JPH082930A - Forming mold and heating of forming mold - Google Patents

Forming mold and heating of forming mold

Info

Publication number
JPH082930A
JPH082930A JP15522894A JP15522894A JPH082930A JP H082930 A JPH082930 A JP H082930A JP 15522894 A JP15522894 A JP 15522894A JP 15522894 A JP15522894 A JP 15522894A JP H082930 A JPH082930 A JP H082930A
Authority
JP
Japan
Prior art keywords
molding die
heating
temperature
mold
reflecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15522894A
Other languages
Japanese (ja)
Inventor
Masato Nakahama
正人 中濱
Yasuhiro Yoneda
靖弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP15522894A priority Critical patent/JPH082930A/en
Publication of JPH082930A publication Critical patent/JPH082930A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Induction Heating (AREA)

Abstract

PURPOSE:To enable the control of temperature within + or - several deg.C by the heating for several tens seconds or shorter by heating a forming mold from inside in place of the conventional atmospheric heating using a heating furnace. CONSTITUTION:This forming mold 1 has a bottom-closed cylindrical form having a reflection member 2 having a roughness of <=0.5mum on the inner bottom surface and a roughened face 3 having a surface roughness of 0.7-2mum on the inner circumferential surface. Electromagnetic wave is radiated on the reflection member 2 and the reflected wave is absorbed in the roughened surface 3 to heat the forming mold 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加熱軟化したガラス素材
を押圧成形して所望の光学素子を成形する成形型に関
し、特にガラスセルの製造に好適な成形型および成形型
の加熱方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for pressing a heat-softened glass material to mold a desired optical element, and more particularly to a mold suitable for producing glass cells and a method for heating the mold.

【0002】[0002]

【従来の技術】血液のような各種試料や試薬の成分分析
に際しては、ガラス製のセルに試料を入れて、これに光
をあてて分析,測定している。かかるセルの製造方法と
して、例えば特開平1−38055号公報に示されるよ
うな真空加工法が知られている。
2. Description of the Related Art In analyzing the components of various samples such as blood and reagents, a sample is put in a glass cell and light is applied to the sample for analysis and measurement. As a method of manufacturing such a cell, for example, a vacuum processing method as disclosed in JP-A-1-38055 is known.

【0003】同公報では、ガラス製の有底管に内型を挿
入し、有底管と内型との隙間を真空ポンプで吸引しなが
ら、電気炉内部にゆっくりと降下させる。有底管は底部
から開口部に向けて順次軟化され、吸引負圧によって内
型に沿った形状に成形される。
In the publication, an inner mold is inserted into a glass bottomed tube, and a gap between the bottomed tube and the inner mold is sucked by a vacuum pump and slowly lowered into the electric furnace. The bottomed tube is gradually softened from the bottom toward the opening, and is molded into a shape along the inner mold by suction negative pressure.

【0004】[0004]

【発明が解決しようとする課題】ところが、上述の従来
技術では、有底管を底部から開口部に向けてゆっくり加
熱箇所を移動しなければならなかったため、サイクルタ
イムが長時間かかり製造効率が低いという問題点があっ
た。
However, in the above-mentioned prior art, since the bottomed tube has to be moved slowly from the bottom to the opening in the heated portion, the cycle time is long and the manufacturing efficiency is low. There was a problem.

【0005】また、サイクルタイムを短縮する他の方法
として、有底管と成形型とを個別に温度制御して、有底
管より温度の低い外型と内型とを用いて押圧成形するこ
とも考えられるが、内型を加熱炉内の温度より昇温する
と炉内の温度分布が乱れて温度調節が困難になるという
不都合があった。この場合、設定温度から±3℃以上の
差がつくと焼付や割れ,ひけの原因となる。また、この
ように加熱炉を用いた外周雰囲気加熱においては一般に
炉内の雰囲気と型自体の温度安定までに長時間を要する
という問題もあった。
As another method for shortening the cycle time, the bottomed tube and the molding die are individually temperature-controlled, and pressure molding is performed using an outer die and an inner die having a lower temperature than the bottomed tube. However, if the temperature of the inner mold is raised above the temperature in the heating furnace, the temperature distribution in the furnace is disturbed and it becomes difficult to control the temperature. In this case, a difference of ± 3 ° C or more from the set temperature causes seizure, cracking, or sink mark. Further, in the heating of the outer circumference atmosphere using the heating furnace, there is also a problem that it generally takes a long time to stabilize the temperature of the atmosphere inside the furnace and the mold itself.

【0006】本発明は上記問題点に鑑みてなされたもの
で、従来の加熱炉を用いた雰囲気加熱にかえて、成形型
を内部から加熱することにより、数十秒以内の加熱時間
で数℃(好ましくは±3℃)以内に温度制御することが
できる成形型および成形型の加熱方法を提供することを
目的とする。
The present invention has been made in view of the above problems, and by heating the forming die from the inside instead of the conventional atmosphere heating using a heating furnace, the heating time is within several tens of seconds at several degrees Celsius. It is an object of the present invention to provide a mold capable of controlling the temperature within (preferably ± 3 ° C.) and a method for heating the mold.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に請求項1に係る本発明の成形型は、有底管形状の成形
型であって、同成形型の内底面には面粗さ0.5μm以
下の反射部材が設けられるとともに、同成形型の内周側
面は面粗さ0.7μm以上2μm以下の粗面部となって
いることを特徴とする。
In order to achieve the above object, a molding die of the present invention according to claim 1 is a bottomed tube-shaped molding die, and the inner bottom surface of the molding die has surface roughness. A reflecting member having a thickness of 0.5 μm or less is provided, and the inner peripheral side surface of the mold has a rough surface portion having a surface roughness of 0.7 μm or more and 2 μm or less.

【0008】この場合、請求項2に記載したように、前
記反射部材が金属で被覆するとともに、前記粗面部がセ
ラミックまたはサーメットで被覆することが望ましい。
In this case, as described in claim 2, it is preferable that the reflecting member is coated with metal and the rough surface portion is coated with ceramic or cermet.

【0009】さらに、請求項3に記載したように、前記
反射部材の形状は、四角錘,凸曲面,または凹曲面のい
ずれかの形状にしてもよい。
Further, as described in claim 3, the shape of the reflecting member may be any one of a quadrangular pyramid, a convex curved surface and a concave curved surface.

【0010】また、このような成形型を加熱するに際し
ては、請求項4に記載したように、波長0.75μm以
上25μm以下の電磁波を前記反射部材に照射して、こ
の反射波を前記粗面部に吸収させる。
When heating such a mold, as described in claim 4, the reflecting member is irradiated with an electromagnetic wave having a wavelength of 0.75 μm or more and 25 μm or less, and the reflected wave is applied to the rough surface portion. To absorb.

【0011】この場合、請求項5に記載したように、成
形型の温度を熱電対や放射温度計等の温度測定手段で測
定し、測定温度が設定温度より低い場合には前記電磁波
の照射出力を増加し、測定温度が設定温度より高い場合
には成形型に冷却ガスを吹き付けて冷却することで温度
調節を行う。
In this case, as described in claim 5, the temperature of the molding die is measured by a temperature measuring means such as a thermocouple or a radiation thermometer, and when the measured temperature is lower than a set temperature, the irradiation output of the electromagnetic wave. When the measured temperature is higher than the set temperature, the temperature is adjusted by blowing a cooling gas to the mold to cool it.

【0012】[0012]

【作用】上記構成からなる本発明の成形型および成形型
の加熱方法では、0.75〜25μmの電磁波、例えば
高圧水銀ランプ,ネルンストグローブ,グローバ,タン
グステンランプなどの熱線やレーザー光線などを成形型
内底の反射部材で反射させて成形型内周側面の粗面部に
吸収させて成形型を加熱する。
In the molding die and the method for heating the molding die of the present invention having the above-mentioned constitution, an electromagnetic wave of 0.75 to 25 μm, for example, a heat ray or a laser beam of a high pressure mercury lamp, a Nernst globe, a glober, a tungsten lamp or the like is injected into the molding die. The light is reflected by the reflection member on the bottom and absorbed by the rough surface portion on the inner peripheral side surface of the molding die to heat the molding die.

【0013】ここで、電磁波の波長が0.75μm未満
では成形型の内面が破壊されるなど悪影響が生じ、25
μmを越えると熱吸収の効率が低くなって加熱する目的
を達成できない。
Here, if the wavelength of the electromagnetic wave is less than 0.75 μm, the inner surface of the molding die may be destroyed, and adverse effects may occur.
If it exceeds μm, the efficiency of heat absorption becomes low and the purpose of heating cannot be achieved.

【0014】[0014]

【実施例】以下、添付図面を参照して本発明に係る成形
型および成形型の加熱方法の実施例を説明する。なお、
図面の説明において同一の要素には同一符号を付し、重
複する説明を省略する。
Embodiments of the mold and the method for heating the mold according to the present invention will be described below with reference to the accompanying drawings. In addition,
In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

【0015】(実施例1)図1は実施例1の成形型を示
す斜視図である。図において成形型1は全体が四角柱状
で内部が空洞となった有底管となっており、外側の寸法
は底面30×30mm,高さ40mm、内側の空洞は15×
15mm,深さ35mmとなっている。成形型1はタングス
テンカーバイドで形成され、外周側面および外底面は面
粗さRmax0.5μm以下に鏡面加工された後、PV
D,CVD等の手段によって窒化物が被覆されている。
(Embodiment 1) FIG. 1 is a perspective view showing a molding die of Embodiment 1. In the figure, the molding die 1 is a bottomed tube with a quadrangular prism shape and a hollow inside. The outer dimensions are 30 x 30 mm on the bottom, 40 mm in height, and the inner cavity is 15 x.
It has a depth of 15 mm and a depth of 35 mm. The molding die 1 is made of tungsten carbide, and the outer peripheral side surface and the outer bottom surface are mirror-finished to have a surface roughness Rmax of 0.5 μm or less, and then PV.
The nitride is coated by means such as D or CVD.

【0016】成形型1の内底面には反射部材2が設けら
れている。これは成形型1の内底面を面粗さ0.5μm
以下に鏡面加工したあと、金,銀,白金,アルミニウム
などの金属を被覆して鏡面としたものである。そして、
反射部材2は凸四角錘に形成され、成形型1の開口部よ
り入射した電磁波が内周側面3に向けて反射するように
角度設定になっている。反射部材2は凸または凹半球状
に形成してもよい。
A reflecting member 2 is provided on the inner bottom surface of the molding die 1. This has a surface roughness of 0.5 μm on the inner bottom surface of the molding die 1.
After being mirror-finished below, it is mirror-finished by coating a metal such as gold, silver, platinum, or aluminum. And
The reflecting member 2 is formed into a convex quadrangular pyramid, and its angle is set so that the electromagnetic wave incident from the opening of the molding die 1 is reflected toward the inner peripheral side surface 3. The reflecting member 2 may be formed in a convex or concave hemispherical shape.

【0017】成形型1の内周側面は粗面部3となってい
る。具体的には面粗さRmax1.0μm以上に研削加
工したあと、黒色の炭化珪素を被覆して熱吸収率を高め
ている。炭化珪素以外の材料としては、炭化チタン,炭
化クロムなどの耐熱性に優れた炭化物や酸化クロム、さ
らに、サイアロン等のサーメットを用いてもよい。
The inner peripheral side surface of the molding die 1 is a rough surface portion 3. Specifically, after grinding to a surface roughness Rmax of 1.0 μm or more, black silicon carbide is coated to increase the heat absorption rate. As a material other than silicon carbide, a carbide having excellent heat resistance such as titanium carbide or chromium carbide or chromium oxide, or a cermet such as sialon may be used.

【0018】このように構成された成形型の使用方法を
図2を参照して説明する。図において、5は電磁波であ
る赤外線6を発するハロゲンランプであって、接続コー
ド7を介して制御装置8に接続され出力可変に制御され
る。熱電対9は成形型の温度を検出する温度測定手段で
あって、制御装置8に接続されている。4はハロゲンラ
ンプからの赤外線6を反射部材2に向けて集光する反射
鏡である。赤外線6は反射部材2で反射されたあと粗面
部3に到達する。そして黒色かつ粗面の粗面部3に吸収
され、このエネルギーで成形型1が加熱される。冷却装
置10は、成形型1の外周側面を取り囲むように配設さ
れた冷却装置であって、窒素やアルゴン,ヘリウムなど
の非酸化性ガスを噴出する。制御装置8は熱電対9によ
り成形型1の温度を検出し、測定温度が設定温度より低
い場合にはハロゲンランプ5の照射出力を増加し、測定
温度が設定温度より高い場合には成形型1に冷却ガスを
吹き付けて冷却する。
A method of using the molding die thus constructed will be described with reference to FIG. In the figure, reference numeral 5 is a halogen lamp that emits infrared rays 6 which are electromagnetic waves, and is connected to a control device 8 via a connection cord 7 and controlled in a variable output manner. The thermocouple 9 is a temperature measuring means for detecting the temperature of the mold and is connected to the control device 8. Reference numeral 4 is a reflecting mirror that focuses the infrared rays 6 from the halogen lamp toward the reflecting member 2. The infrared rays 6 reach the rough surface portion 3 after being reflected by the reflecting member 2. Then, it is absorbed by the rough surface portion 3 which is black and has a rough surface, and the molding die 1 is heated by this energy. The cooling device 10 is a cooling device arranged so as to surround the outer peripheral side surface of the molding die 1, and ejects a non-oxidizing gas such as nitrogen, argon, or helium. The controller 8 detects the temperature of the mold 1 by the thermocouple 9, increases the irradiation output of the halogen lamp 5 when the measured temperature is lower than the set temperature, and increases the irradiation output of the halogen lamp 5 when the measured temperature is higher than the set temperature. A cooling gas is blown onto the to cool it.

【0019】ここで制御装置8の動作について更に説明
する。制御装置8は、設定温度までの加熱所要時間が最
短になるように演算処理によって最適制御を行う。これ
は具体的にはハロゲンランプ5の出力を設定温度と熱電
対9の検出温度との差の大きさに応じて可変するもの
で、大きな温度差のある加熱開始直後には大出力で速や
かに加熱する一方、設定温度に近づくと出力を絞って大
きなオーバーシュートが生じないようにするものであ
る。さらに冷却ガスの吹付により積極的にオーバーシュ
ートを抑え、設定温度までの所要時間を短縮する。
Now, the operation of the control device 8 will be further described. The control device 8 performs optimum control by arithmetic processing so that the time required for heating to the set temperature is the shortest. Specifically, the output of the halogen lamp 5 is changed according to the size of the difference between the set temperature and the temperature detected by the thermocouple 9. Immediately after the start of heating with a large temperature difference, a large output is output immediately. On the other hand, while heating, when the temperature approaches the set temperature, the output is reduced to prevent a large overshoot. Furthermore, by spraying the cooling gas, the overshoot is positively suppressed and the time required to reach the set temperature is shortened.

【0020】成形型の温度制御に際しては一般に、ガラ
スが焼き付かず、しかも割れが生じないとされる、ガラ
ス転移点マイナス150℃から転移点プラス20℃の範
囲の温度を選択するが、本実施例で転移点温度560℃
のホウケイ酸ガラスを用いたところ、型を530℃に設
定するのが最適であった。そして上記構成では設定温度
530℃に対して±3℃以内の温度誤差におさめること
ができた。しかもそのための所要時間はわずか数十秒
で、加熱炉による外周雰囲気加熱で少なくとも1分間以
上かかるのに対して、大幅に加熱時間を短縮することが
できた。
In controlling the temperature of the molding die, generally, a temperature within the range of glass transition point minus 150 ° C. to transition point plus 20 ° C. is selected, which is considered not to cause glass seizure and cracking. For example, transition temperature 560 ℃
When the borosilicate glass of No. 3 was used, it was optimum to set the mold at 530 ° C. With the above configuration, it was possible to reduce the temperature error within ± 3 ° C with respect to the set temperature of 530 ° C. Moreover, the time required for this is only several tens of seconds, and it takes at least 1 minute to heat the outer peripheral atmosphere by the heating furnace, while the heating time can be greatly shortened.

【0021】(実施例2)次に、本発明の別例を図3に
ついて説明すると、この実施例の反射部材2は成形型1
自体の内底面を鏡面加工したものではなく、別体の反射
部材を取付けた点において前記実施例とは異なってい
る。
(Embodiment 2) Next, another example of the present invention will be described with reference to FIG.
It differs from the above embodiment in that the inner bottom surface of itself is not mirror-finished, but a separate reflecting member is attached.

【0022】成形型1の寸法は、外側は底面5×5mm,
高さ40mm、内側の空洞は2×2mm,深さ35mmとなっ
ている。このように内側が小さく内底面を加工するのが
困難なため、別体の反射部材11を取付けた。反射部材
11はタングステンカーバイドで形成されたもので、凸
状の曲面をなす上面は面粗さRmax0.5μm以下に
鏡面加工された後、白金により被覆されている。
The outer shape of the molding die 1 is 5 × 5 mm on the outside,
The height is 40 mm, the inner cavity is 2 × 2 mm, and the depth is 35 mm. As described above, since the inner side is small and it is difficult to process the inner bottom surface, a separate reflecting member 11 is attached. The reflecting member 11 is made of tungsten carbide, and the upper surface of the convex curved surface is mirror-finished to have a surface roughness Rmax of 0.5 μm or less and then coated with platinum.

【0023】本実施例では、ハロゲンランプに代えて、
炭酸ガスレーザまたはYAGレーザなどのレーザ光12
を用いた。レーザ光は成形型1の開口から内底面に向け
て照射され、反射部材11で反射して内周側面の粗面部
3に吸収される。レーザ発振器は実施例1と同様に制御
装置によって出力を制御される。
In this embodiment, instead of the halogen lamp,
Laser light such as carbon dioxide laser or YAG laser 12
Was used. The laser light is emitted from the opening of the molding die 1 toward the inner bottom surface, is reflected by the reflecting member 11, and is absorbed by the rough surface portion 3 on the inner peripheral side surface. The output of the laser oscillator is controlled by the controller as in the first embodiment.

【0024】このように反射部材を別体にすれば、小さ
な内径の成形型にも適用可能である。
By thus forming the reflecting member separately, it can be applied to a molding die having a small inner diameter.

【0025】なお、本発明は上記実施例に限定されるも
のではなく、特に反射部材の形状については様々な変形
が可能である。
The present invention is not limited to the above embodiment, and various modifications can be made especially to the shape of the reflecting member.

【0026】(1)図4(a)では、反射部材11を石
英板にて構成し、微小な四角錘を縦横に配列した形状と
した。これにより入射した電磁波は乱反射するので、内
周側面全体が均一に加熱される。また、同図(b)に示
すような微小凸形状曲面や、(c)に示すような微小凹
形状曲面を並べた例でも同様な効果が得られる。
(1) In FIG. 4 (a), the reflecting member 11 is made of a quartz plate, and the minute quadrangular pyramids are arranged vertically and horizontally. As a result, the incident electromagnetic wave is diffusely reflected, so that the entire inner peripheral side surface is uniformly heated. Further, the same effect can be obtained in an example in which minute convex curved surfaces as shown in FIG. 9B and minute concave curved surfaces as shown in FIG.

【0027】(2)反射部材11は平面であってもよ
い。ただしこの場合には反射した電磁波が内周側面の各
面に到達するように、成形型の中心軸から偏心した位置
に光源を設けて、斜めに電磁波を入射させる必要があ
る。この場合には光源を4つ設けるか、あるいは成形型
の中心軸上に光源を配設しその周囲4箇所に反射鏡を設
けるなど若干構成が複雑になる反面、各側面内における
照射量分布を均一化することができる。
(2) The reflecting member 11 may be flat. However, in this case, it is necessary to provide a light source at a position eccentric from the center axis of the molding die so that the reflected electromagnetic waves reach each surface of the inner peripheral side surface and allow the electromagnetic waves to enter obliquely. In this case, four light sources are provided, or the light sources are arranged on the central axis of the molding die and reflecting mirrors are provided at four places around the molding die, but the configuration is slightly complicated. It can be made uniform.

【0028】[0028]

【発明の効果】以上説明したように本発明の成形型およ
び成形型の加熱方法によれば、従来の加熱炉を用いた外
周雰囲気加熱とは異なり、成形型を内部から加熱するこ
とにしたので、設定温度に対して±数℃以内の温度に、
わずか数十秒以内の加熱時間で加熱することができる。
As described above, according to the molding die and the method for heating the molding die of the present invention, the molding die is heated from the inside unlike the conventional atmosphere heating using the heating furnace. , To a temperature within ± a few degrees of the set temperature,
It can be heated in a heating time of only several tens of seconds.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による成形型を示す斜視図で
ある。
FIG. 1 is a perspective view showing a molding die according to a first embodiment of the present invention.

【図2】本発明の実施例1による成形型の加熱方法を示
す断面図である。
FIG. 2 is a cross-sectional view showing a method for heating a molding die according to Example 1 of the present invention.

【図3】本発明の実施例2による成形型の加熱方法を示
す断面図である。
FIG. 3 is a sectional view showing a method for heating a molding die according to Example 2 of the present invention.

【図4】本発明の反射部材の変形例を示す斜視図であ
る。
FIG. 4 is a perspective view showing a modified example of the reflection member of the present invention.

【符号の説明】 1 成形型 2 反射部材 3 粗面部 4 反射鏡 5 ハロゲンランプ 6 赤外線(電磁波) 7 接続コード 8 制御装置 9 熱電対 10 冷却装置 11 反射部材 12 レーザ光[Explanation of Codes] 1 Mold 2 Reflective member 3 Rough surface part 4 Reflector 5 Halogen lamp 6 Infrared (electromagnetic wave) 7 Connection code 8 Control device 9 Thermocouple 10 Cooling device 11 Reflecting member 12 Laser light

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有底管形状の成形型であって、同成形型
の内底面には面粗さ0.5μm以下の反射部材が設けら
れるとともに、同成形型の内周側面は面粗さ0.7μm
以上2μm以下の粗面部となっていることを特徴とする
成形型。
1. A bottomed tube-shaped molding die, wherein a reflection member having a surface roughness of 0.5 μm or less is provided on an inner bottom surface of the molding die, and an inner peripheral side surface of the molding die has a surface roughness. 0.7 μm
A molding die having a rough surface portion of 2 μm or less.
【請求項2】 前記反射部材が金属で被覆されていると
ともに、前記粗面部がセラミックまたはサーメットで被
覆されていることを特徴とする請求項1記載の成形型。
2. The mold according to claim 1, wherein the reflecting member is coated with a metal, and the rough surface portion is coated with a ceramic or a cermet.
【請求項3】 前記反射部材の形状が、四角錘,凸曲
面,または凹曲面のいずれかの形状になっていることを
特徴とする請求項1又は2記載の成形型。
3. The mold according to claim 1, wherein the shape of the reflecting member is any one of a quadrangular pyramid, a convex curved surface, and a concave curved surface.
【請求項4】 請求項1記載の成形型を加熱する方法で
あって、波長0.75μm以上25μm以下の電磁波を
前記反射部材に照射して、この反射波を前記粗面部に吸
収させることを特徴とする成形型の加熱方法。
4. The method for heating a molding die according to claim 1, wherein the reflecting member is irradiated with an electromagnetic wave having a wavelength of 0.75 μm or more and 25 μm or less, and the reflected wave is absorbed by the rough surface portion. A method for heating a molding die characterized.
【請求項5】 成形型の温度を熱電対等の温度測定手段
で測定し、測定温度が設定温度より低い場合には前記電
磁波の照射出力を増加し、測定温度が設定温度より高い
場合には成形型に冷却ガスを吹き付けて冷却する請求項
4記載の成形型の加熱方法。
5. The temperature of the mold is measured by a temperature measuring means such as a thermocouple, and when the measured temperature is lower than the set temperature, the irradiation output of the electromagnetic wave is increased, and when the measured temperature is higher than the set temperature, the molding is performed. The method for heating a molding die according to claim 4, wherein the mold is cooled by spraying a cooling gas.
JP15522894A 1994-06-14 1994-06-14 Forming mold and heating of forming mold Withdrawn JPH082930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15522894A JPH082930A (en) 1994-06-14 1994-06-14 Forming mold and heating of forming mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15522894A JPH082930A (en) 1994-06-14 1994-06-14 Forming mold and heating of forming mold

Publications (1)

Publication Number Publication Date
JPH082930A true JPH082930A (en) 1996-01-09

Family

ID=15601332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15522894A Withdrawn JPH082930A (en) 1994-06-14 1994-06-14 Forming mold and heating of forming mold

Country Status (1)

Country Link
JP (1) JPH082930A (en)

Similar Documents

Publication Publication Date Title
JP4948701B2 (en) Heating apparatus, heat treatment apparatus having the heating apparatus, and heat treatment control method
US6437290B1 (en) Heat treatment apparatus having a thin light-transmitting window
Roozeboom et al. Rapid thermal processing systems: A review with emphasis on temperature control
US6860634B2 (en) Temperature measuring method, heat treating device and method, computer program, and radiation thermometer
US6825615B2 (en) Lamp having a high-reflectance film for improving directivity of light and heat treatment apparatus having such a lamp
EP0612862A1 (en) Measuring wafer temperatures
JP2005208330A (en) Formed optical component with holder and manufacturing method therefor
KR100970013B1 (en) Heat treating device
JP2018521950A (en) Glass protrusions and laser-induced growth on glass articles
JPH082930A (en) Forming mold and heating of forming mold
US20020041620A1 (en) Thermal process apparatus for a semiconductor substrate
JPH09257374A (en) Infrared heating furnace and thermodilatometer
JP2002064069A (en) Heat treatment device
JPH04297581A (en) Photochemical vapor growth device
JP3884173B2 (en) Substrate processing apparatus and substrate processing method
JP2002012432A (en) Device for molding glass optical element
JPS6032126Y2 (en) Single crystal manufacturing equipment
JP2003157807A (en) Infrared emission lamp used for sensor of gas, concentration detector or the like
JP2009085795A (en) Measuring method of reflectivity or transmittance of electromagnetic wave at high temperature
JP2014170792A (en) Heating apparatus
JPS6341412B2 (en)
JP2507905Y2 (en) Radiation introduction heating device
JPH11160146A (en) Infrared ray detecting element and manufacture of the same
JPH04187533A (en) Method for forming glass optical element
JP3910713B2 (en) Method and apparatus for heating optical element mold

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904