JP7408365B2 - How to dispose of smoke ash - Google Patents

How to dispose of smoke ash Download PDF

Info

Publication number
JP7408365B2
JP7408365B2 JP2019220292A JP2019220292A JP7408365B2 JP 7408365 B2 JP7408365 B2 JP 7408365B2 JP 2019220292 A JP2019220292 A JP 2019220292A JP 2019220292 A JP2019220292 A JP 2019220292A JP 7408365 B2 JP7408365 B2 JP 7408365B2
Authority
JP
Japan
Prior art keywords
organic solvent
smoke ash
acid
extraction step
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019220292A
Other languages
Japanese (ja)
Other versions
JP2021088750A (en
Inventor
和也 荒川
真吾 加藤
聡 中川原
善弘 本間
亮栄 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2019220292A priority Critical patent/JP7408365B2/en
Publication of JP2021088750A publication Critical patent/JP2021088750A/en
Application granted granted Critical
Publication of JP7408365B2 publication Critical patent/JP7408365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、煙灰の処理方法に関する。 The present invention relates to a method for processing smoke ash.

産業上発生する煙灰(特に金属製錬に伴い発生する煙灰)には、種々の金属が含有される。従来の煙灰の処理方法としては、非特許文献1に記載の技術が知られている。 BACKGROUND ART Industrially generated smoke ash (especially smoke ash generated in metal smelting) contains various metals. As a conventional method for processing smoke ash, the technique described in Non-Patent Document 1 is known.

非特許文献1には、金属製錬に伴い発生した煙灰を消石灰(Ca(OH))にて中和した後、煙灰に含有される金属を酸浸出し、苛性ソーダおよび水硫化ソーダなどにより煙灰を処理する技術が記載されている。 Non-Patent Document 1 states that after the smoke ash generated during metal smelting is neutralized with slaked lime (Ca(OH) 2 ), the metals contained in the smoke ash are leached with acid, and the smoke ash is made with caustic soda, sodium hydrosulfide, etc. Techniques for processing this are described.

「飛灰対策 有害物質除去・無害化・再資源化技術」262頁、株式会社エヌ・ティー・エス発行(1998年7月10日)“Fly Ash Countermeasures: Harmful Substance Removal, Detoxification, and Recycling Technology,” 262 pages, published by NTS Co., Ltd. (July 10, 1998)

本発明者により、以下の課題が見出された。 The inventor discovered the following problem.

煙灰がCa(カルシウム)を含有する場合、煙灰に含有される金属(特に、非鉄金属であって亜鉛、銅、鉛、錫、レアメタル、カドミウム、貴金属等の有価金属)を硫酸にて酸浸出しようと試みてしまうと、難溶性である石膏(CaSO)が形成されてしまう。この石膏に、本来酸浸出すべき金属が随伴し、結果として煙灰に含有される金属が回収不能となる。この現象は、特に、消石灰による中和処理が行われた後のアルカリ性の消石灰含有煙灰だと顕著である。 If the smoke ash contains Ca (calcium), the metals contained in the smoke ash (especially valuable metals such as non-ferrous metals such as zinc, copper, lead, tin, rare metals, cadmium, and precious metals) should be leached out with sulfuric acid. If this is attempted, gypsum (CaSO 4 ), which is sparingly soluble, will be formed. This gypsum is accompanied by metals that should originally be leached out with acid, and as a result, the metals contained in the smoke ash cannot be recovered. This phenomenon is particularly noticeable with alkaline slaked lime-containing smoke ash that has been neutralized with slaked lime.

本発明の目的は、石膏の発生を抑制しつつもCa含有アルカリ性煙灰から重金属を抽出することにある。
本発明の別の目的は、抽出後の該重金属を回収可能とすることにある。
An object of the present invention is to extract heavy metals from Ca-containing alkaline smoke while suppressing the generation of gypsum.
Another object of the present invention is to make it possible to recover the heavy metals after extraction.

本発明の第1の態様は、
プロトン放出型の有機溶媒によりCa含有アルカリ性煙灰から重金属を該有機溶媒へと溶媒抽出する重金属溶媒抽出工程を有する、煙灰の処理方法である。
The first aspect of the present invention is
This is a method for treating smoke ash, which includes a heavy metal solvent extraction step of extracting heavy metals from Ca-containing alkaline smoke ash into the organic solvent using a proton-releasing organic solvent.

本発明の第2の態様は、第1の態様に記載の発明において、
前記Ca含有アルカリ性煙灰は消石灰を含有する。
A second aspect of the present invention is the invention described in the first aspect,
The Ca-containing alkaline smoke ash contains slaked lime.

本発明の第3の態様は、第1または第2の態様において、
前記Ca含有アルカリ性煙灰においてCaは0.1質量%以上である。
A third aspect of the present invention is, in the first or second aspect,
In the Ca-containing alkaline smoke ash, Ca is 0.1% by mass or more.

本発明の第4の態様は、第1~第3のいずれかの態様に記載の発明において、
前記重金属溶媒抽出工程に際し、TBP(リン酸トリブチル)を加える。
A fourth aspect of the present invention is the invention according to any one of the first to third aspects,
TBP (tributyl phosphate) is added during the heavy metal solvent extraction step.

本発明の第5の態様は、第1~第4のいずれかの態様に記載の発明において、
前記重金属溶媒抽出工程の後、前記有機溶媒からCaを除去し且つ前記有機溶媒のプロトンを再生する有機溶媒洗浄工程を更に有する。
A fifth aspect of the present invention is the invention according to any one of the first to fourth aspects,
After the heavy metal solvent extraction step, the method further includes an organic solvent washing step of removing Ca from the organic solvent and regenerating protons of the organic solvent.

本発明の第6の態様は、第5の態様に記載の発明において、
前記有機溶媒洗浄工程後、硫酸により前記有機溶媒から重金属を逆抽出する逆抽出工程を更に有する。
A sixth aspect of the present invention is the invention described in the fifth aspect,
After the organic solvent washing step, the method further includes a back extraction step of back extracting heavy metals from the organic solvent using sulfuric acid.

本発明の第7の態様は、第1~第6のいずれかの態様に記載の発明において、
前記有機溶媒は、ジチオカルバミン酸、リン酸、カルボン酸、オキシムまたはそれらの誘導体の少なくともいずれかを含有する。
A seventh aspect of the present invention is the invention according to any one of the first to sixth aspects,
The organic solvent contains at least one of dithiocarbamic acid, phosphoric acid, carboxylic acid, oxime, or a derivative thereof.

本発明によれば、石膏の発生を抑制しつつもCa含有アルカリ性煙灰から重金属を抽出できる。
また、本発明によれば、抽出後の該重金属を回収できるようになる。
According to the present invention, heavy metals can be extracted from Ca-containing alkaline smoke while suppressing the generation of gypsum.
Further, according to the present invention, the heavy metals can be recovered after extraction.

図1は、本実施形態に係る煙灰の処理方法のフローチャートである。FIG. 1 is a flowchart of the smoke ash processing method according to the present embodiment.

本明細書における「~」は所定の数値以上かつ所定の数値以下を指す。
以下、本実施形態について説明する。図1は、本実施形態に係る煙灰の処理方法のフローチャートである。
In this specification, "~" refers to a value greater than or equal to a predetermined value and less than or equal to a predetermined value.
This embodiment will be described below. FIG. 1 is a flowchart of the smoke ash processing method according to the present embodiment.

本実施形態における「Ca含有アルカリ性煙灰」は、産業上発生する煙灰であれば限定は無い。本実施形態においては、金属製錬に伴い発生する煙灰(特に溶融飛灰)を例示し、且つ、消石灰による中和処理がなされた後の煙灰すなわち消石灰含有煙灰を例示する。つまり、本実施形態で主に例示するCaは、水酸化カルシウム(Ca(OH))である。他にも少ないが酸化カルシウム、炭酸カルシウムなどが混合されている可能性はある。 The "Ca-containing alkaline smoke ash" in this embodiment is not limited as long as it is industrially generated smoke ash. In this embodiment, smoke ash (particularly molten fly ash) generated during metal smelting is illustrated, and smoke ash that has been neutralized with slaked lime, that is, smoke ash containing slaked lime, is illustrated. That is, Ca mainly exemplified in this embodiment is calcium hydroxide (Ca(OH) 2 ). It is possible that other substances such as calcium oxide and calcium carbonate are mixed in, although they are rare.

消石灰による中和処理の形式には限定は無く、湿式でも乾式でもよい。また、該煙灰の粒子の大きさには限定は無いが、例えば粒径が1~5000μmであってもよい。 The type of neutralization treatment with slaked lime is not limited, and may be wet or dry. Further, the size of the smoke ash particles is not limited, but may be, for example, 1 to 5000 μm.

煙灰に含有されるCaの量には特に限定は無いが、例えば、Ca含有アルカリ性煙灰においてCaは0.1質量%以上、好ましくは2質量%以上であっても、本実施形態の処理方法を採用することにより、本発明の課題の欄で述べたような石膏の発生に伴う不具合は生じない点で、本発明の技術的思想には大きな意義がある。 There is no particular limitation on the amount of Ca contained in the smoke ash, but for example, even if the Ca content in the Ca-containing alkaline smoke ash is 0.1% by mass or more, preferably 2% by mass or more, the treatment method of this embodiment can be applied. The technical idea of the present invention has great significance in that by employing this method, the problems associated with the generation of gypsum as described in the section on the problems of the present invention do not occur.

また、Ca含有アルカリ性煙灰そのものに対して本実施形態の処理方法を適用してもよいし、該煙灰を水と混合することによりスラリー化したものに対して本実施形態の処理方法を適用してもよい。いずれにせよ、Ca含有アルカリ性煙灰から重金属を溶媒抽出することに変わりはない。本実施形態においては、スラリー化した煙灰を例示する。 Further, the treatment method of this embodiment may be applied to the Ca-containing alkaline smoke ash itself, or the treatment method of this embodiment may be applied to a slurry made by mixing the smoke ash with water. Good too. In any case, heavy metals are still extracted with a solvent from Ca-containing alkaline smoke. In this embodiment, smoke ash made into a slurry is exemplified.

Ca含有アルカリ性煙灰は、その名のとおり、Caを含有し且つアルカリ性であれば特に限定は無い。Ca含有アルカリ性煙灰を水と混合することによりスラリー化したときのスラリーのpHが7を超える状態の煙灰を「Ca含有アルカリ性煙灰」とする。 As the name suggests, the Ca-containing alkaline smoke ash is not particularly limited as long as it contains Ca and is alkaline. The ash in which the pH of the slurry when the Ca-containing alkaline ash is mixed with water to form a slurry is defined as "Ca-containing alkaline ash".

Ca含有アルカリ性煙灰に含有される重金属には特に限定は無く、Zn(亜鉛)、Pb(鉛)、Cu(銅)、Sn(錫)、Ag(銀)、Au(金)、PGM(白金族元素、すなわちルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)からなる群の少なくともいずれか)などが挙げられ、これらの少なくともいずれかを含んでいてもよい。 There are no particular limitations on the heavy metals contained in the Ca-containing alkaline smoke, including Zn (zinc), Pb (lead), Cu (copper), Sn (tin), Ag (silver), Au (gold), and PGM (platinum group metal). elements, such as at least one of the group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt), and at least one of these. May contain.

本実施形態の大きな特徴の一つが、プロトン放出型の有機溶媒によりCa含有アルカリ性煙灰(本実施形態の一例だと該煙灰のスラリー)から重金属を該有機溶媒へと溶媒抽出する重金属溶媒抽出工程を有することである。 One of the major features of this embodiment is the heavy metal solvent extraction process in which heavy metals are extracted from Ca-containing alkaline smoke ash (slurry of the smoke ash in an example of this embodiment) using a proton-releasing organic solvent. It is to have.

重金属溶媒抽出工程では以下の反応が生じる。H-Rは、プロトン放出型の有機溶媒を指す。M2+は重金属イオンを指し、説明の便宜上、2価の重金属イオンを例示する。
2H-R+Ca(OH)=Ca-2R+2HO ・・・(1)(主反応)
2H-R+M2+=M-2R+2H ・・・(2)(副反応その1)
Ca(OH)+2H=Ca2++2HO ・・・(3)(副反応その2)
溶媒抽出において、プロトン放出型の有機溶媒を採用するため、煙灰中の重金属は有機溶媒(すなわち油相)へと溶媒抽出される((2)のM-2R)。なお、Ca含有アルカリ性煙灰中のCa(OH)は、プロトン放出型の有機溶媒により酸溶解され、油相(有機溶媒)に溶媒抽出されたり((1)のCa-2R)、元スラリーにより構成される水相に移行したりする((3)のCa2+)。このようにCaは、石膏のような中和物でないため、他の金属イオンを巻き込む共沈を抑制し、さらにはアルカリ性の反応剤としても利用可能な状態である。
The following reactions occur in the heavy metal solvent extraction step. HR refers to a proton-releasing organic solvent. M 2+ refers to a heavy metal ion, and for convenience of explanation, a divalent heavy metal ion is exemplified.
2H-R+Ca(OH) 2 =Ca-2R+2H 2 O...(1) (main reaction)
2H-R+M 2+ =M-2R+2H + ...(2) (Side reaction 1)
Ca(OH) 2 +2H + =Ca 2+ +2H 2 O...(3) (Side reaction 2)
In the solvent extraction, since a proton-releasing organic solvent is used, the heavy metals in the smoke ash are solvent extracted into the organic solvent (ie, oil phase) (M-2R in (2)). Note that Ca(OH) 2 in the Ca-containing alkaline smoke is acid-dissolved in a proton-releasing organic solvent, extracted into the oil phase (organic solvent) (Ca-2R in (1)), or extracted into the original slurry. (Ca 2+ in (3)). In this way, since Ca is not a neutralized substance like gypsum, it suppresses coprecipitation involving other metal ions, and can also be used as an alkaline reactant.

つまり、重金属溶媒抽出工程により、本発明の課題で述べたような石膏は発生させずにCa含有アルカリ性煙灰から重金属を分離することが可能となる。それに加え、以下の顕著な効果も備える。すなわち、上記(1)~(3)が示すように、重金属溶媒抽出工程ならば、Ca(OH)の浸出処理と金属Mの抽出処理とを同時に行える。これは、石膏形成を回避すべく単に硫酸以外の鉱酸を使用する選択をしただけでは得られない効果である。 In other words, the heavy metal solvent extraction step makes it possible to separate heavy metals from Ca-containing alkaline smoke without generating gypsum as described in the problem of the present invention. In addition, it also has the following notable effects: That is, as shown in (1) to (3) above, in the heavy metal solvent extraction process, the leaching process of Ca(OH) 2 and the extraction process of metal M can be performed simultaneously. This is an effect that cannot be obtained simply by choosing to use mineral acids other than sulfuric acid to avoid gypsum formation.

また、重金属溶媒抽出工程がもたらす効果として、ハロゲン(塩素(Cl)、臭素(Br)、ここではClを例示)が水相中に残置されることがある。ハロゲンは、煙灰に含有されるNa、Kに付随する形で主に存在しているが、重金属溶媒抽出工程により、Na、Kの大部分が水相中に残置される(後掲の実施例1参照)。これは、ハロゲンも水相中に残置されることを意味し、有機溶媒にはハロゲンがほとんど抽出されないことを意味する。これにより、既存の製錬工程に該有機溶媒を投入した場合において、製錬工程に与える影響を軽減できる。 Further, as an effect brought about by the heavy metal solvent extraction step, halogens (chlorine (Cl), bromine (Br), Cl is exemplified here) may remain in the aqueous phase. Halogens mainly exist in the form associated with Na and K contained in smoke ash, but due to the heavy metal solvent extraction process, most of Na and K remain in the aqueous phase (see Examples below). (see 1). This means that the halogen is also left in the aqueous phase, and that almost no halogen is extracted into the organic solvent. Thereby, when the organic solvent is introduced into an existing smelting process, the influence on the smelting process can be reduced.

しかも、本実施形態に係る重金属溶媒抽出工程後だと、元スラリーである水相中にハロゲンが多量に存在することから、この水相をブライン浸出に利用することも可能となる。 Moreover, after the heavy metal solvent extraction step according to the present embodiment, since a large amount of halogen is present in the aqueous phase that is the original slurry, this aqueous phase can also be used for brine leaching.

また、硫酸はもとより、それ以外の酸をわざわざ使用する必要もない。プロトン放出型の有機溶媒を利用すれば、溶媒抽出を利用してCa含有アルカリ性煙灰から重金属を回収できるようになるという効果もある。 Moreover, there is no need to take the trouble to use not only sulfuric acid but also other acids. The use of a proton-releasing organic solvent also has the effect of making it possible to recover heavy metals from Ca-containing alkaline smoke using solvent extraction.

本実施形態における「プロトン放出型の有機溶媒」は、上記(1)(2)のようにプロトン(H)を放出可能な有機溶媒であれば限定は無い。具体例を挙げると、ジチオカルバミン酸、リン酸、カルボン酸、オキシムに代表されるキレート型抽出剤またはそれらの誘導体の少なくともいずれかを含有するものであってもよい。なお、リン酸またはその誘導体を含有する市販の試薬としてはD2EHPA(ジ-(2-エチルヘキシル)リン酸)、PC-88A(大八化学工業株式会社製:化合物名は2-エチルヘキシルホスホン酸2-エチルヘキシル)、CYANEX272(SOLVAY製:化合物名はジ(2,4,4-トリメチルペンチル)ホスフィン酸)が挙げられる。 The "proton-releasing organic solvent" in this embodiment is not limited as long as it is an organic solvent that can release protons (H + ) as described in (1) and (2) above. To give a specific example, it may contain at least one of a chelate extractant represented by dithiocarbamic acid, phosphoric acid, carboxylic acid, and oxime, or a derivative thereof. Commercially available reagents containing phosphoric acid or its derivatives include D2EHPA (di-(2-ethylhexyl) phosphoric acid), PC-88A (manufactured by Daihachi Kagaku Kogyo Co., Ltd.; the compound name is 2-ethylhexylphosphonic acid 2- ethylhexyl) and CYANEX272 (manufactured by SOLVAY; compound name is di(2,4,4-trimethylpentyl)phosphinic acid).

なお、プロトン放出型の有機溶媒以外の有機溶媒と混合して本実施形態に使用してもよい(例えば後掲の実施例1におけるケロシン)。その際の混合物を総有機溶媒とも称する。 Note that it may be used in this embodiment by mixing with an organic solvent other than a proton-releasing type organic solvent (for example, kerosene in Example 1 described below). The mixture at that time is also referred to as total organic solvent.

具体的な重金属溶媒抽出工程の作業内容としては限定は無いが、例えば、プロトン放出型の有機溶媒を収めた容器に煙灰を投入した後、撹拌、振とう等を行うことが挙げられる。もちろん、煙灰を収めた容器に有機溶媒を添加しても構わない。また、その際に、本実施形態で例示するようにスラリー化した煙灰を使用しても構わない。 Although there are no specific limitations on the specific work contents of the heavy metal solvent extraction step, for example, stirring, shaking, etc. may be performed after pouring smoke ash into a container containing a proton-releasing organic solvent. Of course, an organic solvent may be added to the container containing the smoke ash. Further, at that time, smoke ashes made into a slurry may be used as exemplified in this embodiment.

重金属溶媒抽出工程によりもたらされる分相状態をTBP(リン酸トリブチル)により改善する分相改善工程を更に有するのが好ましい。分相改善工程により、煙灰の残渣成分(固体成分)が油相(有機溶媒)中に残置されるのを抑制できる。それに加え、油相の下方の水相中においても、水相下方に固体成分が沈降し、水相中でも液体と固体とに好適に分相する。別の言い方をすると、上方から順に油相、水相、固相(すなわち固体成分)とに良好に分相する。これは、油相(有機溶媒)の分離回収が容易化する(例えばろ過が不要になる)ことにもつながるし、水相に対する残渣除去処理の手間が相当省ける(例えばろ過が不要になる)ことにもつながる。これは、ハロゲンが多量に存在する水相をブライン浸出に利用可能であることを考慮すると、有利な効果である。 It is preferable to further include a phase separation improvement step of improving the phase separation state brought about by the heavy metal solvent extraction step using TBP (tributyl phosphate). The phase separation improvement step can suppress residual components (solid components) of smoke ash from remaining in the oil phase (organic solvent). In addition, even in the aqueous phase below the oil phase, a solid component precipitates below the aqueous phase, and the aqueous phase is suitably separated into a liquid and a solid. In other words, the phase is favorably separated into an oil phase, an aqueous phase, and a solid phase (that is, a solid component) in order from the top. This also makes it easier to separate and recover the oil phase (organic solvent) (e.g., no filtration is required), and it also significantly reduces the effort required to remove residue from the aqueous phase (e.g., no filtration is required). It also leads to This is an advantageous effect considering that a halogen-rich aqueous phase is available for brine leaching.

また、分相を改善するということは、Ca含有アルカリ性煙灰の固体成分が該溶媒中に残置されることを抑制できることにつながる。該固体成分が該溶媒中にてクラッド化(一具体例としては油相(有機溶媒)と水相との間にて固体成分が凝集)してしまうと、処理装置の操業に影響を及ぼすおそれがある。このおそれは、煙灰が、SiOの品位が比較的低く(例えば煙灰中でSiOが10質量%以下)、油相(有機溶媒)中にて沈降しづらい溶融飛灰である場合、より顕著になる。その一方、分相改善工程を採用することにより、そのようなおそれを排することができる。 Moreover, improving phase separation leads to being able to suppress the solid components of the Ca-containing alkaline smoke from remaining in the solvent. If the solid component becomes clad in the solvent (for example, the solid component aggregates between the oil phase (organic solvent) and the aqueous phase), it may affect the operation of the treatment equipment. There is. This fear is more pronounced when the smoke ash is molten fly ash that has a relatively low SiO 2 quality (for example, SiO 2 in the smoke ash is 10% by mass or less) and is difficult to settle in the oil phase (organic solvent). become. On the other hand, such a fear can be eliminated by employing a phase separation improvement process.

その結果、重金属溶媒抽出工程により、石膏の発生を抑制しつつもCa含有アルカリ性煙灰から重金属を抽出できた後、抽出後の該重金属が回収可能となる。 As a result, after heavy metals can be extracted from Ca-containing alkaline smoke while suppressing the generation of gypsum through the heavy metal solvent extraction step, the extracted heavy metals can be recovered.

なお、重金属溶媒抽出工程と分相改善工程とを同時に行うのが手間が省けて好ましい。具体的には、プロトン放出型の有機溶媒とTBPとを予め混合した混合溶媒を用意しておき、この混合溶媒を用いて煙灰に対して溶媒抽出を行ってもよい。もちろん、重金属溶媒抽出工程を行った後の有機溶媒に対してTBPを添加し、重金属溶媒抽出工程と分相改善工程とを別々に行うことに妨げは無い。これらの作業をまとめて「重金属溶媒抽出工程に際し、TBP(リン酸トリブチル)を加える」と称する。 Note that it is preferable to perform the heavy metal solvent extraction step and the phase separation improvement step at the same time because it saves time and effort. Specifically, a mixed solvent in which a proton-releasing organic solvent and TBP are mixed in advance may be prepared, and the smoke ash may be subjected to solvent extraction using this mixed solvent. Of course, there is no hindrance to adding TBP to the organic solvent after performing the heavy metal solvent extraction step and performing the heavy metal solvent extraction step and the phase separation improvement step separately. These operations are collectively referred to as "adding TBP (tributyl phosphate) during the heavy metal solvent extraction step."

分相改善工程のその他の好適な条件は後掲の実施例2にて述べる。 Other suitable conditions for the phase separation improvement step will be described in Example 2 below.

重金属溶媒抽出工程および分相改善工程の後、有機溶媒からCaを除去する有機溶媒洗浄工程を更に有するのが好ましい。なお、分相改善の必要がなければ、重金属溶媒抽出工程後、分相改善工程を行わず、有機溶媒洗浄工程を行ってもよい。これにより、有機溶媒から重金属を逆抽出する際に硫酸を使用しても、石膏の発生を抑制できる。 After the heavy metal solvent extraction step and the phase separation improvement step, it is preferable to further include an organic solvent washing step for removing Ca from the organic solvent. Note that if there is no need to improve phase separation, an organic solvent washing step may be performed after the heavy metal solvent extraction step without performing the phase separation improvement step. Thereby, even if sulfuric acid is used when back-extracting heavy metals from an organic solvent, the generation of gypsum can be suppressed.

有機溶媒洗浄工程の具体的な手法には限定は無く、硫酸以外の酸(例えば塩酸)(好適にはpH4~5程度)と有機溶媒とを接触させることにより洗浄を行ってもよい。また、有機溶媒洗浄工程は複数回行うのが、Ca除去の度合いを高めるという点で好ましい(後掲の実施例3では3回行っている)。 There are no specific limitations on the specific method of the organic solvent cleaning step, and cleaning may be performed by bringing an acid other than sulfuric acid (eg, hydrochloric acid) (preferably pH 4 to 5) into contact with the organic solvent. Furthermore, it is preferable to perform the organic solvent washing step multiple times in order to increase the degree of Ca removal (in Example 3, which will be described later, the step is performed three times).

また、有機溶媒洗浄工程がもたらす効果として、Caと同様、有機溶媒に含まれるハロゲンも除去できることがある。これにより、有機溶媒中にハロゲンを残置させずに済み、既存の製錬工程に該有機溶媒を投入した場合において、製錬工程に与える影響を軽減できる。 Further, as an effect brought about by the organic solvent cleaning step, halogen contained in the organic solvent can be removed as well as Ca. This eliminates the need for halogen to remain in the organic solvent, and when the organic solvent is introduced into an existing smelting process, the influence on the smelting process can be reduced.

更に、有機溶媒洗浄工程により、有機溶媒はプロトン放出前の状態へと再生させるのがよい。別の言い方だと、有機溶媒洗浄工程によりプロトン付着させる、いわゆるプロトン再生工程を行うのがよい。塩酸により有機溶媒を洗浄する場合、以下の反応が生じる。
Ca-2R+2H=Ca2++2H-R ・・・(4)
Furthermore, the organic solvent is preferably regenerated to the state before proton release through an organic solvent washing step. In other words, it is preferable to carry out a so-called proton regeneration process in which protons are attached through an organic solvent washing process. When washing an organic solvent with hydrochloric acid, the following reaction occurs.
Ca-2R+2H + =Ca 2+ +2H-R...(4)

プロトン再生工程を経た後の有機溶媒は、別サイクルの煙灰処理において使用可能である。なお、この有機溶媒洗浄工程を経た後でも重金属は有機溶媒中に残置される(後掲の実施例3参照)。洗浄後液に移行するのは、ここではNa、K、Caのような軽金属(非重金属)である。 The organic solvent after the proton regeneration step can be used in another cycle of smoke ash treatment. Note that even after this organic solvent washing step, heavy metals remain in the organic solvent (see Example 3 below). Here, it is light metals (non-heavy metals) such as Na, K, and Ca that migrate to the post-washing solution.

有機溶媒洗浄工程後、硫酸により有機溶媒から重金属を逆抽出する逆抽出工程を更に有するのが好ましい。逆抽出においては以下の反応が生じる。
M-2R+2H=M2++2H-R ・・・(5)
After the organic solvent washing step, it is preferable to further include a back extraction step of back extracting heavy metals from the organic solvent using sulfuric acid. The following reactions occur during back extraction.
M-2R+2H + =M 2+ +2H-R...(5)

(5)に示すように、逆抽出工程においてもプロトン再生工程が行われる。この有機溶媒も、別サイクルの煙灰処理において使用可能である。 As shown in (5), a proton regeneration step is also performed in the back extraction step. This organic solvent can also be used in a separate cycle of smoke ash treatment.

このとき、硫酸の濃度は100~250g/Lとしてもよい。なお、逆抽出の手法としては公知のものを採用しても構わない。もちろん、硫酸以外を採用しても構わない。その場合、pHは4以下にするのがよい。 At this time, the concentration of sulfuric acid may be 100 to 250 g/L. Note that a known back-extraction method may be used. Of course, a substance other than sulfuric acid may be used. In that case, the pH is preferably 4 or less.

ただ、本発明の課題にて述べたように硫酸を使用することに伴う課題が、本発明の技術的思想を適用することにより解決され、硫酸を使用可能となるという点でも本発明の技術的意義がある。 However, as mentioned in the problem of the present invention, the problems associated with using sulfuric acid can be solved by applying the technical idea of the present invention, and the technical aspect of the present invention is also that sulfuric acid can be used. it makes sense.

逆抽出された重金属は、硫酸ごと既存の金属製錬工程へと移すことにより回収工程を行ってもよい。そのため本実施形態に係る煙灰の処理方法は、重金属の回収方法としての側面もある。なお、逆抽出工程後の有機溶媒はプロトンが再生されていることから、別サイクルの煙灰の処理工程にて再利用してもよい。
また、元スラリーであった水相は、ハロゲンを多量に含有しているためブライン浸出に利用してもよい。
固体成分(固相)は、ろ過後、Pb、Agなどの重金属を公知の手法で回収してもよい。その後、残りの部分は、金属製錬の原料として既存の金属製錬工程へ移してもよい。
有機溶媒洗浄工程後の洗浄液はCaを多量に含んでおり、これを再利用してもよいし、重金属がほとんど含まれていない状態なのでpH調整等の処理を行ったうえで排水としても構わない。
The back-extracted heavy metals may be subjected to a recovery process by being transferred together with sulfuric acid to an existing metal smelting process. Therefore, the method for treating smoke ash according to the present embodiment also serves as a method for recovering heavy metals. In addition, since the protons of the organic solvent after the back extraction process have been regenerated, it may be reused in another cycle of the smoke ash treatment process.
Furthermore, the aqueous phase, which was originally a slurry, contains a large amount of halogen and may therefore be used for brine leaching.
After filtering the solid component (solid phase), heavy metals such as Pb and Ag may be recovered by a known method. The remaining portion may then be transferred to an existing metal smelting process as raw material for metal smelting.
The cleaning solution after the organic solvent cleaning process contains a large amount of Ca, so it can be reused, or it can be treated as wastewater after adjusting the pH since it contains almost no heavy metals. .

本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。 The technical scope of the present invention is not limited to the embodiments described above, but also includes various modifications and improvements within the scope of deriving specific effects obtained by the constituent elements of the invention and their combinations.

次に実施例を示し、本発明について具体的に説明する。本発明は、以下の実施例に限定されるものではない。なお、以下に記載のない内容は、本実施形態で述べた内容と同様とする。 Next, the present invention will be specifically explained with reference to Examples. The present invention is not limited to the following examples. Note that contents not described below are the same as those described in this embodiment.

なお、実施例1では重金属溶媒抽出工程に係る結果を示し、実施例2では分相改善工程に係る結果を示し、実施例3では有機溶媒洗浄工程に係る結果を示し、実施例4では逆抽出工程に係る結果を示す。 In addition, Example 1 shows the results related to the heavy metal solvent extraction process, Example 2 shows the results related to the phase separation improvement process, Example 3 shows the results related to the organic solvent washing process, and Example 4 shows the results related to the back extraction process. The results related to the process are shown.

<実施例、比較例にて使用した煙灰>
以下の組成を有する溶融飛灰を用意した。以下の組成は、ICP-MSを使用して得た。その結果を示すのが以下の表1である。

Figure 0007408365000001
<Smoke ash used in Examples and Comparative Examples>
Molten fly ash having the following composition was prepared. The following compositions were obtained using ICP-MS. Table 1 below shows the results.
Figure 0007408365000001

<比較例1>
上記溶融飛灰50gと蒸留水100mlとを混合したものを封入した容器を、室温(25℃程度)にて、振とう機(TAITEC製のダブルシェーカーNR-30)を使用し、200rpmで30分間振とうした。その後、内容物をICP分析装置(Thermo Scientific製のiCAP6000)にて分析した。その結果を示すのが以下の表2である。

Figure 0007408365000002
表2に示すように、液中にも残渣中にもCaが分配されており、重金属の回収のために硫酸を使用する場合、石膏の発生が想定される。 <Comparative example 1>
A container containing a mixture of 50 g of the above molten fly ash and 100 ml of distilled water was heated at room temperature (approximately 25°C) using a shaker (TAITEC double shaker NR-30) at 200 rpm for 30 minutes. I shook it. Thereafter, the contents were analyzed using an ICP analyzer (iCAP6000 manufactured by Thermo Scientific). Table 2 below shows the results.
Figure 0007408365000002
As shown in Table 2, Ca is distributed both in the liquid and in the residue, and when sulfuric acid is used to recover heavy metals, it is assumed that gypsum will be generated.

<実施例1-1>
上記溶融飛灰50gと蒸留水100mlと、更にプロトン放出型の有機溶媒とを混合したものを封入した容器を、比較例1と同様の手法にて振とうし、同様の手法にて内容物を分析した。なお、プロトン放出型の有機溶媒としては、リン酸(SOLVAY製のCYANEX272)を使用した。その他の有機溶媒としてケロシン(三愛石油製のExxsol TM D80)を使用し、総有機溶媒においてCYANEX272が40vol%となるように両者を混合した。内容物の分析結果を示すのが以下の表3である。なお、本作業の終点pHは5.46であった。

Figure 0007408365000003
表3に示すように、重金属(特にZn、Pb、Cu、Ag)を好適に油相(有機溶媒)中に分配できた。なお、油相(有機溶媒)中の分配率は、油相(有機溶媒)に対して3Nの塩酸を用いて逆抽出工程を行った後の塩酸中の金属濃度に基づいて記載している(以降の実施例1のバリエーションにおいては同様)。 <Example 1-1>
A container containing a mixture of 50 g of the above molten fly ash, 100 ml of distilled water, and a proton-releasing organic solvent was shaken in the same manner as in Comparative Example 1, and the contents were emptied in the same manner. analyzed. Note that phosphoric acid (CYANEX272 manufactured by SOLVAY) was used as a proton-releasing organic solvent. Kerosene (Exxsol TM D80 manufactured by San-Ai Oil Co., Ltd.) was used as another organic solvent, and both were mixed so that CYANEX272 was 40 vol % in the total organic solvent. Table 3 below shows the analysis results of the contents. Note that the end point pH of this work was 5.46.
Figure 0007408365000003
As shown in Table 3, heavy metals (particularly Zn, Pb, Cu, and Ag) could be suitably distributed into the oil phase (organic solvent). In addition, the distribution ratio in the oil phase (organic solvent) is described based on the metal concentration in the hydrochloric acid after performing a back extraction step on the oil phase (organic solvent) using 3N hydrochloric acid ( The same applies to the subsequent variations of Example 1).

<実施例1-2>
プロトン放出型の有機溶媒としてCYANEX272の代わりにPC-88Aを使用した以外は、実施例1-1と同様の手法で試験を行った。内容物の分析結果を示すのが以下の表4である。なお、本作業の終点pHは4.05であった。

Figure 0007408365000004
表4に示すように、重金属(特にZn、Pb、Cu、Ag)を好適に油相(有機溶媒)中に分配できた。 <Example 1-2>
A test was conducted in the same manner as in Example 1-1, except that PC-88A was used instead of CYANEX272 as the proton-releasing organic solvent. Table 4 below shows the analysis results of the contents. Note that the end point pH of this work was 4.05.
Figure 0007408365000004
As shown in Table 4, heavy metals (particularly Zn, Pb, Cu, and Ag) could be suitably distributed into the oil phase (organic solvent).

<実施例1-3>
プロトン放出型の有機溶媒としてCYANEX272の代わりにD2EHPAを使用した以外は、実施例1-1と同様の手法で試験を行った。内容物の分析結果を示すのが以下の表5である。なお、本作業の終点pHは3.54であった。

Figure 0007408365000005
表5に示すように、重金属(Zn)を好適に油相(有機溶媒)中に分配できた。 <Example 1-3>
A test was conducted in the same manner as in Example 1-1, except that D2EHPA was used instead of CYANEX272 as the proton-releasing organic solvent. Table 5 below shows the analysis results of the contents. Note that the end point pH of this work was 3.54.
Figure 0007408365000005
As shown in Table 5, the heavy metal (Zn) could be suitably distributed into the oil phase (organic solvent).

<実施例1-4>
本例は、Ca含有アルカリ性煙灰を水と混合することによりスラリー化する前に、該煙灰を一度洗浄した場合の例である。それ以外は実施例1-1と同様の手法にて試験および分析を行った。
<Example 1-4>
This example is an example in which the Ca-containing alkaline smoke ash was washed once before being made into a slurry by mixing it with water. Other than that, the test and analysis were conducted in the same manner as in Example 1-1.

洗浄を行う本例の結果と、洗浄を行わない実施例1-1の結果とを対比して、実施例1-1の結果の方が良好すなわち重金属が油相(有機溶媒)中により分配していれば、本発明により、該煙灰を洗浄する必要が無くなるという効果が更にもたらされることを意味する。 Comparing the results of this example with washing and the results of Example 1-1 without washing, the results of Example 1-1 are better, that is, the heavy metals are more distributed in the oil phase (organic solvent). If it is, it means that the present invention further brings about the effect that there is no need to wash the smoke ashes.

本例における該煙灰の洗浄の具体的手法は以下の通りである。
まず、比較例1と同様の手法で該煙灰のスラリーを作製した。その後、該スラリーを全量ろ過した。ここまでの内容が、事前の水洗に該当する。その後、ろ物を100mLの蒸留水に混ぜ、再びスラリー化した。このスラリーに対し、実施例1に記載の総有機溶媒を混合し、実施例1-1に記載の手法にて重金属溶媒抽出工程を行った。内容物の分析結果を示すのが以下の表6である。なお、水洗時のpHは12.05、再スラリー化の時点でのpHは7.27、重金属溶媒抽出工程の終点pHは実施例1-1と同様の5.46であった。

Figure 0007408365000006
本例の結果を示す表6と、実施例1-1の結果を示す表3とを比べると、事前に水洗を行った本例だと重金属溶媒抽出工程後の残渣にZn、Pb、Cuが多く残っていた。つまり、実施例1-1の方が、重金属を有機溶媒に良好に抽出できることがわかった。なお、Na、Kについては両結果は同等である一方、Caに関しては、本例だと実施例1-1に比べ、重金属溶媒抽出工程後の油相(有機溶媒)よりも残渣に分配された。このことを鑑みても、実施例1-1の方が有効であることがわかった。つまり、本発明により、該煙灰を洗浄する必要が無くなるという効果が更にもたらされることがわかった。 The specific method of cleaning the smoke ash in this example is as follows.
First, a slurry of the smoke ash was prepared in the same manner as in Comparative Example 1. Thereafter, the entire slurry was filtered. The content up to this point corresponds to pre-washing. Thereafter, the filtered material was mixed with 100 mL of distilled water to form a slurry again. The total organic solvent described in Example 1 was mixed with this slurry, and a heavy metal solvent extraction step was performed using the method described in Example 1-1. Table 6 below shows the analysis results of the contents. The pH at the time of washing with water was 12.05, the pH at the time of reslurry was 7.27, and the end point pH of the heavy metal solvent extraction step was 5.46, the same as in Example 1-1.
Figure 0007408365000006
Comparing Table 6 showing the results of this example with Table 3 showing the results of Example 1-1, it is found that in this example where water washing was performed in advance, Zn, Pb, and Cu were present in the residue after the heavy metal solvent extraction step. There were many left. In other words, it was found that Example 1-1 was able to better extract heavy metals into an organic solvent. Note that while the results for Na and K are the same, in this example, compared to Example 1-1, Ca was distributed more in the residue than in the oil phase (organic solvent) after the heavy metal solvent extraction step. . In view of this, it was found that Example 1-1 was more effective. In other words, it has been found that the present invention provides an additional effect of eliminating the need to clean the smoke ash.

<実施例2-1>
上記溶融飛灰50gと蒸留水100mlと、更に実施例1のプロトン放出型の有機溶媒とを混合したものを封入した容器を、比較例1と同様の手法にて振とうした。なお、振とう時間、振とう後の静置時間は以下の表7に記載のとおりとした。なお、表中のスラリー濃度の単位は(g/L)であり、TBP濃度とCYANEX272濃度の単位は総有機溶媒中のvol%である。

Figure 0007408365000007
<Example 2-1>
A container containing a mixture of 50 g of the molten fly ash, 100 ml of distilled water, and the proton-releasing organic solvent of Example 1 was shaken in the same manner as in Comparative Example 1. The shaking time and the standing time after shaking were as shown in Table 7 below. Note that the unit of slurry concentration in the table is (g/L), and the unit of TBP concentration and CYANEX272 concentration is vol% in the total organic solvent.
Figure 0007408365000007

<実施例2-2~2-6>
実施例2-1と同様の手法にて、表7に記載の条件で試験を行った。
<Examples 2-2 to 2-6>
A test was conducted using the same method as in Example 2-1 under the conditions listed in Table 7.

表7に示すように、TBPを総有機溶媒に対して1vol%以上とし、且つ、(油相体積すなわち総有機溶媒体積)/(水相体積)≧2.5とし、且つ、(プロトン放出型の有機溶媒の質量%)/(全Ca質量%)を1.2~5とする、という好適条件を満たすことにより、固体成分が有機溶媒からほとんど存在しなくなることがわかった。 As shown in Table 7, TBP is 1 vol% or more based on the total organic solvent, (oil phase volume, that is, total organic solvent volume)/(aqueous phase volume)≧2.5, and (proton-releasing type It has been found that by satisfying the preferred condition of 1.2 to 5 (% by mass of organic solvent)/(% by mass of total Ca), almost no solid component is present in the organic solvent.

なお、実施例2-1は実施例2-2~2-6に比べて分相状態は良好ではないが、本発明の課題である「石膏の発生を抑制しつつもCa含有アルカリ性煙灰から重金属を抽出する」ことができているため、実施例の扱いとしている。 Although the phase separation state of Example 2-1 is not as good as that of Examples 2-2 to 2-6, the problem of the present invention is to remove heavy metals from Ca-containing alkaline smoke while suppressing the generation of gypsum. This is treated as an example because it was possible to extract the following.

<実施例3>
実施例1で使用した総有機溶媒(CYANEX272が40vol%)に対し、蒸留水50mlと所定量の塩酸とを混合し、総有機溶媒が以下の表8に記載のpHとなるよう、有機溶媒洗浄工程を3回行った。各有機溶媒洗浄工程後、総有機溶媒中の各組成を上記ICP分析装置にて分析した。その結果を、総有機溶媒からの除去率として示すのが表8である。

Figure 0007408365000008
表8に示すように、総有機溶媒がpH4~5程度になるよう有機溶媒洗浄工程を行うことにより、3回目の洗浄では、Caをほとんど除去できた。また、Na、Kもほとんど除去できた。これは、総有機溶媒から、Na、Kそしてそれらに付随するハロゲンも除去できたことを意味する。その一方、重金属のうちPb以外は総有機溶媒中に残置された。 <Example 3>
The total organic solvent used in Example 1 (40 vol% of CYANEX272) was mixed with 50 ml of distilled water and a predetermined amount of hydrochloric acid, and the total organic solvent was washed with organic solvent so that the pH was as shown in Table 8 below. The process was performed three times. After each organic solvent washing step, each composition in the total organic solvent was analyzed using the above-mentioned ICP analyzer. Table 8 shows the results as the removal rate from the total organic solvent.
Figure 0007408365000008
As shown in Table 8, by carrying out the organic solvent washing step so that the total organic solvent had a pH of about 4 to 5, most of Ca could be removed in the third washing. Furthermore, almost all of Na and K could be removed. This means that Na, K and their associated halogens were also removed from the total organic solvent. On the other hand, heavy metals other than Pb remained in the total organic solvent.

<実施例4>
実施例3の後の総有機溶媒に対して逆抽出工程を行った。硫酸濃度は200g/Lとした。逆抽出工程後、水相(硫酸)中の各組成を上記ICP分析装置にて分析した。その結果を示すのが表9である。

Figure 0007408365000009
<Example 4>
A back extraction step was performed on the total organic solvent after Example 3. The sulfuric acid concentration was 200 g/L. After the back extraction step, each composition in the aqueous phase (sulfuric acid) was analyzed using the above-mentioned ICP analyzer. Table 9 shows the results.
Figure 0007408365000009

以上のとおり、本実施例ならば、石膏の発生を抑制しつつもCa含有アルカリ性煙灰から重金属を抽出できることが明らかとなった。更に、抽出後の該重金属が回収可能となることが明らかとなった。 As described above, it has become clear that in this example, heavy metals can be extracted from Ca-containing alkaline smoke ash while suppressing the generation of gypsum. Furthermore, it has become clear that the heavy metals can be recovered after extraction.

Claims (8)

プロトン放出型の有機溶媒とCa含有アルカリ性煙灰とを反応させることによりCa含有アルカリ性煙灰から重金属を該有機溶媒へと溶媒抽出する重金属溶媒抽出工程を有し、
前記重金属は、Zn(亜鉛)、Pb(鉛)、Cu(銅)、Sn(錫)、Ag(銀)、Au(金)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)の少なくともいずれかであり、
前記重金属溶媒抽出工程後の前記有機溶媒と硫酸以外の酸とを接触させることにより、前記重金属溶媒抽出工程後の前記有機溶媒からCaを除去し且つ該有機溶媒のプロトンを再生する有機溶媒洗浄工程を更に有し、
硫酸により前記有機溶媒洗浄工程後の前記有機溶媒から重金属を逆抽出する逆抽出工程を更に有する、煙灰の処理方法。
A heavy metal solvent extraction step in which heavy metals are extracted from the Ca-containing alkaline smoke into the organic solvent by reacting a proton- releasing organic solvent with the Ca-containing alkaline smoke ,
The heavy metals include Zn (zinc), Pb (lead), Cu (copper), Sn (tin), Ag (silver), Au (gold), ruthenium (Ru), rhodium (Rh), palladium (Pd), and osmium. (Os), iridium (Ir), and platinum (Pt),
An organic solvent washing step of removing Ca from the organic solvent after the heavy metal solvent extraction step and regenerating protons of the organic solvent by bringing the organic solvent after the heavy metal solvent extraction step into contact with an acid other than sulfuric acid. It further has
A method for treating smoke ash, further comprising a back-extraction step of back-extracting heavy metals from the organic solvent after the organic solvent washing step with sulfuric acid.
前記Ca含有アルカリ性煙灰は消石灰を含有する、請求項1に記載の煙灰の処理方法。 The method for treating smoke ash according to claim 1, wherein the Ca-containing alkaline smoke ash contains slaked lime. 前記Ca含有アルカリ性煙灰においてCaは0.1質量%以上である、請求項1または2に記載の煙灰の処理方法。 The method for treating smoke ash according to claim 1 or 2, wherein the Ca content in the Ca-containing alkaline smoke ash is 0.1% by mass or more. 前記重金属溶媒抽出工程に際し、TBP(リン酸トリブチル)を加える、請求項1~3のいずれかに記載の煙灰の処理方法。 The method for treating smoke ash according to any one of claims 1 to 3, wherein TBP (tributyl phosphate) is added during the heavy metal solvent extraction step. 前記有機溶媒洗浄工程における前記硫酸以外の酸は塩酸である、請求項1~4のいずれかに記載の煙灰の処理方法。The method for treating smoke ash according to any one of claims 1 to 4, wherein the acid other than sulfuric acid in the organic solvent washing step is hydrochloric acid. 前記有機溶媒洗浄工程における前記硫酸以外の酸はpH4~5の酸である、請求項1~5のいずれかに記載の煙灰の処理方法。The method for treating smoke ash according to any one of claims 1 to 5, wherein the acid other than sulfuric acid in the organic solvent washing step is an acid with a pH of 4 to 5. 前記有機溶媒は、ジチオカルバミン酸、リン酸、カルボン酸、オキシムまたはそれらの誘導体の少なくともいずれかを含有する、請求項1~6のいずれかに記載の煙灰の処理方法。 The method for treating smoke ash according to any one of claims 1 to 6, wherein the organic solvent contains at least one of dithiocarbamic acid, phosphoric acid, carboxylic acid, oxime, or a derivative thereof. プロトン放出型の有機溶媒とCa含有アルカリ性煙灰とを反応させることにより、Ca含有アルカリ性煙灰から重金属を該有機溶媒へと溶媒抽出する重金属溶媒抽出工程を有し、A heavy metal solvent extraction step in which heavy metals are extracted from the Ca-containing alkaline smoke ash into the organic solvent by reacting a proton-releasing organic solvent with the Ca-containing alkaline smoke ash,
前記重金属溶媒抽出工程後の前記有機溶媒と硫酸以外の酸とを接触させることにより、前記重金属溶媒抽出工程後の前記有機溶媒からCaを除去し且つ該有機溶媒のプロトンを再生する有機溶媒洗浄工程を更に有し、An organic solvent washing step of removing Ca from the organic solvent after the heavy metal solvent extraction step and regenerating protons of the organic solvent by bringing the organic solvent after the heavy metal solvent extraction step into contact with an acid other than sulfuric acid. It further has
硫酸により前記有機溶媒洗浄工程後の前記有機溶媒から重金属を逆抽出する逆抽出工程を更に有する、煙灰の処理方法。A method for treating smoke ash, further comprising a back-extraction step of back-extracting heavy metals from the organic solvent after the organic solvent washing step with sulfuric acid.
JP2019220292A 2019-12-05 2019-12-05 How to dispose of smoke ash Active JP7408365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019220292A JP7408365B2 (en) 2019-12-05 2019-12-05 How to dispose of smoke ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220292A JP7408365B2 (en) 2019-12-05 2019-12-05 How to dispose of smoke ash

Publications (2)

Publication Number Publication Date
JP2021088750A JP2021088750A (en) 2021-06-10
JP7408365B2 true JP7408365B2 (en) 2024-01-05

Family

ID=76219453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220292A Active JP7408365B2 (en) 2019-12-05 2019-12-05 How to dispose of smoke ash

Country Status (1)

Country Link
JP (1) JP7408365B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192747A (en) 1999-12-28 2001-07-17 Taiheiyo Cement Corp Method for treating petroleum-base combustion ash
JP2001205219A (en) 2000-01-26 2001-07-31 Nkk Corp Method for treating alkaline fly ash
CN102312101A (en) 2011-08-22 2012-01-11 同济大学 Extractant for treating heavy metals in fly ash and method for extracting heavy metals with the extractant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245391A (en) * 1985-08-22 1987-02-27 Mitsubishi Steel Mfg Co Ltd Treatment of steel making dust
JPH08325647A (en) * 1995-05-26 1996-12-10 Ishikawajima Harima Heavy Ind Co Ltd Method for continuously extracting and separating useful metal from incineration ash
JP3224188B2 (en) * 1995-09-11 2001-10-29 日本碍子株式会社 Phosphoric acid recovery method from sewage sludge incineration ash

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192747A (en) 1999-12-28 2001-07-17 Taiheiyo Cement Corp Method for treating petroleum-base combustion ash
JP2001205219A (en) 2000-01-26 2001-07-31 Nkk Corp Method for treating alkaline fly ash
CN102312101A (en) 2011-08-22 2012-01-11 同济大学 Extractant for treating heavy metals in fly ash and method for extracting heavy metals with the extractant

Also Published As

Publication number Publication date
JP2021088750A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP3741117B2 (en) Mutual separation of platinum group elements
JP4323492B2 (en) Method for recovering platinum in waste liquid containing selenium using hydrazine
JP4448937B2 (en) Palladium extractant and method for separating and recovering palladium
KR101853255B1 (en) Process for purifying zinc oxide
AU2009219115B2 (en) Selective gold extraction from copper anode slime with an alcohol
TW201439331A (en) Methods of recovering scandium from titanium residue streams
WO2016031699A1 (en) Method for separating scandium
JP2010077510A (en) Method of separating rhodium from platinum and/or palladium
JP2019173063A (en) Recovery method of nickel and cobalt from solution
JP5667111B2 (en) Method for recovering gold in dilute gold solution
JP7408365B2 (en) How to dispose of smoke ash
JP6462722B2 (en) How to recover gold from activated carbon
KR100220976B1 (en) Recovering method for co,ni,cu from the scrap of diamond tools
JP2015113503A (en) Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution
RU2685618C2 (en) Separation of metals
JP5125371B2 (en) Method for scrubbing amine-based extractant
JP2003105456A (en) Method for manufacturing silver
JP6922478B2 (en) Scandium purification method
JP2010037625A (en) Method for scrubbing amine-based extractant after back-extracting
JP6206358B2 (en) Scandium recovery method
JP5962404B2 (en) Iron separation method
JP3611992B2 (en) Extraction method of palladium
CN112041043B (en) Process for flushing metal contaminants from an acidic scandium-containing solution
JP3971286B2 (en) Gallium recovery method
AU2016232007B2 (en) Recovery of gold from solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231220

R150 Certificate of patent or registration of utility model

Ref document number: 7408365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150