JPH082935A - Production of porous preform for optical fiber - Google Patents

Production of porous preform for optical fiber

Info

Publication number
JPH082935A
JPH082935A JP13712094A JP13712094A JPH082935A JP H082935 A JPH082935 A JP H082935A JP 13712094 A JP13712094 A JP 13712094A JP 13712094 A JP13712094 A JP 13712094A JP H082935 A JPH082935 A JP H082935A
Authority
JP
Japan
Prior art keywords
silica
fine particles
powder
particle size
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13712094A
Other languages
Japanese (ja)
Inventor
Takeshi Yagi
健 八木
Masato Oku
誠人 奥
Takayuki Morikawa
孝行 森川
Tsugio Sato
継男 佐藤
Kazuaki Yoshida
和昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13712094A priority Critical patent/JPH082935A/en
Priority to GB9422416A priority patent/GB2283740B/en
Priority to DE4440840A priority patent/DE4440840C2/en
Publication of JPH082935A publication Critical patent/JPH082935A/en
Priority to US08/698,287 priority patent/US5711903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce a porous preform for an optical fiber giving an optical fiber having excellent mechanical strength and high quality. CONSTITUTION:This production process comprises a step to obtain a molding material by adding fine particles having particle diameter satisfying the following formula to a silica-based powder and a step to produce a porous preform by the powder-forming of the molding material. d<={(2/sq. rt. 3)-1}XD (d is particle diameter of the fine particle; D is particle diameter of the silica powder).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通信・光学の分野で用
いられる光ファイバを作製するための光ファイバ用多孔
質母材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical fiber porous preform for producing an optical fiber used in the fields of communication and optics.

【0002】[0002]

【従来の技術】光ファイバを作製するための光ファイバ
用母材の製造において、近年粉末成形法を用いることが
試みられており、粉末成形法を用いた光ファイバ用母材
の製造方法としては、特開平4−124042号公報等
において開示されている押出成形法、特開平4−124
043号公報等において開示されている加圧成形法、特
開昭64−56331号公報等において開示されている
鋳込成形法、特開昭60−210539号公報等におい
て開示されているMSP法、特開昭63−195136
号公報等において開示されている遠心分離法、特開昭5
8−26048号公報等において開示されているダブル
プロセス法等が挙げられる。
2. Description of the Related Art Recently, it has been attempted to use a powder molding method for manufacturing an optical fiber preform for producing an optical fiber. As a method for manufacturing an optical fiber preform using the powder molding method, Extrusion molding method disclosed in Japanese Patent Application Laid-Open No. 4-1204042 and the like, Japanese Patent Application Laid-Open No. 4-124
043, etc., the pressure molding method disclosed in JP-A-64-56331, etc .; the MSP method disclosed in JP-A-60-210539; JP-A-63-195136
Centrifugal separation method disclosed in Japanese Unexamined Patent Application Publication No. Sho 5
The double process method disclosed in JP-A 8-26048 and the like can be mentioned.

【0003】また、上記粉末成形法を用いて光ファイバ
母材を製造する際には、原料として使用するシリカ系粉
末の粒径が0.6〜20μmであることが好ましいこと
が特開平5−208839号公報において開示されてい
る。
Further, when the optical fiber preform is manufactured by using the above-mentioned powder molding method, it is preferable that the particle diameter of the silica-based powder used as a raw material is 0.6 to 20 μm. It is disclosed in Japanese Patent No. 208839.

【0004】[0004]

【発明が解決しようとする課題】特開平5−20883
9号公報においては、シリカ系粉末の粒径が小さくなり
過ぎると、得られる多孔質母材の気孔径が小さくなり、
後工程の精製工程において精製ガス、例えば塩素ガス
や、塩素ガスと不純物とが反応して得られる塩化物ガス
の拡散が困難となり、多孔質母材の精製効果が低下す
る。また、シリカ系粉末の粒径が大きくなり過ぎると、
脱脂工程において多孔質母材からバインダーを除去した
後の多孔質母材の機械的強度が低下し、多孔質母材の保
形性が低下し、破損し易くなる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In Japanese Patent Laid-Open Publication No. 9-93, when the particle diameter of the silica-based powder becomes too small, the pore diameter of the obtained porous base material becomes small,
In the subsequent purification step, it becomes difficult to diffuse purified gas, for example, chlorine gas or chloride gas obtained by reacting chlorine gas with impurities, and the purification effect of the porous base material is reduced. Also, if the particle size of the silica-based powder becomes too large,
In the degreasing step, the mechanical strength of the porous base material after removing the binder from the porous base material is lowered, the shape retention of the porous base material is lowered, and the porous base material is easily damaged.

【0005】すなわち、最終製品である光ファイバの品
質を重視する上では、できるだけ大きい粒径を有するシ
リカ系粉末を使用することが望ましいが、その場合に
は、いかに光ファイバ用多孔質母材の機械的強度を向上
させるかが問題となる。
That is, it is desirable to use a silica-based powder having a particle size as large as possible in order to give importance to the quality of the final product optical fiber. In that case, however, it is necessary to use a silica-based powder for the optical fiber. The problem is how to improve the mechanical strength.

【0006】本発明はかかる点に鑑みてなされたもので
あり、優れた機械的強度を有し、しかも高品質な光ファ
イバを得ることができる光ファイバ用多孔質母材を製造
する方法を提供することを目的とする。
The present invention has been made in view of the above points, and provides a method for producing a porous base material for an optical fiber, which has an excellent mechanical strength and is capable of obtaining a high quality optical fiber. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明者らは、比較的大
きな粒径を有するシリカ系粉末同士の相互作用を活発に
させる観点から研究を行い、シリカ系粉末にシリカ系微
粒子を添加することにより、シリカ系粉末同士の単位体
積当たりの接点が増加して多孔質母材の機械的強度が向
上することを見出だして本発明をするに至った。
Means for Solving the Problems The present inventors have conducted research from the viewpoint of activating the interaction between silica-based powders having a relatively large particle size, and adding silica-based fine particles to the silica-based powder. As a result, it has been found that the contact points between the silica-based powders per unit volume are increased and the mechanical strength of the porous base material is improved, and the present invention has been completed.

【0008】すなわち、本発明は、シリカ系粉末に下記
式(I)を満足する粒径を有する微粒子を加えて成形材
料を得る工程と、前記成形材料を粉末成形法により成形
して多孔質母材を得る工程とを具備することを特徴とす
る光ファイバ用多孔質母材の製造方法を提供する。
That is, according to the present invention, a step of adding a fine particle having a particle size satisfying the following formula (I) to a silica-based powder to obtain a molding material, and molding the molding material by a powder molding method to form a porous matrix. A method for producing a porous preform for an optical fiber, comprising the step of obtaining a material.

【0009】 d≦{(2/√3)−1}・D …(I) (d:微粒子の粒径、D:シリカ系粉末の粒径) ここで、本発明におけるシリカ系粉末としては、火炎加
水分解法、ゾルゲル法、気相合成法等により得られた粉
末を用いることができる。また、本発明における微粒子
としては、前述した方法により得られたシリカ系粉末の
うちで高純度のものを使用することが好ましい。このよ
うなものとして、純シリカ微粒子、Ge,P,Ti等の
屈折率制御用元素、あるいはEr等の機能性付与用元素
を含むシリカ微粒子、または前記元素の酸化物微粒子を
用いることができる。
D ≦ {(2 / √3) −1} · D (I) (d: particle size of fine particles, D: particle size of silica-based powder) Here, as the silica-based powder in the present invention, A powder obtained by a flame hydrolysis method, a sol-gel method, a gas phase synthesis method or the like can be used. Further, as the fine particles in the present invention, it is preferable to use high-purity silica powder among the silica-based powders obtained by the method described above. As such particles, it is possible to use pure silica fine particles, silica fine particles containing a refractive index controlling element such as Ge, P and Ti, or a functional imparting element such as Er, or oxide fine particles of the above elements.

【0010】本発明は、噴霧乾燥した造粒粉末を成形型
に充填して加圧成形する、例えば特開平4−12404
3号公報等において開示されている加圧成形法や、特開
昭60−210539号公報等において開示されている
MSP法を粉末成形法として採用することが好ましい。
また、本発明は、特開平4−124042号公報等にお
いて開示されている押出成形法や、特開昭64−563
31号公報等において開示されている鋳込成形法にも採
用することができる。
In the present invention, the spray-dried granulated powder is filled in a molding die and pressure-molded, for example, JP-A-4-12404.
It is preferable to adopt the pressure molding method disclosed in Japanese Patent Laid-Open No. 3 or the like or the MSP method disclosed in Japanese Patent Laid-Open No. 60-210539 as the powder molding method.
The present invention also relates to the extrusion molding method disclosed in JP-A-4-124042 and the like and JP-A-64-563.
It can also be adopted in the cast molding method disclosed in Japanese Patent No. 31.

【0011】本発明において、シリカ系粉末に加える微
粒子の粒径は、式d≦{(2/√3)−1}・D(d:
微粒子の粒径、D:シリカ系粉末の粒径)を満足するよ
うに設定する。これは、微粒子の粒径がシリカ系粉末の
粒径に対して大きすぎると、すなわちd>{(2/√
3)−1}・Dとなると、微粒子とシリカ系粉末の大き
さに差がなくなるので、微粒子がシリカ系粉末同士が形
成する間隙に入り込むことができず、シリカ系粉末同士
の接点数の増加に寄与しなくなるからである。例えば、
シリカ系粉末の粒径が10μmである場合には、微粒子
の粒径は上式より1.5μm以下に設定する必要があ
る。なお、微粒子がシリカ系粉末の接点付近、いわゆる
ネック部分に付着するためには、微粒子の粒径を上式か
ら求められる粒径よりも充分に小さくする必要がある。
また、本発明においてシリカ系粉末および微粒子の粒径
とは、シリカ系粉末および微粒子の平均粒径であり、一
般的に用いられている体積50%粒径を指す。
In the present invention, the particle size of the fine particles added to the silica-based powder is expressed by the formula d≤ {(2 / √3) -1} D (d:
The particle size of the fine particles and D: particle size of the silica-based powder) are set to be satisfied. This is because when the particle size of the fine particles is too large with respect to the particle size of the silica-based powder, that is, d> {(2 / √
3) -1} · D, there is no difference in size between the fine particles and the silica-based powder, so the fine particles cannot enter the gap formed by the silica-based powders, increasing the number of contacts between the silica-based powders. Because it will not contribute to. For example,
When the particle size of the silica-based powder is 10 μm, it is necessary to set the particle size of the fine particles to 1.5 μm or less from the above formula. In order that the fine particles adhere to the vicinity of the contact point of the silica-based powder, that is, the so-called neck portion, it is necessary to make the particle size of the fine particles sufficiently smaller than the particle size obtained from the above equation.
Further, in the present invention, the particle diameters of the silica-based powder and the fine particles are the average particle diameters of the silica-based powder and the fine particles, and are generally used volume 50% particle diameters.

【0012】本発明においては、微粒子の添加量も得ら
れる多孔質母材の機械的強度に影響を与える。微粒子の
添加量の下限は、多孔質母材の機械的強度が維持できる
値であり、上限はシリカ系粉末同士の接点数増加に寄与
しない余分な微粒子が凝集を起こして多孔質母材が不均
質にならない値である。これは、多孔質母材が不均質で
あると、後工程である脱脂工程、精製工程、透明ガラス
化工程等において熱処理中に多孔質母材にクラックや反
りが生じてしまうからである。
In the present invention, the addition amount of fine particles also affects the mechanical strength of the obtained porous base material. The lower limit of the amount of fine particles added is a value that can maintain the mechanical strength of the porous base material, and the upper limit is the amount of excess fine particles that do not contribute to the increase in the number of contacts between silica-based powders, causing aggregation of the porous base material. The value is not uniform. This is because if the porous base material is inhomogeneous, cracks or warpage will occur in the porous base material during the heat treatment in the degreasing step, the refining step, the transparent vitrification step, etc., which are the post-steps.

【0013】このように、微粒子の添加量には最適値が
存在するが、使用するシリカ系粉末の粒径によって変化
する。すなわち、使用するシリカ系粉末の粒径が大きい
場合には、多孔質母材の機械的強度を維持するために必
要となる微粒子の添加量は増加する。粒径が4〜20μ
mであるいくつかのシリカ系粉末に関し、式(I)を満
足する粒径を有する微粒子の中で特に効果が顕著だった
粒径0.04〜0.6μmの微粒子について添加量の最
適範囲を調べたところ図1のような結果を得た。図1中
の2本の実線で挟まれた斜線の領域が微粒子の最適添加
量を示す領域である。図1によれば、例えば、粒径10
μmのシリカ系粉末を使用する場合には、0.5〜1重
量%で微粒子を添加することが好ましく、粒径15μm
のシリカ系粉末を使用する場合には、1〜2重量%で微
粒子を添加することが好ましい。なお、粒径5μm以下
のシリカ系粉末については、粒径が充分に小さいために
微粒子の添加を必要としなかった。
Thus, there is an optimum value for the amount of fine particles added, but it varies depending on the particle size of the silica-based powder used. That is, when the particle size of the silica-based powder used is large, the amount of fine particles added to maintain the mechanical strength of the porous matrix increases. Particle size is 4 ~ 20μ
For some of the silica-based powders having a particle size of m, the optimum range of the addition amount was set for the particles having a particle size of 0.04 to 0.6 μm, which was particularly effective among the particles having a particle size satisfying the formula (I). Upon examination, the results shown in FIG. 1 were obtained. The shaded area sandwiched by two solid lines in FIG. 1 is the area showing the optimum addition amount of the fine particles. According to FIG. 1, for example, a particle size of 10
When using a silica-based powder of μm, it is preferable to add fine particles in an amount of 0.5 to 1% by weight.
When the silica-based powder of 1 is used, it is preferable to add fine particles in an amount of 1 to 2% by weight. With respect to silica-based powder having a particle size of 5 μm or less, it was not necessary to add fine particles because the particle size was sufficiently small.

【0014】本発明において、シリカ系粉末にシリカ系
微粒子を加える方法としては、シリカ系微粒子がシリカ
系粉末中に均一に分散して均質になるように、シリカ系
粉末およびシリカ系微粒子を純水等の分散媒に分散させ
てスラリーとし、そのスラリーを撹拌する方法が最も好
ましい。また、この方法によれば、撹拌後のスラリーの
乾燥に噴霧乾燥を用いることができるので、分散媒の乾
燥を短時間で行うことが可能であり、シリカ系粉末中の
シリカ系微粒子が乾燥の際に偏析を起こすことを防止で
きる。
In the present invention, the method for adding the silica-based fine particles to the silica-based powder is to add the silica-based powder and the silica-based fine particles to pure water so that the silica-based fine particles are uniformly dispersed in the silica-based powder. The most preferable method is to disperse it in a dispersion medium such as the above to obtain a slurry, and to stir the slurry. Further, according to this method, since spray drying can be used for drying the slurry after stirring, it is possible to dry the dispersion medium in a short time, and the silica-based fine particles in the silica-based powder can be dried. In that case, it is possible to prevent segregation.

【0015】本発明の方法は、PCS(Polymer Clad S
ilica )ファイバ用多孔質母材、イメージガイド用多孔
質母材、ロッドレンズ用多孔質母材等の棒状多孔質体、
特開平4−124043号公報等に示されているような
コアロッドの周囲にシリカ系粉末を成形してなるハイブ
リッド型多孔質母材、コアおよびクラッドをすべてを粉
末成形法で作製した多孔質母材等に適用することができ
る。
The method of the present invention is applied to PCS (Polymer Clad S
ilica) Rod-shaped porous materials such as porous base materials for fibers, porous base materials for image guides, rod lenses
Hybrid type porous base material formed by molding silica-based powder around a core rod as shown in JP-A-4-124043, etc., and porous base material in which core and clad are all manufactured by powder molding method Etc. can be applied.

【0016】[0016]

【作用】本発明の光ファイバ用多孔質母材の製造方法
は、シリカ系粉末に式d≦{(2/√3)−1}・D
(d:微粒子の粒径、D:シリカ系粉末の粒径)を満足
する粒径を有する微粒子を加えて成形材料を粉末成形法
により成形して多孔質母材を得ることを特徴としてい
る。
The method for producing a porous base material for an optical fiber according to the present invention is based on the formula d≤ {(2 / √3) -1} D of silica-based powder.
A feature is that fine particles having a particle diameter satisfying (d: particle diameter of fine particles, D: particle diameter of silica-based powder) are added and a molding material is molded by a powder molding method to obtain a porous base material.

【0017】通常、比較的粒径の大きなシリカ系粉末を
使用した場合、より小さなシリカ系粉末を使用した場合
よりも単位体積当たりのシリカ系粉末同士の接点数が少
なくなり、シリカ系粉末同士の相互作用が小さく、得ら
れる多孔質母材の機械的強度が低下する。しかしなが
ら、上式を満足する微粒子をシリカ系粉末の所定の添加
量で加えることにより、微粒子がシリカ系粉末同士の形
成する間隙に入り込み、シリカ系粉末同士の接点数が増
加する。特に、シリカ系粉末の粒径に対して充分に小さ
い粒径を有する微粒子は、シリカ系粉末同士が接触した
際に形成されるネック部分近傍に付着する。これによ
り、シリカ系粉末同士の相互作用、すなわちシリカ系粉
末同士の絡み合い、これに基づく凝集力、粉末の接触面
に残留した水分に起因する表面張力あるいは毛細管力が
増大する。その結果、得られる多孔質母材の機械的強度
が向上する。
Usually, when silica-based powder having a relatively large particle size is used, the number of contact points between the silica-based powders per unit volume is smaller than that when smaller silica-based powders are used, and the silica-based powders are contacted with each other. The interaction is small, and the mechanical strength of the obtained porous base material is reduced. However, by adding fine particles satisfying the above formula in a predetermined addition amount of silica-based powder, the fine particles enter the gap formed by the silica-based powders, and the number of contacts between the silica-based powders increases. In particular, the fine particles having a particle size sufficiently smaller than the particle size of the silica-based powder adhere to the vicinity of the neck portion formed when the silica-based powders contact each other. As a result, the interaction between the silica-based powders, that is, the entanglement of the silica-based powders, the cohesive force based on the interaction, and the surface tension or the capillary force due to the water remaining on the contact surface of the powder are increased. As a result, the mechanical strength of the obtained porous base material is improved.

【0018】特に、本発明の方法は、アルカリ性溶液中
に原料粉末を分散させ、沈降速度の差で原料粉末に含ま
れる不純物流しを除去する特願平5−284714号に
示された方法で処理された原料粉末に対して有効であ
る。特願平5−284714号に示された方法による
と、不純物粒子を除去する際に原料粉末のうち小さい粒
径のものが不純物粒子と共に除去されてしまい、粉末同
士の接点数が減少してしまうが、本発明の方法を適用す
ることにより、粉末に添加された微粒子が粉末同士の接
点数を増加させることができる。
In particular, the method of the present invention is carried out by the method disclosed in Japanese Patent Application No. 5-284714 which disperses a raw material powder in an alkaline solution and removes an impurity flow contained in the raw material powder due to a difference in sedimentation speed. It is effective for the obtained raw material powder. According to the method disclosed in Japanese Patent Application No. 5-284714, when the impurity particles are removed, the raw material powder having a small particle size is removed together with the impurity particles, and the number of contact points between the powder particles is reduced. However, by applying the method of the present invention, the fine particles added to the powder can increase the number of contacts between the powders.

【0019】また、最近高純度の粉末が得られることで
注目されているゾルゲル法で合成された粉末は、その合
成上の特徴から粒径分布が非常に狭い。このような粉末
では本発明における微粒子の役割を果たす粒径の小さい
粒子を含んでいないので、本発明の方法を適用して微粒
子により粉末同士の接点数を増加させることは有効であ
る。
Further, the powder synthesized by the sol-gel method, which has recently been attracting attention because of the fact that high-purity powder can be obtained, has a very narrow particle size distribution due to its synthetic characteristics. Since such a powder does not contain particles having a small particle size which plays a role of the fine particles in the present invention, it is effective to apply the method of the present invention to increase the number of contacts between the powders by the fine particles.

【0020】[0020]

【実施例】以下、本発明の実施例について具体的に説明
する。 (実施例1)気相合成法で製造された粒径15μmのシ
リカ粉末98重量部、添加する微粒子として気相合成法
で製造された粒径0.2μmのシリカ微粒子2重量部、
溶媒として純水67重量部、バインダーとしてポリビニ
ルアルコール1.6重量部、およびグリセリン1.2重
量部を混合・撹拌してスラリーを作製し、このスラリー
をスプレードライ法により造粒して平均粒径約100μ
mの造粒粉末を得た。なお、添加した微粒子の粒径は、
式(I)を満足するものである。
Embodiments of the present invention will be specifically described below. (Example 1) 98 parts by weight of silica powder having a particle size of 15 μm produced by a gas phase synthesis method, 2 parts by weight of silica fine particles having a particle size of 0.2 μm produced by a gas phase synthesis method as fine particles to be added,
67 parts by weight of pure water as a solvent, 1.6 parts by weight of polyvinyl alcohol as a binder, and 1.2 parts by weight of glycerin are mixed and stirred to prepare a slurry, and the slurry is granulated by a spray drying method to obtain an average particle size. About 100μ
A granulated powder of m was obtained. The particle size of the added fine particles is
It satisfies the formula (I).

【0021】次いで、この造粒粉末を内径約70mmのゴ
ム型に充填し、このゴム型を98MPaの静水圧で加圧
して、外径約58mm、長さ約300mmの多孔質母材を作
製した。
Then, this granulated powder was filled in a rubber mold having an inner diameter of about 70 mm, and the rubber mold was pressed under a hydrostatic pressure of 98 MPa to produce a porous base material having an outer diameter of about 58 mm and a length of about 300 mm. .

【0022】次いで、この多孔質母材に大気中において
500℃で5時間加熱して脱脂し、その後、常法にした
がってHeガスおよびCl2 ガス雰囲気中において12
00℃で脱水し、最後に常法にしたがってHeガス雰囲
気中において1600℃で透明ガラス化してPCS光フ
ァイバ用母材を得た。このようにしてPCS光ファイバ
用母材を20本作製した。
Then, the porous base material is heated in the air at 500 ° C. for 5 hours to be degreased, and thereafter, in a He gas and Cl 2 gas atmosphere according to a conventional method.
It was dehydrated at 00 ° C., and finally, it was transparentized into glass at 1600 ° C. in a He gas atmosphere according to a conventional method to obtain a PCS optical fiber preform. Thus, 20 PCS optical fiber preforms were produced.

【0023】本実施例の多孔質母材は、シリカ微粒子が
シリカ粉末同士で形成する間隙に入り込み、シリカ粉末
同士の接点数を増加させ、これにより優れた機械的強度
を有するので、20本すべて破損等の問題なくPCS光
ファイバ用母材を作製することができた。また、得られ
たPCS光ファイバ用母材を線引きしてコア径200μ
m、クラッド径230μmの光ファイバを作製したとこ
ろ、この光ファイバの特性は従来のものと同等であっ
た。 (比較例1)粒径0.2μmのシリカ微粒子を添加する
代わりに、式(I)を満足しない粒径である粒径3μm
の微粒子を添加すること以外は実施例1と同様にして造
粒粉末を得て、これを用いて多孔質母材を20本作製し
た。
In the porous base material of this embodiment, since the silica fine particles enter the gap formed between the silica powders to increase the number of contact points between the silica powders and thereby have excellent mechanical strength, all 20 base materials are used. The base material for PCS optical fiber could be produced without problems such as breakage. Also, the obtained PCS optical fiber preform is drawn to obtain a core diameter of 200 μm.
When an optical fiber having a diameter of m and a cladding diameter of 230 μm was manufactured, the characteristics of this optical fiber were equivalent to those of the conventional one. (Comparative Example 1) Instead of adding silica fine particles having a particle size of 0.2 μm, a particle size of 3 μm which is a particle size not satisfying the formula (I).
Granulated powder was obtained in the same manner as in Example 1 except that the fine particles of 1 were added, and 20 porous base materials were produced using this.

【0024】この多孔質母材を用いて実施例1と同様に
してPCS光ファイバ用母材を作製したところ、多孔質
母材の機械的強度が低いために、脱脂工程から透明ガラ
ス化工程に移すハンドリングの際にすべて破損した。 (比較例2)粒径0.2μmのシリカ微粒子を2重量部
添加する代わりに、粒径0.2μmのシリカ微粒子を1
重量部未満で添加すること以外は実施例1と同様にして
造粒粉末を得て、これを用いて多孔質母材を20本作製
した。
Using this porous preform, a preform for PCS optical fibers was produced in the same manner as in Example 1. The porous preform had a low mechanical strength, and therefore the degreasing process was changed to the transparent vitrification process. All were damaged during the handling of the transfer. Comparative Example 2 Instead of adding 2 parts by weight of silica fine particles having a particle size of 0.2 μm, 1 part of silica fine particles having a particle size of 0.2 μm was added.
Granulated powder was obtained in the same manner as in Example 1 except that the amount was added in less than parts by weight, and 20 porous base materials were produced using this.

【0025】この多孔質母材を用いて実施例1と同様に
してPCS光ファイバ用母材を作製したところ、多孔質
母材の機械的強度が低いために、脱脂工程から透明ガラ
ス化工程に移すハンドリングの際にすべて破損した。 (比較例3)粒径0.2μmのシリカ微粒子を2重量部
添加する代わりに、粒径0.2μmのシリカ微粒子を2
重量部を越える添加量で添加すること以外は実施例1と
同様にして造粒粉末を得て、これを用いて多孔質母材を
20本作製した。
Using this porous preform, a preform for PCS optical fibers was produced in the same manner as in Example 1. The porous preform had a low mechanical strength, and therefore the degreasing process was changed to the transparent vitrification process. All were damaged during the handling of the transfer. (Comparative Example 3) Instead of adding 2 parts by weight of silica fine particles having a particle diameter of 0.2 μm, 2 silica fine particles having a particle diameter of 0.2 μm were added.
Granulated powder was obtained in the same manner as in Example 1 except that the addition amount was more than parts by weight, and 20 porous base materials were produced using this.

【0026】この多孔質母材を用いて実施例1と同様に
してPCS光ファイバ用母材を作製したところ、すべて
透明ガラス化工程後に多数の気泡が発生してしまい、P
CS光ファイバ用母材として使用できなかった。 (実施例2)気相合成法で製造された粒径10μmのシ
リカ粉末99重量部、添加する微粒子として気相合成法
で製造された粒径0.04μmのシリカ微粒子1重量
部、溶媒として純水67重量部、バインダーとしてポリ
ビニルアルコール1.6重量部、およびグリセリン1.
2重量部を混合・撹拌してスラリーを作製し、このスラ
リーをスプレードライ法により造粒して平均粒径約10
0μmの造粒粉末を得た。なお、添加した微粒子の粒径
は、式(I)を満足するものである。
When a PCS optical fiber preform was produced using this porous preform in the same manner as in Example 1, many bubbles were generated after the transparent vitrification step, and P
It could not be used as a base material for CS optical fibers. (Example 2) 99 parts by weight of silica powder having a particle size of 10 μm produced by a gas phase synthesis method, 1 part by weight of silica fine particles having a particle size of 0.04 μm produced by a gas phase synthesis method as fine particles to be added, and pure as a solvent. 67 parts by weight of water, 1.6 parts by weight of polyvinyl alcohol as a binder, and glycerin 1.
A slurry is prepared by mixing and stirring 2 parts by weight, and the slurry is granulated by a spray drying method to obtain an average particle size of about 10
A granulated powder of 0 μm was obtained. The particle size of the added fine particles satisfies the formula (I).

【0027】一方、VAD法によりコア/クラッド比が
1/3であり、屈折率比△=0.3%であり、外径8.
5mm、長さ約300mmである石英ガラス製ロッドを作製
した。次いで、このロッドの一方の端部に外径が約23
mm、長さ30mmの石英ガラス製ダミー用ロッドを、他方
の端部に外径25mm、長さ120mmの石英ガラス製支持
用ロッドをそれぞれ溶接してコアロッドを作製した。
On the other hand, according to the VAD method, the core / cladding ratio is 1/3, the refractive index ratio is Δ = 0.3%, and the outer diameter is 8.
A quartz glass rod having a length of 5 mm and a length of about 300 mm was produced. Then, at one end of this rod,
A core rod was prepared by welding a quartz glass dummy rod having a length of 30 mm and a length of 30 mm and a quartz glass supporting rod having an outer diameter of 25 mm and a length of 120 mm at the other end.

【0028】次いで、このコアロッドを外径70mmのゴ
ム型のキャビティー中央に位置合わせして機械的に配置
し、キャビティー内に前記造粒粉末を充填した。次い
で、このゴム型を98MPaの静水圧で加圧して、外径
約56mm、長さ約300mmの多孔質母材を作製した。
Next, this core rod was aligned mechanically with the center of the cavity of a rubber mold having an outer diameter of 70 mm, and the granulated powder was filled in the cavity. Next, this rubber mold was pressed with a hydrostatic pressure of 98 MPa to produce a porous base material having an outer diameter of about 56 mm and a length of about 300 mm.

【0029】次いで、この多孔質母材に大気中において
500℃で5時間加熱して脱脂し、その後、常法にした
がってHeガスおよびCl2 ガス雰囲気中において12
00℃で脱水し、最後に常法にしたがってHeガス雰囲
気中において1600℃で透明ガラス化してシングルモ
ード光ファイバ用母材を得た。このようにしてシングル
モード光ファイバ用母材を20本作製した。
Next, the porous base material is heated in the air at 500 ° C. for 5 hours to be degreased, and thereafter, in a He gas and Cl 2 gas atmosphere according to a conventional method.
It was dehydrated at 00 ° C., and finally, it was transparentized into glass at 1600 ° C. in a He gas atmosphere according to a conventional method to obtain a base material for a single mode optical fiber. In this way, 20 single mode optical fiber preforms were produced.

【0030】本実施例の多孔質母材は、シリカ微粒子が
シリカ粉末同士で形成する間隙に入り込み、シリカ粉末
同士の接点数を増加させ、これにより優れた機械的強度
を有するので、20本すべて破損等の問題なくシングル
モード光ファイバ用母材を作製することができた。ま
た、得られたシングルモード光ファイバ用母材を線引き
して外径125μmの光ファイバを作製したところ、こ
の光ファイバの特性は従来のものと同等であった。 (比較例4)粒径0.04μmのシリカ微粒子を添加す
る代わりに、式(I)を満足しない粒径である粒径3μ
mの微粒子を添加すること以外は実施例2と同様にして
造粒粉末を得て、これを用いて多孔質母材を20本作製
した。
In the porous base material of this example, since the silica fine particles enter the gap formed between the silica powders to increase the number of contact points between the silica powders and thereby have excellent mechanical strength, all 20 base materials are used. A base material for a single mode optical fiber could be produced without problems such as breakage. Further, when the obtained base material for a single mode optical fiber was drawn to manufacture an optical fiber having an outer diameter of 125 μm, the characteristics of this optical fiber were equivalent to those of the conventional one. (Comparative Example 4) Instead of adding silica fine particles having a particle diameter of 0.04 μm, a particle diameter of 3 μ which does not satisfy the formula (I).
Granulated powder was obtained in the same manner as in Example 2 except that the fine particles of m were added, and 20 porous base materials were produced using this.

【0031】この多孔質母材を用いて実施例2と同様に
してシングルモード光ファイバ用母材を作製したとこ
ろ、多孔質母材の機械的強度が低いために、脱脂工程か
ら透明ガラス化工程に移すハンドリングの際に10本が
破損した。 (比較例5)粒径0.04μmのシリカ微粒子を1重量
部添加する代わりに、粒径0.04μmのシリカ微粒子
を0.5重量部未満で添加すること以外は実施例2と同
様にして造粒粉末を得て、これを用いて多孔質母材を2
0本作製した。
Using this porous preform, a preform for a single mode optical fiber was produced in the same manner as in Example 2. The porous preform had a low mechanical strength, so that the degreasing process to the transparent vitrification process was performed. 10 pieces were damaged during the handling to be transferred to. (Comparative Example 5) In the same manner as in Example 2 except that silica fine particles having a particle size of 0.04 μm were added in an amount of less than 0.5 part by weight instead of adding 1 part by weight of silica fine particles having a particle size of 0.04 μm. Granulated powder is obtained, and it is used as a porous matrix.
0 pieces were produced.

【0032】この多孔質母材を用いて実施例2と同様に
してシングルモード光ファイバ用母材を作製したとこ
ろ、多孔質母材の機械的強度が低いために、脱脂工程か
ら透明ガラス化工程に移すハンドリングの際に5本が破
損した。また、透明ガラス化工程後に3本にクラックが
発生した。 (比較例6)粒径0.04μmのシリカ微粒子を1重量
部添加する代わりに、粒径0.04μmのシリカ微粒子
を1重量部を越える添加量で添加すること以外は実施例
2と同様にして造粒粉末を得て、これを用いて多孔質母
材を20本作製した。
Using this porous preform, a preform for a single mode optical fiber was prepared in the same manner as in Example 2. The porous preform had a low mechanical strength, so that the degreasing process to the transparent vitrification process was performed. Five pieces were damaged during the handling to be transferred to. Also, three cracks were generated after the transparent vitrification step. (Comparative Example 6) The same as Example 2 except that silica fine particles having a particle size of 0.04 μm were added in an amount of more than 1 part by weight instead of adding 1 part by weight of silica fine particles having a particle size of 0.04 μm. Granulated powder was obtained by using this, and 20 porous base materials were produced using this.

【0033】この多孔質母材を用いて実施例2と同様に
してシングルモード光ファイバ用母材を作製したとこ
ろ、すべて透明ガラス化工程後に多数の気泡が発生して
しまい、シングルモード光ファイバ用母材として使用で
きなかった。
Using this porous preform, a preform for a single mode optical fiber was produced in the same manner as in Example 2. As a result, a large number of bubbles were generated after the transparent vitrification step, and a single mode optical fiber was produced. It could not be used as a base material.

【0034】[0034]

【発明の効果】以上説明した如く本発明の光ファイバ用
多孔質母材の製造方法は、シリカ系粉末に式d≦{(2
/√3)−1}・D(d:微粒子の粒径、D:シリカ系
粉末の粒径)を満足する粒径を有する微粒子を加えて成
形材料を粉末成形法により成形して多孔質母材を得るの
で、優れた機械的強度を有し、しかも高品質である光フ
ァイバ用多孔質母材を得ることができる方法である。こ
れにより、光ファイバの製造の歩留りを向上させること
ができる。
As described above, the method for producing a porous preform for an optical fiber according to the present invention uses silica-based powder of the formula d≤ {(2
/ √3) -1} · D (d: particle size of fine particles, D: particle size of silica-based powder) is added, and a molding material is molded by a powder molding method to form a porous matrix. This is a method of obtaining a porous preform for optical fibers, which has excellent mechanical strength and high quality because a material is obtained. As a result, the production yield of the optical fiber can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】シリカ系粉末に添加するシリカ系微粒子の添加
量の最適範囲を説明するためのグラフ。
FIG. 1 is a graph for explaining the optimum range of the amount of silica-based fine particles added to silica-based powder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 継男 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 吉田 和昭 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutoo Sato 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Kazuaki Yoshida 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリカ系粉末に下記式(I)を満足する粒
径を有する微粒子を加えて成形材料を得る工程と、 前記成形材料を粉末成形法により成形して多孔質母材を
得る工程と、を具備することを特徴とする光ファイバ用
多孔質母材の製造方法。 d≦{(2/√3)−1}・D …(I) (d:微粒子の粒径、D:シリカ系粉末の粒径)
1. A step of obtaining a molding material by adding fine particles having a particle diameter satisfying the following formula (I) to a silica-based powder, and a step of molding the molding material by a powder molding method to obtain a porous base material. And a method for manufacturing a porous preform for optical fibers. d ≦ {(2 / √3) −1} · D (I) (d: particle size of fine particles, D: particle size of silica-based powder)
JP13712094A 1993-11-15 1994-06-20 Production of porous preform for optical fiber Pending JPH082935A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13712094A JPH082935A (en) 1994-06-20 1994-06-20 Production of porous preform for optical fiber
GB9422416A GB2283740B (en) 1993-11-15 1994-11-07 Method of manufacturing a porous preform for an optical fiber
DE4440840A DE4440840C2 (en) 1993-11-15 1994-11-15 Process for producing a porous preform for an optical fiber
US08/698,287 US5711903A (en) 1993-11-15 1996-08-14 Method of manufacturing a porous preform for an optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13712094A JPH082935A (en) 1994-06-20 1994-06-20 Production of porous preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH082935A true JPH082935A (en) 1996-01-09

Family

ID=15191295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13712094A Pending JPH082935A (en) 1993-11-15 1994-06-20 Production of porous preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH082935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9720312B2 (en) 2014-07-04 2017-08-01 Coretronic Corporation Projection screen and manufacturing method of projection screen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9720312B2 (en) 2014-07-04 2017-08-01 Coretronic Corporation Projection screen and manufacturing method of projection screen

Similar Documents

Publication Publication Date Title
US5185020A (en) Method for manufacturing a silica-base material for optical fiber
JP2001072427A (en) Sintered material
US5244485A (en) Method of manufacturing a silica glass preform
US5145510A (en) Silica glass powder and a method for its production and a silica glass body product made thereof
US4883521A (en) Method for the preparation of silica glass
JPH05229839A (en) Production of formed product from quartz based glass
JP2925797B2 (en) Purification method of porous preform for optical fiber
JPS63107827A (en) Method and apparatus for manufacturing glass article
US5919280A (en) Method for fabricating silica glass
JPH082935A (en) Production of porous preform for optical fiber
JP2818707B2 (en) Method for producing quartz glass base material
CN1026576C (en) Method of manufacturing silica glass preform
US5711903A (en) Method of manufacturing a porous preform for an optical fiber
JPS61256937A (en) Production of optical fiber base material
JPH042625A (en) Production of highly homogeneous silica glass
JPH0680436A (en) Production of porous optical fiber preform
JPH05208839A (en) Production of silica-based porous glass form
JPH05294658A (en) Production of quartz-based glass
JPS60108325A (en) Production of glass
JPH0764574B2 (en) Method for manufacturing rod-shaped quartz glass preform
JPH01294548A (en) Production of optical fiber preform
JPH02172835A (en) Production of base material for optical fiber
JPH07157323A (en) Production of stress imparting member of preform for constant polarizing optical fiber
JPH0585758A (en) Manufacture of quartz based glass compact
JPH04124044A (en) Production of quartz-based glass preform