JPH08293836A - Two-dimensional free space bidirectional optical connection device - Google Patents

Two-dimensional free space bidirectional optical connection device

Info

Publication number
JPH08293836A
JPH08293836A JP7096520A JP9652095A JPH08293836A JP H08293836 A JPH08293836 A JP H08293836A JP 7096520 A JP7096520 A JP 7096520A JP 9652095 A JP9652095 A JP 9652095A JP H08293836 A JPH08293836 A JP H08293836A
Authority
JP
Japan
Prior art keywords
optical
signal
waveguide
optical signal
free space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7096520A
Other languages
Japanese (ja)
Inventor
Masakazu Sagawa
雅一 佐川
Yoshihito Inaba
良仁 伊名波
Masato Isogai
正人 磯貝
Takahiro Nakayama
隆博 中山
Atsushi Tsunoda
角田  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7096520A priority Critical patent/JPH08293836A/en
Publication of JPH08293836A publication Critical patent/JPH08293836A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To avoid electromagnetic dielectric noise owing to electric wiring and heat generation accompanying transmission delay and the increase in power consumption by preventing the installation of fixed electric wiring connecting signal terminal that respective LSIs have one to one in optical interconnection. CONSTITUTION: A polyimide thin film is formed on an Si substrate, and a core thin film becoming the slab-type waveguide of a single mode is set by polyimide varnish. A hologram 7 is formed on the uppermost layer (clad) of the generated slab waveguide by anisotropic dry etching which is mainly composed of photolithography and O2 , and the waveguide is connected to light-emitting/receiving elements. An ITO transparent electrode is formed on the hologram 7. Organic EL is generated on the electrode. An upper electrode consisting of Ca is formed on the electrode, and an electrode 14 and a semiconductor layer 11 are made into a pattern by photolithography and RIE. The element is subjected to bias in a forward direction and it is made into the light-emitting element. Plural LSI chips (a clock control element, a memory, an arithmetic processor or the like) are arranged on the module substrate, and the whole are sealed by resin materials.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSIチップ間、LS
Iを多数実装したモジュール間または、ボード間の接続
を行う二次元自由空間双方向光接続装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to LSI chips, LS
The present invention relates to a two-dimensional free space bidirectional optical connection device for connecting modules mounted with a large number of I or boards.

【0002】[0002]

【従来の技術】高度情報化社会を支えるコンピュータで
は、多数の高集積化されたLSIチップが用いられてお
り、それらのチップ間,ボード間またはコンピュータ間
では高速・高密度な信号伝送が求められている。これま
ではその主役を電気配線を使った実装技術が担ってき
た。しかし電気配線を使った実装技術は、高速化・高密
度化にともなう配線容量増大による伝送遅延や相互干渉
ノイズの増大、または装置の発熱量増加などの問題に直
面し限界にさしかかっている。これらの問題を光伝送に
より解決しようとする試みが既に報告されている。すな
わち、光のもつ無誘導性,多重性を活かした自由度の高
いインターコネクションが幾つか提案されている。
2. Description of the Related Art A large number of highly integrated LSI chips are used in computers that support an advanced information society, and high-speed and high-density signal transmission is required between these chips, boards, or computers. ing. Until now, the leading role has been implemented by mounting technology using electrical wiring. However, mounting technology using electric wiring is approaching its limit because it faces problems such as transmission delay and mutual interference noise due to increase in wiring capacity due to higher speed and higher density, or increase in heat generation of the device. Attempts to solve these problems by optical transmission have already been reported. In other words, some interconnections with a high degree of freedom have been proposed that take advantage of the non-inductive property and multiplicity of light.

【0003】このシステムの中核を担う受発光素子で
は、無機半導体特にGaAs等を中心とする化合物半導
体からなる面型の受発光デバイスが広く用いられてい
る。その代表に、文献(IEEE Journal of Quantum Elec
tronics, QE−24, p.1462(1985)のSEED)あるい
は、NEC技報,Vol.46,No.8,p63(199
3)に開示されているVSTEPと呼ばれる光送受信素
子があげられる。これらの素子はある程度の低消費電
力、小規模の多重性を具現しているが、本質的にLSI
チップを構成するシリコン材料との集積化に適さないう
え、現状の実装技術が達成している、高速・高密度性能
を凌駕するには至っていない。
In the light emitting / receiving element which plays a central role in this system, a surface type light emitting / receiving device made of an inorganic semiconductor, particularly a compound semiconductor mainly composed of GaAs or the like is widely used. One of the representatives is the literature (IEEE Journal of Quantum Elec
tronics, QE-24, p.1462 (1985) SEED) or NEC Technical Report, Vol. 46, No. 8, p63 (199
There is an optical transmitter / receiver element called VSTEP disclosed in 3). Although these elements realize low power consumption to some extent and small-scale multiplicity, they are essentially LSIs.
It is not suitable for integration with the silicon material that makes up the chip, and has not yet surpassed the high-speed, high-density performance that the current packaging technology has achieved.

【0004】また一方で光源は点のままで、光の自由伝
搬を利用するいわゆるフリースペースインターコネクシ
ョンンという考えも提案されている。この代表は、文献
(Applied Physics Letters, 64, p.2931 (1994))に開
示されているガラス導波路とホログラフィーを利用した
モジュール基板があげられるが、大規模な双方向送受信
を実現するにはいたっていない。
On the other hand, the idea of so-called free space interconnection, which uses the free propagation of light while leaving the light source as a point, has been proposed. A typical example of this is the module substrate using the glass waveguide and holography disclosed in the literature (Applied Physics Letters, 64, p.2931 (1994)). I haven't.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、LS
Iを構成するシリコン素子との集積化に適し、周波数・
時間多重を活かした自由の高い結合によりいわゆる配線
ボトルネックを解消することにある。
SUMMARY OF THE INVENTION The object of the present invention is to provide an LS
Suitable for integration with silicon elements that compose I
The purpose is to eliminate the so-called wiring bottleneck by highly flexible coupling utilizing time multiplexing.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

(1)伝送媒体として平坦基板状に形成した有機高分子
からなるスラブ導波路を利用する。
(1) A slab waveguide made of an organic polymer formed on a flat substrate is used as a transmission medium.

【0007】(2)導波層上に波長選択機能有する光の
入出力結合器を配置し、選択する波長を管理する制御素
子を備え付け、この機構により制御信号を各素子に配給
する。これにより素子間の結合状態を任意に制御する。
(2) An optical input / output coupler having a wavelength selection function is arranged on the waveguiding layer, and a control element for controlling the wavelength to be selected is provided, and a control signal is distributed to each element by this mechanism. Thereby, the coupling state between the elements is arbitrarily controlled.

【0008】(3)上記結合器の上に有機半導体からな
るLEDを配置し、印加電圧の順逆により一部を発光素
子として、また残りを受光素子として使用する。
(3) An LED made of an organic semiconductor is arranged on the coupler, and a part of the LED is used as a light emitting element and the other is used as a light receiving element by reversing the applied voltage.

【0009】(4)上記導波路基板上にLSIチップも
しくはモジュールを配置し、受発光素子とチップ(もし
くはモジュールまたは、ボード)それぞれの信号電極を
結ぶ。尚、この基板上にはチップもしくはモジュールを
駆動するために必要な電気配線を別途も設けるものとす
る。
(4) An LSI chip or module is arranged on the above-mentioned waveguide substrate, and the light emitting / receiving element and the signal electrode of each chip (or module or board) are connected. It should be noted that on this substrate, electrical wiring necessary for driving the chip or module is additionally provided.

【0010】(5)同一導波路層上に乗っているチップ
(もしくはモジュールまたは、ボード)に同期制御用の素
子を配置し、上述の機構により同期信号を各素子に配給
する。
(5) Chip mounted on the same waveguide layer
(Or, a module or a board) is provided with an element for synchronization control, and a synchronization signal is distributed to each element by the mechanism described above.

【0011】(6)上記導波路基板の周囲は、各発光素
子からの信号光や外部からの光雑音信号を吸収する樹脂
材料により遮蔽する。ただし、外部との入出力を行う部
分はこの限りではない。
(6) The periphery of the waveguide substrate is shielded by a resin material that absorbs signal light from each light emitting element and an optical noise signal from the outside. However, this does not apply to the part that performs input / output with the outside.

【0012】[0012]

【作用】 (1)スラブ型光導波路基板を使うことにより従来と同
じ平面実装技術が利用できる。
(1) By using the slab type optical waveguide substrate, the same planar mounting technology as the conventional one can be used.

【0013】(2)LSI等の端子間を結ぶ占有化した
電気配線を有しないため、電気配線スペースに律則され
ることなく実装密度を高めることが出きる。またその結
合を任意に変更する機能を時間多重,波長多重の手法に
適用することで、さらに実装密度の向上が可能である。
(2) Since there is no occupied electric wiring connecting terminals of an LSI or the like, the packaging density can be increased without being restricted by the electric wiring space. Further, by applying the function of arbitrarily changing the coupling to the time-multiplexing and wavelength-multiplexing methods, the packaging density can be further improved.

【0014】(3)高密度実装を行っても光伝送を行う
ため、信号遅延,誘導ノイズ,素子発熱の問題が回避で
きる。
(3) Since optical transmission is performed even when high-density mounting is performed, problems of signal delay, inductive noise, and element heat generation can be avoided.

【0015】(4)以上によりバス、伝送系のボトルネ
ックを解消することで、LSI設計の自由度が大幅に拡
大され単体素子性能が向上するのみならず、より高度な
ネットワークを利用した並列演算処理を通じてシステム
全体の処理能力を飛躍的に向上することができる。
(4) By eliminating the bottleneck of the bus and transmission system from the above, not only the flexibility of LSI design is greatly expanded and the performance of a single element is improved, but also parallel computation using a more advanced network is performed. Through processing, the processing capacity of the entire system can be dramatically improved.

【0016】[0016]

【実施例】基板として平坦性の優れたシリコン基板を用
いた。基板上にポリイミドワニスをスピンコーティング
により展開し、これを加熱することによりポリイミド薄
膜を形成した。ポリイミドワニスには日立化成社製のO
PI−2005およびOPI−1905をそれぞれクラッ
ド,コア形成に使用し、シングルモードのスラブ型導波
路になるようコア膜厚を設定した。
Example A silicon substrate having excellent flatness was used as the substrate. A polyimide varnish was spread on the substrate by spin coating and heated to form a polyimide thin film. For the polyimide varnish, O manufactured by Hitachi Chemical Co., Ltd.
PI-2005 and OPI-1905 were used to form a clad and a core, respectively, and the core film thickness was set so as to form a single mode slab type waveguide.

【0017】このようにして作製したスラブ導波路の最
上層(クラッド)に、ホトリソグラフィとO2 を主体と
した異方性ドライエッチング(RIE)によりホログラ
ムを形成し、これにより導波路と受発光素子との結合を
行った。
A hologram is formed on the uppermost layer (clad) of the slab waveguide thus manufactured by photolithography and anisotropic dry etching (RIE) mainly composed of O 2 , whereby the waveguide and the light receiving and emitting light are formed. Bonding with the device was performed.

【0018】このホログラムの上にインジウム/ティン
−オキサイド(ITO)透明電極を真空蒸着により形成
した。つづいてポリイミド膜でバッファ層を形成した
後、再度、ITO透明電極を真空蒸着し、エタロン(バ
ンドパスフィルタ)素子を形成した。このフィルタの透
過中心波長は、ポリマの熱光学効果により下層のITO
電極に流す電流値で制御することができる。尚、本可変
型フィルタの応答時間は熱伝導等により10msec程度に
制限されるが、ポリマ層の代わりに液晶材料や電気光学
材料を適用すれば、0.1msecから100psec 程度の応
答時間に改善することが可能である。
An indium / tin-oxide (ITO) transparent electrode was formed on this hologram by vacuum evaporation. Subsequently, after forming a buffer layer with a polyimide film, the ITO transparent electrode was vacuum-deposited again to form an etalon (bandpass filter) element. The transmission center wavelength of this filter is the ITO of the lower layer due to the thermo-optic effect of the polymer.
It can be controlled by the value of current flowing through the electrodes. The response time of this tunable filter is limited to about 10 msec due to heat conduction, etc., but if a liquid crystal material or an electro-optical material is applied instead of the polymer layer, the response time is improved from 0.1 msec to 100 psec. It is possible.

【0019】この上に文献(1994 Internetional Worksh
op on Electroluminescence,Digestof Technical Paper
s, p. 36)に開示されているような、有機半導体からな
る有機エレクトルミネッセンス素子を真空蒸着により作
製した。すなわち有機半導体材料に、ポリ〔2−メトキ
シ−5−(2′−エチルヘキシロキシ−1,4−フェニ
レン)ビニレン〕(MEH−PPV)を用いた。この上
に真空蒸着によりCaからなる上部電極を形成し、再び
ホトリソグラフィとRIEにより電極および半導体層を
適当な大きさにパターニングした。この様にして形成さ
れた素子に純方向にバイアスを掛けて発光素子とし、ま
た受光素子には逆バイアスを印加して光の送受信素子と
した。この光送受信素子の特性は、受光の駆動電圧は受
光で約−10.0Vで量子効率は約20%、発光の駆動
電圧は+2.0V、発光の量子効率は1%であった。
In addition to this, reference (1994 Internetional Worksh
op on Electroluminescence, Digest of Technical Paper
s, p. 36), an organic electroluminescence device made of an organic semiconductor was prepared by vacuum vapor deposition. That is, poly [2-methoxy-5- (2'-ethylhexyloxy-1,4-phenylene) vinylene] (MEH-PPV) was used as the organic semiconductor material. An upper electrode made of Ca was formed thereon by vacuum vapor deposition, and the electrode and the semiconductor layer were patterned again to an appropriate size by photolithography and RIE. The element thus formed was biased in a pure direction to form a light emitting element, and the light receiving element was applied with a reverse bias to form a light transmitting / receiving element. The characteristics of this optical transmitter / receiver device were that the driving voltage for receiving light was about -10.0 V for receiving light, the quantum efficiency was about 20%, the driving voltage for emitting light was +2.0 V, and the quantum efficiency for emitting light was 1%.

【0020】このモジュール基板上に複数のLSIチッ
プ(クロック制御素子,メモリ,演算プロセッサ等)を
配置し、全体を樹脂材料で封止した。
A plurality of LSI chips (clock control element, memory, arithmetic processor, etc.) were arranged on this module substrate, and the whole was sealed with a resin material.

【0021】[0021]

【発明の効果】本発明による光インターコネクションで
は、各LSIが有する信号端子を一対一に結ぶ固定した
電気配線を持っていない。このため高密度配線に起因す
る多くの問題即ち、電磁誘導ノイズ、伝送遅延、
消費電力増大に伴う発熱等を回避することができる。ま
たこれらの結合を任意に変更できるため、時間多重ある
いは周波数多重を利用したより高度なネットワークを構
築することができ、大幅な処理能力の向上が期待でき
る。
The optical interconnection according to the present invention does not have a fixed electrical wiring that connects the signal terminals of each LSI in a one-to-one relationship. Therefore, many problems caused by high-density wiring, that is, electromagnetic induction noise, transmission delay,
It is possible to avoid heat generation and the like due to increased power consumption. In addition, since these connections can be changed arbitrarily, a more advanced network using time-multiplexing or frequency-multiplexing can be constructed, and a significant improvement in processing capacity can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】複数のLSIチップを配した二次元自由空間双
方向光接続方法の説明図。
FIG. 1 is an explanatory diagram of a two-dimensional free space bidirectional optical connection method in which a plurality of LSI chips are arranged.

【図2】図1中のA−A′断面図。FIG. 2 is a sectional view taken along the line AA ′ in FIG.

【図3】図2中の素子の詳細な断面図。3 is a detailed cross-sectional view of the device in FIG.

【符号の説明】[Explanation of symbols]

1…基板、2…LSIボード、3…信号光、4…入出力
端子、5…受信素子、6…発信素子、7…ホログラム、
8…絶縁層、9…高分子封止材、10…n型(p型)有
機半導体層、11…p型(n型)有機半導体層、12,
14…電極、13…屈折率可変層。
1 ... Substrate, 2 ... LSI board, 3 ... Signal light, 4 ... Input / output terminal, 5 ... Receiving element, 6 ... Transmitting element, 7 ... Hologram,
8 ... Insulating layer, 9 ... Polymer encapsulant, 10 ... N-type (p-type) organic semiconductor layer, 11 ... P-type (n-type) organic semiconductor layer, 12,
14 ... Electrode, 13 ... Refractive index variable layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 隆博 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 角田 敦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takahiro Nakayama 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Atsushi Tsunoda 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd. Hitachi Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複数の集積回路のうち任意の一対一、一対
多数もしくは多数対多数間で双方向光接続を行う方法に
おいて、電気信号を光信号に変換する発光素子、光信号
の特定の波長を透過する波長が可変な光フィルタ、光信
号を導波路に結合させる光結合器、光信号を伝搬するス
ラブ型導波路、伝搬してきた光信号を再び導波路外へ取
り出す光結合器、取り出された光信号の特定の波長を透
過する波長が可変な光フィルタ、光信号を電気信号に変
換する受光素子によって構成され、これらを介して同期
信号や入出力信号をやり取りすることを特徴とする二次
元自由空間双方向光接続装置。
1. A method of performing bidirectional optical connection between any one-to-one, one-to-many or many-to-many of a plurality of integrated circuits, a light emitting element for converting an electrical signal into an optical signal, and a specific wavelength of the optical signal. A variable wavelength optical filter that transmits light, an optical coupler that couples an optical signal to a waveguide, a slab-type waveguide that propagates an optical signal, an optical coupler that extracts the propagated optical signal from the waveguide again, and is extracted. The optical filter having a variable wavelength that transmits a specific wavelength of the optical signal and the light receiving element that converts the optical signal into an electrical signal are used, and the synchronizing signal and the input / output signal are exchanged via these. Dimensional free space bidirectional optical connection device.
【請求項2】請求項1において、電気信号を光信号に変
換する前記発光素子が共振器構造を有する有機半導体か
らなる二次元自由空間双方向光接続装置。
2. The two-dimensional free space bidirectional optical connection device according to claim 1, wherein the light emitting element for converting an electric signal into an optical signal is made of an organic semiconductor having a resonator structure.
【請求項3】請求項1において、光信号の特定の波長を
透過する波長が可変な前記光フィルタが、熱,電場また
は磁場により屈折率が制御可変な材料の両側を一対の反
射鏡及び電極で鋏みこんだ二次元自由空間双方向光接続
装置。
3. The optical filter according to claim 1, wherein the wavelength of the optical filter transmitting a specific wavelength of the optical signal is variable, and the pair of reflecting mirrors and electrodes are provided on both sides of a material whose refractive index is variable by heat, electric field or magnetic field. Two-dimensional free space bidirectional optical connection device with scissors.
【請求項4】請求項1において、光信号を導波路に結合
させる前記光結合器並びに、伝搬してきた光信号を再び
導波路外へ取り出す前記光結合器がホログラムもしくは
微小な散乱体である二次元自由空間双方向光接続装置。
4. The optical coupler according to claim 1, wherein the optical coupler that couples an optical signal to a waveguide and the optical coupler that extracts the propagated optical signal to the outside of the waveguide are holograms or minute scatterers. Dimensional free space bidirectional optical connection device.
【請求項5】請求項1において、光信号を伝搬する前記
スラブ型導波路が高分子材料からなる多層膜で構成され
ていることを二次元自由空間双方向光接続装置。
5. The two-dimensional free space bidirectional optical connection device according to claim 1, wherein the slab type waveguide for propagating an optical signal is composed of a multilayer film made of a polymer material.
【請求項6】請求項1において、光信号を電気信号に変
換する前記受光素子が、請求項2に記載された前記有機
半導体からなる発光素子を逆バイアス印加で動作させる
ことで兼用した二次元自由空間双方向光接続装置。
6. The two-dimensional structure according to claim 1, wherein the light receiving element for converting an optical signal into an electric signal is also used by operating the light emitting element made of the organic semiconductor according to claim 2 by applying a reverse bias. Free space bidirectional optical connection device.
JP7096520A 1995-04-21 1995-04-21 Two-dimensional free space bidirectional optical connection device Pending JPH08293836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7096520A JPH08293836A (en) 1995-04-21 1995-04-21 Two-dimensional free space bidirectional optical connection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7096520A JPH08293836A (en) 1995-04-21 1995-04-21 Two-dimensional free space bidirectional optical connection device

Publications (1)

Publication Number Publication Date
JPH08293836A true JPH08293836A (en) 1996-11-05

Family

ID=14167424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7096520A Pending JPH08293836A (en) 1995-04-21 1995-04-21 Two-dimensional free space bidirectional optical connection device

Country Status (1)

Country Link
JP (1) JPH08293836A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961259B2 (en) * 2003-01-23 2005-11-01 Micron Technology, Inc. Apparatus and methods for optically-coupled memory systems
JP2005353943A (en) * 2004-06-14 2005-12-22 Sony Corp Image pickup element and camera
US7103248B2 (en) 2002-10-25 2006-09-05 Canon Kabushiki Kaisha Optical interconnection device, photoelectric mixedly mounted device and electronic equipment using the same
US7151865B2 (en) 2002-10-29 2006-12-19 Canon Kabushiki Kaisha Optical waveguide device, optical and electrical elements combined device, method of driving the same, and electronic equipment using the same
WO2007023707A1 (en) * 2005-08-23 2007-03-01 Japan Science And Technology Agency Bidirectional optical communication method by bifunction organic diode and system therefor
US7349592B2 (en) 2003-04-21 2008-03-25 Canon Kabushiki Kaisha Optoelectronic circuit board with optical waveguide and optical backplane
EP2083609A3 (en) * 2008-01-22 2009-08-26 Sony Corporation Optical communication device and method of manufacturing the same
US7826283B2 (en) 2002-12-11 2010-11-02 Round Rock Research, Llc Memory device and method having low-power, high write latency mode and high-power, low write latency mode and/or independently selectable write latency
WO2013145694A1 (en) * 2012-03-30 2013-10-03 富士フイルム株式会社 Wafer for forming imaging element, method for manufacturing solid imaging element, and imaging element chip

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245796B2 (en) 2002-10-25 2007-07-17 Canon Kabushiki Kaisha Optical interconnection device, photoelectric mixedly mounted device and electronic equipment using same
US7103248B2 (en) 2002-10-25 2006-09-05 Canon Kabushiki Kaisha Optical interconnection device, photoelectric mixedly mounted device and electronic equipment using the same
US7151865B2 (en) 2002-10-29 2006-12-19 Canon Kabushiki Kaisha Optical waveguide device, optical and electrical elements combined device, method of driving the same, and electronic equipment using the same
US8164965B2 (en) 2002-12-11 2012-04-24 Round Rock Research, Llc Memory device and method having low-power, high write latency mode and high-power, low write latency mode and/or independently selectable write latency
US7826283B2 (en) 2002-12-11 2010-11-02 Round Rock Research, Llc Memory device and method having low-power, high write latency mode and high-power, low write latency mode and/or independently selectable write latency
US8295071B2 (en) 2003-01-23 2012-10-23 Round Rock Research, Llc Apparatus and methods for optically-coupled memory systems
US6961259B2 (en) * 2003-01-23 2005-11-01 Micron Technology, Inc. Apparatus and methods for optically-coupled memory systems
US7280382B2 (en) 2003-01-23 2007-10-09 Micron Technology, Inc. Apparatus and methods for optically-coupled memory systems
US7613026B2 (en) 2003-01-23 2009-11-03 Micron Technology, Inc. Apparatus and methods for optically-coupled memory systems
US7352603B2 (en) 2003-01-23 2008-04-01 Micron Technology, Inc. Apparatus and methods for optically-coupled memory systems
US7379315B2 (en) 2003-01-23 2008-05-27 Micron Technology, Inc. Apparatus and methods for optically-coupled memory systems
US7280381B2 (en) 2003-01-23 2007-10-09 Micron Technology, Inc. Apparatus and methods for optically-coupled memory systems
US8040711B2 (en) 2003-01-23 2011-10-18 Round Rock Research, Llc Apparatus and methods for optically-coupled memory systems
US7349592B2 (en) 2003-04-21 2008-03-25 Canon Kabushiki Kaisha Optoelectronic circuit board with optical waveguide and optical backplane
JP2005353943A (en) * 2004-06-14 2005-12-22 Sony Corp Image pickup element and camera
WO2007023707A1 (en) * 2005-08-23 2007-03-01 Japan Science And Technology Agency Bidirectional optical communication method by bifunction organic diode and system therefor
EP2083609A3 (en) * 2008-01-22 2009-08-26 Sony Corporation Optical communication device and method of manufacturing the same
WO2013145694A1 (en) * 2012-03-30 2013-10-03 富士フイルム株式会社 Wafer for forming imaging element, method for manufacturing solid imaging element, and imaging element chip
JP2013211291A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Imaging element formation wafer, solid imaging element manufacturing method, and imaging element chip
US9343508B2 (en) 2012-03-30 2016-05-17 Fujifilm Corporation Wafer for forming imaging element, method for manufacturing solid-state imaging element, and imaging element chip

Similar Documents

Publication Publication Date Title
JP3244205B2 (en) Semiconductor device
JP2853400B2 (en) Simultaneous two-way optical interconnection method
Taubenblatt Optical interconnects for high-performance computing
JP3728147B2 (en) Opto-electric hybrid wiring board
US9575270B2 (en) Wavelength-division multiplexing for use in multi-chip systems
US7915699B2 (en) Integrated circuit chip that supports through-chip electromagnetic communication
US6587605B2 (en) Method and apparatus for providing optical interconnection
US7961990B2 (en) Multi-chip system including capacitively coupled and optical communication
US7889996B2 (en) Optical-signal-path routing in a multi-chip system
US8320761B2 (en) Broadband and wavelength-selective bidirectional 3-way optical splitter
KR20100075956A (en) Photonic interconnects for computer system devices
JP2012028766A (en) Integrated circuit layers optically connected using super lens element
JPH08293836A (en) Two-dimensional free space bidirectional optical connection device
US20210116637A1 (en) Si Photonic Platform and Photonic Interposer
JP3684112B2 (en) Opto-electric hybrid board, driving method thereof, and electronic circuit device using the same
JPH04503719A (en) Optical signal distribution network
US20220236619A1 (en) Integrated plasmonic modulator
JP2002258080A (en) Optical and electrical composite circuit
Gaburro Optical interconnect
Hornak et al. Impact of polymer-integrated optics on silicon wafer area networks
Miller Hybrid SEED-massively parallel optical interconnections for silicon ICs
JP2004325520A (en) Optical waveguide type optical switch and its manufacturing method
JPH04302176A (en) Semiconductor device
JP2002124661A (en) Semiconductor device
Kurokawa et al. Optical interconnection technologies based on vertical-cavity surface-emitting lasers and smart pixels