aqueous solution. (d) A step of adding a salt of an alkali metal or an alkaline earth metal to the acidic solution containing a specific metal element obtained in step (c) to obtain a salt of the specific metal element.

【0014】[0014]

【課題を解決するための手段】上記の目的は、下記の(a)
〜(d)に記載の工程を含む複数の金属元素が混在する系
より、特定の金属元素を選択的に分離精製する方法に於
いて、工程(d)を行う前に工程(c)で得られる金属元素含
有酸性水溶液を比表面積1000(m2/g)以上で、細孔直径100
Å以下の細孔容積が0.30〜1.0(cc/g)、かつ細孔直径100
Å以下の細孔の平均細孔直径が20〜60Åの範囲の活性炭
と接触させ、水溶液中の特定金属以外の不純物質を除去
する工程を含むことを特徴とする金属元素の分離精製方
法により達成される。
[Means for Solving the Problems] The above-mentioned purpose is as follows (a)
In a method for selectively separating and purifying a specific metal element from a system in which a plurality of metal elements are mixed, including the step described in (d), the step (c) is performed before step (d). Metallic element-containing acidic aqueous solution with a specific surface area of 1000 (m 2 / g) or more and a pore diameter of 100
Pore volume of Å or less is 0.30 to 1.0 (cc / g), and pore diameter is 100
Achieved by a method for separating and purifying metal elements, which comprises a step of removing impurities other than a specific metal in an aqueous solution by contacting with activated carbon having an average pore diameter of Å or less of 20 to 60Å To be done.

【0015】(a)金属元素を硝酸水溶液または塩酸水溶
液または硫酸水溶液で可溶化する工程。 (b)工程(a)で得た溶液と有機溶媒とを混合し、特定の金
属元素を選択的に有機溶媒中に抽出する工程。 (c)工程(b)より得た有機層を塩酸水溶液または硝酸水溶
液または硫酸水溶液と混合し、特定の金属元素を酸性水
溶液中に逆抽出する工程。 (d)工程(c)より得た特定の金属元素含有酸性溶液にアルカリ
金属、アルカリ土類金属の塩を添加し、特定の金属元素の塩を
得る工程。
(A) A step of solubilizing the metal element with an aqueous nitric acid solution, an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution. (b) A step of mixing the solution obtained in step (a) with an organic solvent and selectively extracting a specific metal element into the organic solvent. (c) A step of mixing the organic layer obtained from step (b) with an aqueous hydrochloric acid solution, an aqueous nitric acid solution or an aqueous sulfuric acid solution, and back-extracting a specific metal element into the acidic aqueous solution. (d) A step of adding a salt of an alkali metal or an alkaline earth metal to the acidic solution containing a specific metal element obtained in step (c) to obtain a salt of the specific metal element.

【0016】以下に本発明を詳細に記載する。 本発明の方法に於いて対象となる金属元素は原子番号57
〜71のランタン系列と称される希土類元素と原子番号39のイッ
トリウム及び、銅、コハ゛ルト、ニッケル、亜鉛等の卑金属、金、白金、ハ゜ラシ
゛ウム、ロシ゛ウム等の貴金属類等である。
The present invention will be described in detail below. The metal element of interest in the method of the present invention has an atomic number of 57.
To 71, rare earth elements called lanthanum series, yttrium with atomic number 39, base metals such as copper, cobalt, nickel and zinc, and precious metals such as gold, platinum, palladium and rhodium.

【0017】本発明に於いて逆抽出した金属元素含有溶
液中に着色原因物質として混入する不純物質としては、
金属元素含有鉱石を浸蝕した鉱酸溶液から、金属元素を
効率的に抽出するため従来より用いられている物質であ
る抽出剤、希釈剤の一部またはそれらの分解物、またはそ
れらが含有する不純物のうちの一成分または複数成分が
考えられる。この逆抽出した溶液の着色度合いは、可視領
域の光を該溶液に照射し、その吸収量より定量的に計測
することが可能であり、具体的には380nm付近の波長で計
測することができる。
In the present invention, the impurities that are mixed as a coloring-causing substance in the back-extracted metal element-containing solution include:
Extractants, parts of diluents or their decomposition products, or impurities contained in them, which are substances that have been conventionally used to efficiently extract metal elements from mineral acid solutions in which ores containing metal elements have been eroded. One or more of these are contemplated. The degree of coloring of the back-extracted solution can be measured quantitatively from the amount of absorption by irradiating the solution with light in the visible region, and specifically, can be measured at a wavelength near 380 nm. .

【0018】本発明に用いる活性炭は、石炭系、ヤシ殻系、
高分子樹脂系等のいずれでも良いが、窒素を用いたB.E.T
法による表面積測定に於いて、比表面積1000(m2/g)以上
で、細孔直径100Å以下の細孔容積が0.30〜1.0(cc/g)、か
つ細孔直径100Å以下の細孔の平均細孔直径が20〜60Å
の範囲でかつメチレンフ゛ルー吸着性能が150〜400(ml/g)、ヨウ素
吸着性能が800〜1800(mg/g)の活性炭が、着色物質の吸着
除去速度及び除去容量の点より好適である。
The activated carbon used in the present invention includes coal-based, coconut shell-based,
BET using nitrogen can be used, including polymer resins
In the surface area measurement by the method, with a specific surface area of 1000 (m 2 / g) or more, a pore volume of 100 Å or less and a pore volume of 0.30 to 1.0 (cc / g), and an average of pores of 100 Å or less Pore diameter 20 to 60Å
Activated carbon having a methylene blue adsorption performance of 150 to 400 (ml / g) and an iodine adsorption performance of 800 to 1800 (mg / g) in the above range is preferable from the viewpoints of adsorption removal rate and removal capacity of the coloring substance.

【0019】本発明に用いる活性炭の形状は粒状、破砕
状、粉状、成形体状のいずれでも良いが、被処理溶液との
接触面積を大きくし、着色物質除去効率を高めるために
は微粒子状、粉状、破砕状のものが好ましい。しかし着色
物質除去後、溶液中から活性炭をろ過、遠心分離等の操作
により分離回収する際の操作の煩雑さ、及び連続流通方
式(後述)に於ける通水抵抗の増大等を考慮すると、粒
子が小さすぎても不都合が生じるため目開き0.05mmの篩
い上に残るものが実用上好適である。
The shape of the activated carbon used in the present invention may be any of granular, crushed, powdery and shaped bodies, but in order to increase the contact area with the solution to be treated and enhance the efficiency of removing the coloring matter, it is in the form of fine particles. It is preferably powdery or crushed. However, in consideration of the complexity of the operation of separating and recovering the activated carbon from the solution by the operation of filtering and centrifuging after removing the coloring matter, and the increase of the water resistance in the continuous flow system (described later), etc. If it is too small, it causes inconvenience, so that the one that remains on the sieve with a mesh of 0.05 mm is practically suitable.

【0020】本発明に於ける活性炭と被処理溶液の接触
方法は、被処理溶液を容れた容器内に活性炭を投入し、一
定時間撹拌・混合する回分方式、または微細状活性炭、成
形体状活性炭等をカラムに充填し被処理溶液を連続的に通
液する連続通液方式のいずれでも良い。また接触時の温
度は特に限定されるものではないが、被処理溶液の粘度、
吸着速度等の関係から10〜60℃が実用上好ましい。
The method of contacting the activated carbon with the solution to be treated in the present invention is a batch system in which activated carbon is put into a container containing the solution to be treated and stirred and mixed for a certain period of time, or fine activated carbon or molded activated carbon. Etc. may be used in any of continuous flow systems in which the solution to be treated is continuously passed through the column. The temperature at the time of contact is not particularly limited, but the viscosity of the solution to be treated,
Practically preferable is 10 to 60 ° C in view of the adsorption rate and the like.

【0021】本発明に於いて被処理溶液と活性炭とを接
触させる時間は、被処理溶液中の着色物質濃度、及び活性
炭の添加濃度、処理温度、活性炭の比表面積、形状等によ
り影響を受けるため経時的に被処理水溶液の一部を用い
て吸光光度計により脱色状態を調べ設定することが実用
上好ましい。
In the present invention, the time for contacting the solution to be treated with the activated carbon is influenced by the concentration of the coloring substance in the solution to be treated, the concentration of the activated carbon added, the treatment temperature, the specific surface area of the activated carbon, the shape, etc. It is practically preferable to examine and set the decolorization state with an absorptiometer using a part of the aqueous solution to be treated with time.

【0022】本発明に於いて活性炭を接触させて透明に
処理された溶液からは、ろ過、遠心分離等の一般的な方法
で活性炭を除くことができる。さらに脱色された金属含
有水溶液からは従来より公知の方法と何等変わること無
く、金属元素の塩を分離・回収することができる。
In the present invention, the activated carbon can be removed from the solution which has been treated with activated carbon and treated to be transparent by a general method such as filtration or centrifugation. Furthermore, the salt of the metal element can be separated and recovered from the decolorized metal-containing aqueous solution without any change from the conventionally known method.

【0023】(測定評価方法) (1)金属元素含有水溶液の着色程度測定方法 被測定溶液3mlを採取し、底面積10mm×10mm、高さ40mmの
石英セルに該溶液を入れ日立分光光度計(U2000)で380nmに
於いて蒸留水を対照とした測定を行い求めた。
(Measurement and evaluation method) (1) Method for measuring degree of coloring of metal element-containing aqueous solution 3 ml of a solution to be measured was sampled and put in a quartz cell having a bottom area of 10 mm × 10 mm and a height of 40 mm, and a Hitachi spectrophotometer ( U2000) at 380 nm and measured using distilled water as a control.

【0024】(2)活性炭の比表面積の測定法 被測定活性炭0.1g程度を正確に秤量した後、高精度全自
動カ゛ス吸着装置BELSORP28(日本ベル株式会社製)の専用
セルに入れ、該装置を用いて窒素を吸着させB.E.T法により
求めた。
[0024] (2) After accurately weighing measurement measured activated carbon 0.1g about the specific surface area of the activated carbon, placed in a dedicated cell of a high-precision fully automatic gas adsorption apparatus BELSORP28 (manufactured by Nippon Bell Co.), the device It was used to adsorb nitrogen and determined by the BET method.

【0025】(3)細孔容積及び平均細孔径の測定法 細孔直径0.01〜10μmの範囲についてはホ゜ロシメーターによる
水銀圧入法(島津製作所製、ホ゜アサイサ゛ー9310)により測定
し、細孔直径100Å以下の細孔容積は高精度全自動カ゛ス吸
着装置(日本ベル株式会社製、BELSORP28)で窒素吸着測
定することにより行った。具体的には細孔直径20〜100Å
の範囲の細孔容積、平均細孔径は77Kに於ける窒素ガス
の吸着等温線をD-H解析することにより求め、細孔直径20
Å以下の細孔容積は77Kに於ける窒素ガスの吸着等温線
のt-plotからMP法を用いて解析することにより求めた。
(3) Method for measuring pore volume and average pore diameter The pore diameter in the range of 0.01 to 10 μm is measured by a mercury porosimetry method (manufactured by Shimadzu Corp., Phoaisizer 9310) using a porosimeter, and the pore diameter is 100 liters or less. The pore volume was measured by measuring nitrogen adsorption with a highly accurate fully automatic gas adsorption device (BELSORP28 manufactured by Nippon Bell Co., Ltd.). Specifically, the pore diameter is 20 to 100Å
The pore volume and average pore diameter in the range of are obtained by DH analysis of the adsorption isotherm of nitrogen gas at 77K.
The pore volume below Å was determined by analyzing the adsorption isotherm of nitrogen gas at 77K from t-plot using MP method.

【0026】(4)メチレンブルー吸着性能 活性炭試験方法(JISK1474)に従って測定を行う。すな
わち試料にメチレンフ゛ルー溶液を加え、吸着させた後ろ過し、ろ
液の吸光度を測定し残留濃度からメチレンフ゛ルー吸着量を求
め、吸着等温線を作成し、その吸着等温線からメチレンフ゛ルーの
残留濃度0.24(mg/l)の時の吸着量を求めてメチレンフ゛ルー吸着
性能とする。
(4) Methylene blue adsorption performance Measurement is carried out according to the activated carbon test method (JIS K1474). That is, a methylene blue solution was added to the sample, and after adsorbing, filtration was performed, and the absorbance of the filtrate was measured to determine the amount of methylene blue adsorption from the residual concentration, an adsorption isotherm was created, and the residual concentration of methylene blue from the adsorption isotherm of 0.24 (mg / l) to determine the amount of adsorption and use it as the methylene blue adsorption performance.

【0027】(5)ヨウ素吸着性能 活性炭試験方法(JISK1474)に従って測定を行う。すな
わち試料にヨウ素溶液を加え、吸着させた後上澄み液を
分離し、指示薬としてデンプン溶液を加え、チオ硫酸ナトリウム
溶液で滴定し、残留しているヨウ素溶液からヨウ素吸着
量を求め、吸着等温線を作成し、その吸着等温線からヨウ
素の残留濃度2.5(g/l)の時の吸着量を求めてヨウ素吸着
性能とする。
(5) Iodine adsorption performance Measurement is performed according to the activated carbon test method (JIS K1474). That is, an iodine solution was added to the sample, and after adsorbing, the supernatant was separated, a starch solution was added as an indicator, titration was performed with a sodium thiosulfate solution, the iodine adsorption amount was determined from the remaining iodine solution, and the adsorption isotherm was determined. The iodine adsorption performance is obtained by calculating the adsorption amount at a residual iodine concentration of 2.5 (g / l) from the adsorption isotherm.

【0028】次に本発明を実施例によりさらに具体的に
説明するが、本発明は実施例により限定されるものでは
ない。
Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to the examples.

【0029】[0029]

【実施例】【Example】

実施例1 表1の組成物を公転15RPM、自転30RPMで10min混練(品川
式万能撹拌器 (株)タ゛ルトン社製)後、口径が3¢、穴数30
0個のタ゛イスを装着した押し出し造粒器(ペレッターダブ
ル 不二パウダル(株)社製)で80kg/hrにて押し出し、
5mmづつにカットして円筒状のヘ゜レットととした前駆体20kgを、
窒素雰囲気下で600℃、3hr炭化して得た炭化ヘ゜レットのうち
2Kgを、さらに950℃、8hr水蒸気を含んだ窒素カ゛ス(賦活カ
゛ス組成モル比:N2/H2O=1/1 流量 1.5Nl/min)で賦活処理し
て得た活性炭A、及び水蒸気賦活時間のみ6hrとした活性
炭B、及び水蒸気賦活時間のみ4hrとした活性炭C及びA
BCのそれぞれを乳鉢ですりつぶし、目開き2mmのメッシュを
通過しかつ目開き0.5mmのメッシュ上に残った活性炭DEF
を作製した。
Example 1 The composition shown in Table 1 was kneaded at a revolution of 15 RPM and a rotation of 30 RPM for 10 min (Shinagawa universal stirrer manufactured by Dalton Co., Ltd.), and then the bore diameter was 3 ¢ and the number of holes was 30.
Extrude at 80 kg / hr with an extrusion granulator (Perletter Double Fuji Paudal Co., Ltd.) equipped with 0 dice.
20 kg of precursor, which was cut into 5 mm each to form a cylindrical pellet,
Of the carbonized pellets obtained by carbonizing at 600 ° C for 3 hours in a nitrogen atmosphere
Activated carbon A obtained by further activating 2 Kg with nitrogen gas (activation gas composition molar ratio: N 2 / H 2 O = 1/1 flow rate 1.5 Nl / min) containing steam at 950 ° C. for 8 hours, and steam activation Activated carbon B for 6 hours only and activated carbons C and A for 4 hours only for steam activation time
Grind each of the BCs in a mortar, pass through a mesh with an opening of 2mm, and leave the activated carbon DEF on the mesh with an opening of 0.5mm.
Was produced.

【0030】[0030]

【表1】 さらに椰子殻系活性炭としてFM150(キャタラー工業(株)社
製)、石炭系活性炭としてクラレコールKW(クラレケミカル(株)社
製)を加えた合計8種の活性炭を用いて、黄褐色に着色
した硝酸ランタン水溶液及び硝酸セリウム水溶液及び塩酸イットリウム
水溶液それぞれの着色物質除去を行った。
[Table 1] Furthermore, a total of eight types of activated carbon, including FM150 (manufactured by Cataler Industry Co., Ltd.) as a coconut shell-based activated carbon and Kuraray Coal KW (manufactured by Kuraray Chemical Co., Ltd.) as a coal-based activated carbon, were used to color yellow brown. The coloring substances were removed from the lanthanum nitrate aqueous solution, the cerium nitrate aqueous solution, and the yttrium hydrochloride aqueous solution.

【0031】1lのヒ゛ーカーに被処理水溶液500mlを入れ、105
℃で3hr乾燥した各活性炭0.5gを添加し、20℃撹拌し吸着
除去処理を行った。試料として用いた各活性炭の原料、比
表面積、細孔容積等を表2に示す。
500 ml of the aqueous solution to be treated was put in a 1 l beaker, and 105
0.5 g of each activated carbon dried for 3 hr at ℃ was added, and the mixture was stirred at 20 ℃ and adsorbed and removed. Table 2 shows the raw material, specific surface area, pore volume, etc. of each activated carbon used as a sample.

【表2】 [Table 2]

【0032】活性炭投入後30分、60分、120分、180分経過
後に、被処理溶液3mlを採取し分光光度計で脱色の程度を
測定した結果を図1、図2及び図3に示す。
After the lapse of 30 minutes, 60 minutes, 120 minutes and 180 minutes after the activated carbon was charged, 3 ml of the solution to be treated was sampled and the degree of decolorization was measured by a spectrophotometer. The results are shown in FIGS. 1, 2 and 3.

【0033】被処理溶液の脱色は経時的に進行し、完全
に脱色されるまでの所要時間は各条件で異なるものの、
比表面積1000(m2/g)以上で、細孔直径100Å以下の細孔容
積が0.30〜1.0(cc/g)、かつ細孔直径100Å以下の細孔の
平均細孔直径が20〜60Åの範囲の活性炭を用いた、本発
明に規定する範囲内の場合に於いては脱色が速やか、か
つ実用上充分に行えることが示された。尚、各活性炭を用
いて240分処理された、各溶液に水酸化カルシウムを添加
し、希土類元素塩を沈澱し分離したところ、C、Fの活性
炭以外を用いて処理された溶液より得た沈澱はいずれも
完全に白色であることが分かった。
Decolorization of the solution to be treated progresses with time, and although the time required for complete decolorization varies depending on each condition,
With a specific surface area of 1000 (m 2 / g) or more, a pore volume of 100 Å or less and a pore volume of 0.30 to 1.0 (cc / g), and an average pore diameter of pores of 100 Å or less of 20 to 60 Å It has been shown that decolorization can be carried out quickly and practically sufficiently in the case of using the activated carbon in the range and within the range specified in the present invention. In addition, when calcium hydroxide was added to each solution treated with each activated carbon for 240 minutes to precipitate and separate a rare earth element salt, a precipitate obtained from a solution treated with other than C and F activated carbon was obtained. Were found to be completely white.

【0034】実施例2 実施例1で用いたのと同様の活性炭A、B、Cを底面積5
¢、長さ30cmのカラムに充填し、連続流通方式による脱色処
理を行った。黄褐色に着色した硝酸ランタン水溶液を流量可
変ホ゜ンフ゜でカラムに通液し、カラム出口より流出してきた溶液の
吸光度を測定し脱色状況を調べた結果を表3に示す。
Example 2 Activated carbons A, B and C similar to those used in Example 1 were used to obtain a bottom area of 5
∘, packed in a column having a length of 30 cm, and subjected to decolorization treatment by a continuous flow system. Table 3 shows the results of examining the decolorization state by passing an aqueous solution of lanthanum nitrate colored yellow-brown through a column with a variable flow rate pump and measuring the absorbance of the solution flowing out from the column outlet.

【表3】 [Table 3]

【0035】表3より分かるように、比表面積1000(m2/g)
以上で、細孔直径100Å以下の細孔容積が0.30〜1.0(cc/
g)、かつ細孔直径100Å以下の細孔の平均細孔直径が20〜
60Åの範囲の活性炭を用いる場合に於いてはSV(空間速
度)を適切に選定することにより硝酸ランタン水溶液を実用
上充分な程度までに脱色できることが示された。
As can be seen from Table 3, specific surface area 1000 (m 2 / g)
With the above, the volume of pores with a diameter of 100 Å or less is 0.30 to 1.0 (cc /
g), and the average pore diameter of pores with a pore diameter of 100Å or less is 20 to
It has been shown that the lanthanum nitrate aqueous solution can be decolorized to a practically sufficient degree by properly selecting the SV (space velocity) when using activated carbon in the range of 60Å.

【0036】実施例3 実施例1で用いたのと同様の活性炭A、B、Cを底面積5
¢、長さ30cmのカラムに充填し、連続流通方式による脱色処
理を行った。黄褐色に着色した硫酸モリフ゛テン水溶液を流量
可変ホ゜ンフ゜でカラムに通液し、カラム出口より流出してきた溶液
の吸光度を測定し脱色状況を調べた結果を表4に示す。
Example 3 Activated carbons A, B and C similar to those used in Example 1 were used to obtain a bottom area of 5
∘, packed in a column having a length of 30 cm, and subjected to decolorization treatment by a continuous flow system. Table 4 shows the results of examining the decolorization state by passing a yellow-brown colored molybutene sulfate aqueous solution through the column with a variable flow rate pump and measuring the absorbance of the solution flowing out from the column outlet.

【0037】[0037]

【表3】表4より分かるように、比表面積1000(m2/g)以上
で、細孔直径100Å以下の細孔容積が0.30〜1.0(cc/g)、か
つ細孔直径100Å以下の細孔の平均細孔直径が20〜60Å
の範囲の活性炭を用いる場合に於いてはSV(空間速度)
を適切に選定することにより硫酸モリフ゛テン水溶液を実用上
充分な程度までに脱色できることが示された。
[Table 3] As can be seen from Table 4, pores with a specific surface area of 1000 (m 2 / g) or more and a pore diameter of 100 Å or less are 0.30 to 1.0 (cc / g) and a pore diameter of 100 Å or less. The average pore diameter of the pores is 20-60Å
SV (space velocity) when using activated carbon in the range
It was shown that the molybdenum sulfate aqueous solution can be decolorized to a practically sufficient degree by properly selecting.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、 表2に記載の各活性炭8種を用いて、黄
褐色に着色した硝酸ランタン水溶液の着色物質除去処理を行
った際に、各溶液の吸光度を経時的に測定し被処理液の
脱色状況を調べた結果を示す図である。
FIG. 1 is a graph showing the absorbance of each solution measured with time when using a lanthanum nitrate aqueous solution colored yellow-brown to remove colored substances from each of the eight activated carbons listed in Table 2. It is a figure which shows the result of having investigated the decolorization state of the to-be-processed liquid.

【図2】図2は、表2に記載の各活性炭8種を用いて、黄
褐色に着色した硝酸セリウム水溶液の着色物質除去処理を行
った際に、各溶液の吸光度を経時的に測定し被処理溶液
の脱色状況を調べた結果を示す図である。
[Fig. 2] Fig. 2 is a graph showing the absorbance of each solution measured with time when a coloring substance removal treatment of a yellow-brown cerium nitrate aqueous solution was performed using each of the activated carbons listed in Table 2. It is a figure which shows the result of having investigated the decolorization state of the to-be-processed solution.

【図3】図3は、表2に記載の各活性炭8種を用いて、黄
褐色に着色した塩酸イットリウム水溶液の着色物質除去処理を
行った際に、各溶液の吸光度を経時的に測定し被処理溶
液の脱色状況を調べた結果を示す図である。
[Fig. 3] Fig. 3 is a graph showing the absorbance of each solution measured with time when a coloring substance removal treatment of a yellow-brown yttrium hydrochloride aqueous solution was performed using each of the activated carbons listed in Table 2. It is a figure which shows the result of having investigated the decolorization state of the to-be-processed solution.

【表4】 [Table 4]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C01B 31/08 C22B 3/00 H G ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // C01B 31/08 C22B 3/00 H G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記の(a)〜(d)に記載の工程を含む複数
の金属元素が混在する系より、特定の金属元素を選択的
に分離精製する方法に於いて、工程(d)を行う前に工程
(c)で得られる金属元素含有酸性水溶液を比表面積1000
(m2/g)以上で、細孔直径100Å以下の細孔容積が0.30〜1.
0(cc/g)、かつ細孔直径100Å以下の細孔の平均細孔直径
が20〜60Åの範囲の活性炭と接触させ、水溶液中の特定
金属以外の不純物質を除去する工程を含むことを特徴と
する金属元素の分離精製方法。 (a)金属元素を硝酸水溶液または塩酸水溶液または硫酸
水溶液で可溶化する工程。 (b)工程(a)で得た溶液と有機溶媒とを混合し、特定の金
属元素を選択的に有機溶媒中に抽出する工程。 (c)工程(b)より得た有機層を塩酸水溶液または硝酸水溶
液または硫酸水溶液と混合し、特定の金属元素を酸性水
溶液中に逆抽出する工程。 (d)工程(c)より得た特定の金属元素含有酸性溶液にアルカリ
金属、アルカリ土類金属の塩を添加し、特定の金属元素の塩を
得る工程。
1. A method for selectively separating and purifying a specific metal element from a system in which a plurality of metal elements are mixed, including the steps described in (a) to (d) below. Process before doing
The metal element-containing acidic aqueous solution obtained in (c) has a specific surface area of 1000
(m 2 / g) or more and the pore volume of 100 Å or less is 0.30 to 1.
0 (cc / g), and having a pore diameter of 100 Å or less, the average pore diameter of the pores is brought into contact with activated carbon in the range of 20 to 60 Å, and a step of removing impurities other than the specific metal in the aqueous solution is included. A method for separating and refining a characteristic metal element. (a) A step of solubilizing a metal element with an aqueous nitric acid solution, an aqueous hydrochloric acid solution, or an aqueous sulfuric acid solution. (b) A step of mixing the solution obtained in step (a) with an organic solvent and selectively extracting a specific metal element into the organic solvent. (c) A step of mixing the organic layer obtained from step (b) with an aqueous hydrochloric acid solution, an aqueous nitric acid solution or an aqueous sulfuric acid solution, and back-extracting a specific metal element into the acidic aqueous solution. (d) A step of adding a salt of an alkali metal or an alkaline earth metal to the acidic solution containing a specific metal element obtained in step (c) to obtain a salt of the specific metal element.
JP7120812A 1995-04-21 1995-04-21 Separation and purification method of metal element Pending JPH08295512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7120812A JPH08295512A (en) 1995-04-21 1995-04-21 Separation and purification method of metal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7120812A JPH08295512A (en) 1995-04-21 1995-04-21 Separation and purification method of metal element

Publications (1)

Publication Number Publication Date
JPH08295512A true JPH08295512A (en) 1996-11-12

Family

ID=14795593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7120812A Pending JPH08295512A (en) 1995-04-21 1995-04-21 Separation and purification method of metal element

Country Status (1)

Country Link
JP (1) JPH08295512A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277091A (en) * 2007-07-27 2007-10-25 Dowa Holdings Co Ltd Tantalum oxide and method of manufacturing the same
JP2012087005A (en) * 2010-10-19 2012-05-10 Asahi Kagaku Kogyo Co Ltd Method for manufacturing high-purity sodium aluminate, and high-purity sodium aluminate
JPWO2013191269A1 (en) * 2012-06-22 2016-05-26 クラレケミカル株式会社 Activated carbon for precious metal adsorption, precious metal adsorption filter and precious metal recovery method
US11186895B2 (en) 2018-08-07 2021-11-30 University Of Kentucky Research Foundation Continuous solvent extraction process for generation of high grade rare earth oxides from leachates generated from coal sources

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277091A (en) * 2007-07-27 2007-10-25 Dowa Holdings Co Ltd Tantalum oxide and method of manufacturing the same
JP2012087005A (en) * 2010-10-19 2012-05-10 Asahi Kagaku Kogyo Co Ltd Method for manufacturing high-purity sodium aluminate, and high-purity sodium aluminate
JPWO2013191269A1 (en) * 2012-06-22 2016-05-26 クラレケミカル株式会社 Activated carbon for precious metal adsorption, precious metal adsorption filter and precious metal recovery method
US11186895B2 (en) 2018-08-07 2021-11-30 University Of Kentucky Research Foundation Continuous solvent extraction process for generation of high grade rare earth oxides from leachates generated from coal sources

Similar Documents

Publication Publication Date Title
RU2353684C2 (en) Method of joint separation of platinum metal
TWI388670B (en) Separation of rhodium with platinum and / or palladium
US3766036A (en) Process for the removal of ionic metallic impurities from water
JP2009519882A (en) Barium sulfate products
Pohlandt The extraction of noble metals with n-octylaniline
WO2007080963A1 (en) Method for separation and recovery of noble metals
JPH05254832A (en) Extraction of cerium from aqueous solution of mixture of rare-earth element
JP5550459B2 (en) Recovery phosphorus and recovery method
JPH08295512A (en) Separation and purification method of metal element
JP4470749B2 (en) Rhodium recovery method and metal rhodium production method
JP4827146B2 (en) Gold separation method
Mikac et al. Extractability of HgS (cinnabar and metacinnabar) by hydrochloric acid
JP3303066B2 (en) How to purify scandium
JP2014177399A (en) Recovery phosphorus
WO2005100621A1 (en) Method for recovery of palladium
JP2001516808A (en) Separation of platinum group metals
AU620076B2 (en) Treatment of rare earths and cobalt containing residues
JP2001020021A (en) Manufacture of high purity cobalt
US4257807A (en) Precious metals recovery process
CN1132946C (en) Noble metal smelting slag wet metallurgical process
US3672875A (en) Extraction of fission product noble metals from spent nuclear fuels
EP3271487B1 (en) Treatment of degraded oxime metal extractants in process organic solutions
JP4885149B2 (en) Method for separating and recovering precious metals
JP3164262B2 (en) Noble metal extractant and method for separating noble metal using the extractant
JP7408365B2 (en) How to dispose of smoke ash