JPH0829446A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH0829446A
JPH0829446A JP6185205A JP18520594A JPH0829446A JP H0829446 A JPH0829446 A JP H0829446A JP 6185205 A JP6185205 A JP 6185205A JP 18520594 A JP18520594 A JP 18520594A JP H0829446 A JPH0829446 A JP H0829446A
Authority
JP
Japan
Prior art keywords
stress
acceleration sensor
flexure
shape
semiconductor acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6185205A
Other languages
Japanese (ja)
Other versions
JP3429073B2 (en
Inventor
Kazuyoshi Saito
和敬 斎藤
Takuya Kitajima
卓也 北島
Goro Komatsu
五郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP18520594A priority Critical patent/JP3429073B2/en
Publication of JPH0829446A publication Critical patent/JPH0829446A/en
Application granted granted Critical
Publication of JP3429073B2 publication Critical patent/JP3429073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the S/N of a semiconductor acceleration sensor by reducing the stress concentration at the shape-changing part between a deflection part and a supporting frame. CONSTITUTION:The thickness of a deflection part 12 is wholly uniformized, and the deflection part 12 is made up of a mass 121 and a narrow part 12i whose width is narrower than that of the mass 121. The width of the narrower part 122 is increased on the side of a supporting frame 11 for reducing the stress concentration at the shape-changing part or root part 123. Further, a detection element 19 is dislocated from the shape-changing part 123 to the mass 121 side by a distance OS. By this constitution, the stress at the shape- changing part 123 can be significantly reduced, to be less than the maximum nominal stress being detected by the detection element 19. Thus, even if the stress concentration is taken into consideration, the stress at the shape-changing part is less than the maximum nominal stress, and the deflection part 122 is prevented from being fractured at the root part 123. As a result, the maximum nominal stress can be set to a larger value, so that the S/N of a semiconductor acceleration sensor can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体加速度センサに関
し、特に、圧力、加速度ならびに機械的振動等の物理的
外力によって生じる応力を検出し、この応力を電気信号
に変換して前記外力を代表する信号として出力する半導
体加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor acceleration sensor, and more particularly, it detects stress generated by a physical external force such as pressure, acceleration and mechanical vibration and converts the stress into an electric signal to represent the external force. The present invention relates to a semiconductor acceleration sensor that outputs a signal.

【0002】[0002]

【従来の技術】近年、加速度や減速度(以下、これらを
総括して「加速度」という)を検出するセンサとして、
加速度情報を電気信号として直接出力することができる
半導体加速度センサが広く用いられている。この半導体
加速度センサは小型、軽量であり、例えば、自動車用エ
ア・バッグ・システムにおける衝突検知センサとして採
用されている。
2. Description of the Related Art Recently, as a sensor for detecting acceleration and deceleration (hereinafter collectively referred to as "acceleration"),
A semiconductor acceleration sensor that can directly output acceleration information as an electric signal is widely used. This semiconductor acceleration sensor is small and lightweight, and is used as, for example, a collision detection sensor in an automobile air bag system.

【0003】図3および図4に半導体加速度センサの一
例を示す。図3において、加速度センサ1は、GaAs
の基板をエッチングで所望の形状に加工して製作され
る。該加速度センサ1は枠11と該枠11から片持ち梁
形式で内方に張出したたわみ部12とからなる。図3
(b)の断面図に示すように、たわみ部12の先端に
は、その根元部13よりも厚みを大きくした重り部分
(以下、「マス」という)14が形成されていて、加速
度によるたわみ量を大きくとれるようにしている。前記
根元部13の表面つまり応力発生部分には半導体の層を
重ねて形成されたFET等の応力検知素子13aが設け
られる。
FIG. 3 and FIG. 4 show an example of a semiconductor acceleration sensor. In FIG. 3, the acceleration sensor 1 is a GaAs
This substrate is manufactured by etching into a desired shape. The acceleration sensor 1 includes a frame 11 and a flexure 12 that extends inward from the frame 11 in a cantilever manner. FIG.
As shown in the sectional view of (b), a weight portion (hereinafter, referred to as a “mass”) 14 having a thickness larger than that of the root portion 13 is formed at the tip of the flexible portion 12, and the amount of deflection due to acceleration is formed. Is designed to be large. A stress detecting element 13a such as an FET formed by stacking semiconductor layers is provided on the surface of the root portion 13, that is, a stress generating portion.

【0004】上述のようにマス14を設け、かつ発生応
力が最大となる根元部13の表面に応力検知素子を設け
るようにしているのは、同一の加速度に対して発生応力
を大きくとれるようにして感度または出力信号/ノイズ
比(S/N比)を大きくするためである。
As described above, the mass 14 is provided, and the stress detecting element is provided on the surface of the root portion 13 where the generated stress is maximum, so that the generated stress can be made large for the same acceleration. This is to increase the sensitivity or the output signal / noise ratio (S / N ratio).

【0005】この加速度センサ1に対し、矢印A方向の
加速度が与えられると、前記根元部13にたわみが発生
する。このたわみにより、たわみに応じて前記FET1
3aのドレイン(ソース)電流IDSが変化する。電流I
DSの変化量は電圧値に変換され、加速度の大きさを代表
する電気信号として取出される。
When acceleration is applied to the acceleration sensor 1 in the direction of arrow A, the base portion 13 is bent. Due to this deflection, the FET1
3a of the drain (source) current I DS changes. Current I
The amount of change in DS is converted into a voltage value and extracted as an electric signal representing the magnitude of acceleration.

【0006】図4は、たわみ部12を枠11に両端支持
梁形式で支持した構造の加速度センサである。この加速
度センサ1では矢印A方向に加速度が与えられると、た
わみ部12のたわみにより、枠11の2か所の根元部1
5,16の他、マス14の根元部17,18でも大きい
応力が発生するため、加速度サンプル数を多く取れると
いう特徴がある。つまり、応力検知素子としてのFET
13aを前記4か所の根元部またはその近傍に設けるこ
とができる。但し、根元部15,16と17,18とで
は、検出される応力に引張応力と圧縮応力との違いがあ
る。
FIG. 4 shows an acceleration sensor having a structure in which the flexible portion 12 is supported by the frame 11 in the form of both ends supporting beams. In this acceleration sensor 1, when acceleration is applied in the direction of arrow A, the flexure of the flexure 12 causes the two roots 1 of the frame 11 to move.
In addition to Nos. 5 and 16, large stresses are generated at the roots 17 and 18 of the mass 14, so that the number of acceleration samples is large. In other words, FET as a stress sensing element
13a can be provided at the four roots or in the vicinity thereof. However, in the root portions 15, 16 and 17, 18, there is a difference in the detected stress between tensile stress and compressive stress.

【0007】上述のように、従来の加速度センサでは、
S/N比を大きくとることができるようにしているが、
一方で、加速度の大きさの割りにたわみ部12の破壊応
力よりも発生応力が大き過ぎると、たわみ部12はその
根元部13から折損するおそれがある。そこで、発生応
力が前記破壊応力を超えないように安全度を見越してた
わみ部12等の形状・寸法等が設計されている。
As described above, in the conventional acceleration sensor,
The S / N ratio can be increased, but
On the other hand, when the generated stress is larger than the breaking stress of the flexible portion 12 for the magnitude of the acceleration, the flexible portion 12 may be broken from the root portion 13. Therefore, the shape, dimensions, etc. of the flexible portion 12 are designed in consideration of safety so that the generated stress does not exceed the breaking stress.

【0008】しかし、従来の構造では、前記根元部1
3,15〜18で断面形状が変化し、厚さが変化してい
るため、この厚さ変化部分に応力が集中し、容易に破壊
応力を超えるおそれがある。応力の集中は、例えば角部
の開き角度や曲率等の形状依存性が高い。
However, in the conventional structure, the root portion 1
Since the cross-sectional shape is changed and the thickness is changed at 3, 15 to 18, stress concentrates on the thickness changing portion, and there is a possibility that the breaking stress is easily exceeded. The stress concentration has a high shape dependency such as an opening angle and a curvature of a corner.

【0009】このような応力集中による不具合を解消す
るため、前記厚さの変化部分に、アール部つまり円弧部
を形成して応力の集中を回避するようにした加速度セン
サが提案されている(特開昭64−18063号公報,
特開平1−302167号公報)。これらの公報に記載
された加速度センサでは、等方性エッチングで隅の角を
落として滑らかな円弧部を形成するようにしている。
In order to eliminate such a problem due to stress concentration, an acceleration sensor has been proposed in which a rounded portion, that is, an arc portion is formed in the portion where the thickness changes to avoid the concentration of stress. KAISHO 64-18063,
JP-A-1-302167). In the acceleration sensors described in these publications, isotropic etching is performed to drop corners to form smooth arc portions.

【0010】[0010]

【発明が解決しようとする課題】ところが、エッチング
加工では加工精度のばらつきが大きく、必ずしも正確に
所望の円弧形状を得ることが容易ではなかった。このた
めに、安全率や材料の強度ばらつきの他、エッチング加
工の精度ばらつきによる集中応力の大きさの程度にも配
慮しなければならない。その結果、マス14を小さくす
る等して応力の低減を図らなければならなくなり、S/
N比が低下するという問題点があった。
However, in the etching process, there is a large variation in processing accuracy, and it is not always easy to accurately obtain a desired arc shape. For this reason, it is necessary to consider not only the safety factor and the strength variation of the material but also the magnitude of the concentrated stress due to the accuracy variation of the etching process. As a result, it becomes necessary to reduce the stress by reducing the mass 14, and the S /
There is a problem that the N ratio decreases.

【0011】本発明の目的は、上記の問題点を解消し、
エッチング加工の精度ばらつきが応力集中に与える影響
を小さくし、S/N比が大きい構造をとることができる
半導体加速度センサを提供することにある。
The object of the present invention is to solve the above problems,
An object of the present invention is to provide a semiconductor acceleration sensor that can reduce the influence of variations in the accuracy of etching processing on stress concentration and can have a structure with a large S / N ratio.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決し、目
的を達成するための本発明は、厚さが一様なたわみ部
と、該たわみ部よりも厚いたわみ部支持枠とからなり、
前記たわみ部には該たわみ部を前記支持枠と一体化する
ための狭小部を設け、かつ該狭小部は前記支持枠との境
界部で幅広に形成するとともに、前記境界部から偏った
前記狭小部の予定位置に応力検知部を設けた点に特徴が
ある。
SUMMARY OF THE INVENTION The present invention for solving the above problems and achieving the object comprises a flexible portion having a uniform thickness and a flexible portion supporting frame thicker than the flexible portion.
The flexible portion is provided with a narrow portion for integrating the flexible portion with the support frame, and the narrow portion is formed wide at a boundary portion with the support frame, and the narrow portion deviated from the boundary portion. It is characterized in that a stress detector is provided at the planned position of the section.

【0013】[0013]

【作用】上記の特徴によれば、たわみ部は厚さが一様で
あるので、それ自体には応力集中箇所がない。また、応
力検知部はたわみ部の狭小部に設けられ、かつ、たわみ
部と支持枠との境界つまり唯一の応力集中部である厚さ
変化部は幅広にしてある。したがって、応力検知部が設
けられた狭小部で最大の応力が発生する。その結果、前
記応力検知部で設計上の公称最大応力を設定しておけ
ば、たわみ部と支持枠との境界の形状変化部では、応力
の集中を考慮しても、そこで発生する応力が公称最大応
力を上回るおそれが少ない。
According to the above characteristics, since the flexure has a uniform thickness, the flexure itself has no stress concentration portion. Further, the stress detecting portion is provided in the narrow portion of the bending portion, and the boundary between the bending portion and the support frame, that is, the thickness changing portion which is the only stress concentration portion is wide. Therefore, the maximum stress is generated in the narrow portion where the stress detecting portion is provided. As a result, if a nominal maximum stress in design is set in the stress detection section, the stress generated at the boundary of the flexure and the support frame will change to a nominal value even if the concentration of stress is taken into consideration. Less likely to exceed maximum stress.

【0014】[0014]

【実施例】以下、図面を参照して本発明を詳細に説明す
る。図1(a)は、本発明の実施例に係る半導体加速度
センサの平面図、図1(b)は図1(a)のB−B位置
での断面図である。また、図1(c),(d)は半導体
加速度センサのたわみ部に発生する応力の分布図であ
る。図1において、GaAsを素材とする基板をエッチ
ングで加工した半導体加速度センサ1の枠11には、そ
の内側に片持ち梁形式で張り出したたわみ部12が形成
されている。なお、たわみ部12の範囲を明確にするた
め、図1に符号x0 で範囲を示した。該たわみ部12
は、マス121および該マス121を枠11に支持する
狭小部122からなる。図中、狭小部122の範囲を符
号x1 で示した。図1(b)に示した断面図に見られる
ように、マス121と狭小部122の間には厚さ変化部
分がなく、S/N比を高くするためにマス121に対し
て狭小部122の幅を小さくしている他は、たわみ部1
2全体の厚さは一様である。一方、狭小部122は枠1
1側に向かって幅を漸次拡大させてあり、根元部123
でその幅が最大となっている。このように、前記マス1
21と狭小部122とは厚さの変化をなくしてあるた
め、エッチングのばらつきに起因する応力の集中を避け
ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings. 1A is a plan view of a semiconductor acceleration sensor according to an embodiment of the present invention, and FIG. 1B is a sectional view taken along line BB in FIG. 1A. In addition, FIGS. 1C and 1D are distribution diagrams of stress generated in the flexure portion of the semiconductor acceleration sensor. In FIG. 1, a frame 11 of a semiconductor acceleration sensor 1 obtained by processing a substrate made of GaAs by etching has a flexible portion 12 projecting in a cantilever form inside thereof. In order to clarify the range of the flexible portion 12, the range is shown by reference numeral x0 in FIG. The flexible portion 12
Consists of a mass 121 and a narrow portion 122 that supports the mass 121 on the frame 11. In the figure, the range of the narrow portion 122 is indicated by reference numeral x1. As can be seen from the cross-sectional view shown in FIG. 1B, there is no thickness change portion between the mass 121 and the narrow portion 122, and the narrow portion 122 is smaller than the mass 121 to increase the S / N ratio. Except that the width of the
The overall thickness of 2 is uniform. On the other hand, the narrow portion 122 has a frame 1
The width is gradually enlarged toward the 1 side, and the root portion 123
The width is maximum. In this way, the mass 1
Since 21 and the narrow portion 122 have no change in thickness, it is possible to avoid concentration of stress due to variation in etching.

【0015】一方、たわみ部12と枠11との境界つま
り根元部123において厚さ変化による断面形状変化が
発生するのは避けられない。本実施例では、枠11方向
に向かって狭小部122の幅を徐々に大きくするように
形成したことによって、応力が集中する断面形状変化部
の幅が大きくしてあるので、応力集中に対する抵抗力が
増大する。
On the other hand, it is unavoidable that the cross-sectional shape change due to the thickness change occurs at the boundary between the flexible portion 12 and the frame 11, that is, at the root portion 123. In this embodiment, since the width of the narrow portion 122 is gradually increased toward the frame 11 to increase the width of the cross-sectional shape change portion where stress is concentrated, the resistance force to stress concentration is increased. Will increase.

【0016】一方、応力検知素子19は、たわみ部分の
根元部123から距離OSだけ偏倚させて狭小部122
の最小幅部分に配置するようにした。この配置位置はた
わみ部分12のうち幅および厚さが共に最小の部分であ
ってかつ根元部123にも近いため、図1(c)に示す
ように最大の引張応力σmax が発生する。これに対し
て、前記応力集中部分つまり根元部123では狭小部1
22の幅が広いために、応力集中を考慮しても、この部
分で発生する応力σxは相対的に応力検知素子19の配
置部で発生する応力σmax よりも小さい。したがって、
前記応力σmax を設計上の最大公称応力とすれば、根元
部123には該半導体加速度センサ1の最大公称応力よ
りも小さい応力σxしか発生しないため、最大公称応力
以下の応力を発生させる加速度で破壊することはない。
On the other hand, the stress detecting element 19 is deviated from the root portion 123 of the bending portion by the distance OS, and the narrow portion 122 is formed.
It was arranged in the minimum width part of. Since this arrangement position is the minimum width and thickness of the flexible portion 12 and is close to the root portion 123, the maximum tensile stress σmax is generated as shown in FIG. 1 (c). On the other hand, in the stress concentration portion, that is, the root portion 123, the narrow portion 1
Since the width of 22 is wide, the stress σx generated in this portion is relatively smaller than the stress σmax generated in the arrangement portion of the stress sensing element 19 even if the stress concentration is taken into consideration. Therefore,
If the stress σ max is the maximum nominal stress in design, only a stress σx smaller than the maximum nominal stress of the semiconductor acceleration sensor 1 is generated in the root portion 123, so that the stress is broken at an acceleration that generates a stress equal to or less than the maximum nominal stress. There is nothing to do.

【0017】なお、前記応力検知素子19の配置位置と
しては、図示の位置が最適であるが、これに限定され
ず、狭小部122のうち、たわみ部分12と枠11との
境界部つまり根元部123から一定量のオフセットを有
する位置であればよい。
It should be noted that the position shown in the figure is the optimum position for arranging the stress detecting element 19, but the position is not limited to this, and the boundary portion of the narrow portion 122 between the flexible portion 12 and the frame 11, that is, the root portion, is not limited to this. Any position may be used as long as it has a certain amount of offset from 123.

【0018】次に、本実施例の半導体加速度センサとの
比較のため、従来の半導体加速度センサの応力分布を図
2に示す。同図において、図3と同符号は同一または同
等部分を示す。図2のように、特に、たわみ部12の裏
面根元部13およびマス14の根元部20で応力の集中
が大きく、根元部20の表面側での応力を最大公称応力
σmax が発生した場合、根元部20の裏面側およびマス
14の根元部13の裏面側での発生応力σzは、前記最
大公称応力σmax を上回るようになる。この最大公称応
力σmax が破壊応力であった場合、根元部13の裏面お
よびマス14の根元部20の裏面での応力集中の結果、
表面部の応力が最大公称応力以下であってもその小さい
応力でたわみ部12は破壊することがある。このような
応力分布から、従来の加速度センサでは、たわみ部12
の裏面の集中応力が破壊応力以下となるように最大公称
応力を設定する必要があり、その結果としてたわみ部1
2の表面の応力検知部では、小さい応力つまり小さい加
速度しか測定できないということになる。
Next, for comparison with the semiconductor acceleration sensor of this embodiment, the stress distribution of the conventional semiconductor acceleration sensor is shown in FIG. In the figure, the same reference numerals as those in FIG. 3 denote the same or equivalent parts. As shown in FIG. 2, in particular, when the stress concentration on the back surface root portion 13 of the flexible portion 12 and the root portion 20 of the mass 14 is large and the maximum nominal stress σmax occurs at the stress on the surface side of the root portion 20, The generated stress σz on the back surface side of the portion 20 and on the back surface side of the root portion 13 of the mass 14 exceeds the maximum nominal stress σmax. When this maximum nominal stress σ max is a fracture stress, the result of stress concentration on the back surface of the root portion 13 and the back surface of the root portion 20 of the mass 14,
Even if the stress on the surface portion is less than or equal to the maximum nominal stress, the flexure portion 12 may be broken by the small stress. From such a stress distribution, in the conventional acceleration sensor, the flexure 12
It is necessary to set the maximum nominal stress so that the concentrated stress on the back surface of the
This means that the stress detector on the surface of No. 2 can measure only a small stress, that is, a small acceleration.

【0019】なお、本実施例では、片持ち狭小部を例に
説明したが、本発明は、この実施例に限らず、枠11に
向けて等角度間隔で狭小部122を放射状に複数形成し
た形式、つまり両端支持梁形式、またはたわみ部を4方
向から支持した4方向支持梁形式等についても同様に適
用できる。要は、たわみ部の厚さが一様であり、該たわ
み部には支持枠寄りに狭小部が設けられていて、かつ該
狭小部の幅を前記支持枠側で増大させて形成するととも
に、前記たわみ部と支持枠との境界部からオフセットさ
れた前記狭小部の予定位置に応力検知部が設けられてい
ればよい。この場合にも、材料ばらつき等を考慮した安
全率を乗じた応力及びオフセットの量等を設定するのは
いうまでもない。
In this embodiment, the cantilevered narrow portion is described as an example, but the present invention is not limited to this embodiment, and a plurality of narrow portions 122 are radially formed toward the frame 11 at equal angular intervals. The same can be applied to the type, that is, the both-end support beam type or the four-direction support beam type in which the flexure is supported from four directions. The point is that the thickness of the flexible portion is uniform, a narrow portion is provided near the support frame in the flexible portion, and the width of the narrow portion is increased on the side of the support frame to form the narrow portion. It suffices that the stress detection unit is provided at a predetermined position of the narrowed portion offset from the boundary between the flexible portion and the support frame. In this case as well, it goes without saying that the stress and offset amount, etc., are multiplied by a safety factor in consideration of material variations and the like.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
では、たわみ部と支持枠との境界部つまり形状変化部と
応力検知部とをずらすようにし、かつ前記形状変化部の
幅を応力検知部の幅より大きくした。したがって、形状
変化部での応力集中を緩和することができるため、エッ
チングによる加工精度にばらつきがあっても、形状変化
部の応力を応力検知部で検知される最大応力以下に制限
でき、その結果として、最大公称応力以下の応力でたわ
み部が破壊することを防止できる。
As is apparent from the above description, according to the present invention, the boundary between the flexible portion and the support frame, that is, the shape change portion and the stress detecting portion are displaced from each other, and the width of the shape change portion is set to the stress. It was made wider than the width of the detection part. Therefore, the stress concentration in the shape change part can be relaxed, so that the stress in the shape change part can be limited to the maximum stress detected by the stress detection part or less even if the processing accuracy due to etching varies. As a result, it is possible to prevent the bending portion from being broken by the stress equal to or less than the maximum nominal stress.

【0021】また、形状変化部での応力集中を緩和でき
るので、最大公称応力を大きくでき、その結果、S/N
比の向上をはかることができる。
Further, since the stress concentration at the shape change portion can be relaxed, the maximum nominal stress can be increased, resulting in S / N.
The ratio can be improved.

【0022】さらに、たわみ部は厚さが一様な平坦形状
であるため、たわみ部の厚さによってマスを形成してい
る場合に比べて、たわみ部に対して横方向にかかる加速
度による曲げモーメントが作用しない。したがって、指
向性の高い加速度センサとすることができる。
Furthermore, since the flexure has a flat shape with a uniform thickness, the bending moment due to the acceleration applied laterally to the flexure is greater than in the case where the mass is formed by the thickness of the flexure. Does not work. Therefore, the acceleration sensor having high directivity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す加速度センサの平面
図、断面図ならびに応力分布図である。
FIG. 1 is a plan view, a sectional view, and a stress distribution diagram of an acceleration sensor showing an embodiment of the present invention.

【図2】 従来の加速度センサの平面図、断面図ならび
に応力分布図である。
FIG. 2 is a plan view, a sectional view, and a stress distribution diagram of a conventional acceleration sensor.

【図3】 片持ち狭小部形式の従来の加速度センサの平
面図および断面図である。
FIG. 3 is a plan view and a cross-sectional view of a conventional cantilever narrow section type acceleration sensor.

【図4】 両端支持狭小部形式の従来の加速度センサの
平面図および断面図である。
4A and 4B are a plan view and a cross-sectional view of a conventional acceleration sensor of both ends supporting narrow portion type.

【符号の説明】[Explanation of symbols]

1…加速度センサ、 11…支持枠、 12…たわみ
部、 19…検知素子、121…マス、 122…狭小
部、 123…根元部
DESCRIPTION OF SYMBOLS 1 ... Acceleration sensor, 11 ... Support frame, 12 ... Deflection part, 19 ... Detection element, 121 ... Mass, 122 ... Narrow part, 123 ... Root part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 厚さを一様にした前記たわみ部と、 該たわみ部を取り囲み、該たわみ部よりも厚いたわみ部
支持枠とからなり、 前記たわみ部には該たわみ部を前記支持枠と一体化する
ための狭小部を設け、かつ該狭小部は前記支持枠との境
界部で幅広に形成するとともに、 前記境界部から偏った前記狭小部の予定位置に応力検知
部を設けたことを特徴とする半導体加速度センサ。
1. A flexure having a uniform thickness, and a flexure support frame surrounding the flexure and thicker than the flexure, wherein the flexure is provided in the flexure and the support frame. A narrow portion for integration is provided, and the narrow portion is formed wide at a boundary portion with the support frame, and a stress detecting portion is provided at a predetermined position of the narrow portion deviated from the boundary portion. Characteristic semiconductor acceleration sensor.
【請求項2】 前記狭小部が、前記支持枠に向けて等角
度間隔で放射状に複数形成されていることを特徴とする
請求項1記載の半導体加速度センサ。
2. The semiconductor acceleration sensor according to claim 1, wherein a plurality of the narrow portions are radially formed toward the support frame at equal angular intervals.
【請求項3】 少なくとも厚さ方向の加工がエッチング
によって行われていることを特徴とする請求項1または
2記載の半導体加速度センサ。
3. The semiconductor acceleration sensor according to claim 1, wherein processing in at least the thickness direction is performed by etching.
JP18520594A 1994-07-15 1994-07-15 Semiconductor acceleration sensor Expired - Fee Related JP3429073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18520594A JP3429073B2 (en) 1994-07-15 1994-07-15 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18520594A JP3429073B2 (en) 1994-07-15 1994-07-15 Semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JPH0829446A true JPH0829446A (en) 1996-02-02
JP3429073B2 JP3429073B2 (en) 2003-07-22

Family

ID=16166715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18520594A Expired - Fee Related JP3429073B2 (en) 1994-07-15 1994-07-15 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP3429073B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517612A (en) * 1999-12-16 2003-05-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromechanical spring structure, especially for yaw rate sensors
WO2005062060A1 (en) * 2003-12-24 2005-07-07 Hitachi Metals, Ltd. Semiconductor type 3-axis acceleration sensor
WO2014174812A1 (en) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 Sensor
JP2015155816A (en) * 2014-02-20 2015-08-27 パナソニックIpマネジメント株式会社 sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418063A (en) * 1987-07-13 1989-01-20 Fujikura Ltd Semiconductor acceleration sensor
JPH0262967A (en) * 1988-05-03 1990-03-02 Robert Bosch Gmbh Sensor
JPH0295264A (en) * 1988-09-30 1990-04-06 Nec Corp Semiconductor sensor
JPH04258175A (en) * 1991-02-12 1992-09-14 Mitsubishi Electric Corp Manufacture of silicon semiconductor acceleration sensor
JPH04301770A (en) * 1990-12-21 1992-10-26 Texas Instr Inc <Ti> Accelerometer device
JPH04315056A (en) * 1991-04-12 1992-11-06 Tokai Rika Co Ltd Acceleration sensor
JPH04353770A (en) * 1991-05-31 1992-12-08 Shimadzu Corp Crystalline elastic body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418063A (en) * 1987-07-13 1989-01-20 Fujikura Ltd Semiconductor acceleration sensor
JPH0262967A (en) * 1988-05-03 1990-03-02 Robert Bosch Gmbh Sensor
JPH0295264A (en) * 1988-09-30 1990-04-06 Nec Corp Semiconductor sensor
JPH04301770A (en) * 1990-12-21 1992-10-26 Texas Instr Inc <Ti> Accelerometer device
JPH04258175A (en) * 1991-02-12 1992-09-14 Mitsubishi Electric Corp Manufacture of silicon semiconductor acceleration sensor
JPH04315056A (en) * 1991-04-12 1992-11-06 Tokai Rika Co Ltd Acceleration sensor
JPH04353770A (en) * 1991-05-31 1992-12-08 Shimadzu Corp Crystalline elastic body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517612A (en) * 1999-12-16 2003-05-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromechanical spring structure, especially for yaw rate sensors
WO2005062060A1 (en) * 2003-12-24 2005-07-07 Hitachi Metals, Ltd. Semiconductor type 3-axis acceleration sensor
US7331230B2 (en) 2003-12-24 2008-02-19 Hitachi Metals, Ltd. Semiconductor-type three-axis acceleration sensor
WO2014174812A1 (en) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 Sensor
JP2015155816A (en) * 2014-02-20 2015-08-27 パナソニックIpマネジメント株式会社 sensor

Also Published As

Publication number Publication date
JP3429073B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US20050217378A1 (en) Inertial sensor
JPS63252257A (en) Acceleration detector
JP3429073B2 (en) Semiconductor acceleration sensor
JP3330074B2 (en) 3-axis acceleration sensor
JP2962703B1 (en) Load cell
US20200318677A1 (en) Out-of-plane hinge for a micromechanical and/or nanomechanical structure with a reduced sensitivity to internal stresses
JPH09318469A (en) 6-axial force sensor using shearing strain gauge
US6923060B2 (en) Capacitive-type acceleration sensor
JPH04315056A (en) Acceleration sensor
JP3654905B2 (en) Microminiature mechanism accelerometer
JP2006003100A (en) Piezoresistance type pressure sensor
JPH07128358A (en) Acceleration sensor
JPS60186725A (en) Pressure sensor
JP2000214027A (en) Semiconductor pressure sensor
JP3249074B2 (en) Force detector
JP2539560B2 (en) Semiconductor acceleration sensor and airbag system
JPS62108161A (en) Acceleration sensor
JP6364637B2 (en) Load transducer
JP2000065854A (en) Semiconductor acceleration sensor element and its manufacture
JP2939921B2 (en) Acceleration transducer
JPH1038726A (en) Semiconductor differential pressure detector
JP2586399B2 (en) Acceleration sensor
JPH08114617A (en) Flow rate sensor
JPH058977B2 (en)
JPH055750A (en) Semiconductor acceleration sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees