JPH08292374A - Liquid immersion microscope objective lens - Google Patents

Liquid immersion microscope objective lens

Info

Publication number
JPH08292374A
JPH08292374A JP7100875A JP10087595A JPH08292374A JP H08292374 A JPH08292374 A JP H08292374A JP 7100875 A JP7100875 A JP 7100875A JP 10087595 A JP10087595 A JP 10087595A JP H08292374 A JPH08292374 A JP H08292374A
Authority
JP
Japan
Prior art keywords
lens
object side
cemented
objective lens
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7100875A
Other languages
Japanese (ja)
Inventor
Katsuyuki Abe
阿部勝行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7100875A priority Critical patent/JPH08292374A/en
Publication of JPH08292374A publication Critical patent/JPH08292374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE: To provide a liquid immersion microscope objective lens for which a magnification is set about from 40 times to 60 times, operating distance is comparatively long, the flatness of an image is improved as well, the number of openings is large about from 0.8 to 0.95 and the diameter of an objective lens top end is made fine ans sharp while maintaining satisfactory image formation performance. CONSTITUTION: This objective lens is composed of a 1st lens group G1 of positive refracting power, which is arranged on the most-object side and provided with the joint lens of a positive lens component and a meniscus lens component turning its concave surface toward the object side, and a 2nd lens group G2 of negative refracting power and satisfies the conditions as follows; d2 <|r2 |<4.5F and |r1 /F|>7. In this case, F is the focal distance of an entire system, r1 and r2 are the curvature radius of the lens surface on the most-object side of the joint lens and the curvature radius of a joint surface, and d2 is the central thickness of the meniscus lens component arranged on the image side of the joint lens.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液浸系顕微鏡対物レン
ズに関し、特に、倍率が40倍〜60倍程度、開口数が
0.8〜0.95程度で、優れた結像性能を維持しなが
らも、比較的大きな作動距離を有する液浸系顕微鏡対物
レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immersion microscope objective lens, and in particular, it has a magnifying power of 40 to 60 times and a numerical aperture of 0.8 to 0.95 and maintains excellent imaging performance. However, it relates to an immersion microscope objective lens having a relatively large working distance.

【0002】[0002]

【従来の技術】液浸系顕微鏡対物レンズ、特に、油浸液
を用いた高開口数の顕微鏡対物レンズについては、従来
より多くの提案がなされている。例えば、特開平6−1
60720号のものは、倍率が40倍程度で、開口数が
1.0程度、特開昭54−79053号のものは、倍率
が100倍で、開口数が1.25程度であり、共にアポ
クロマート級に収差補正がなされた液浸系顕微鏡対物レ
ンズを構成する技術が開示されている。これらの技術に
共通する点としては、像の平坦性を確保するために、最
も物体側に平凸レンズと物体側に強い凹面を向けたメニ
スカスレンズとの接合レンズを有することがあげられ
る。
2. Description of the Related Art Many proposals have been made in the past for an immersion microscope objective lens, especially for a high numerical aperture microscope objective lens using an oil immersion liquid. For example, Japanese Patent Laid-Open No. 6-1
No. 60720 has a magnification of about 40 times and a numerical aperture of about 1.0, and JP-A No. 54-79053 has a magnification of 100 times and a numerical aperture of about 1.25, both of which are apochromat. There is disclosed a technique for forming an immersion microscope objective lens in which aberration correction is performed in a class. The common point of these techniques is to have a cemented lens of a plano-convex lens closest to the object side and a meniscus lens having a strong concave surface toward the object side in order to secure the flatness of the image.

【0003】一方、水溶液中の試料を観察するために、
対物レンズの先端部分を直接水溶液中に浸す、いわゆる
水浸対物レンズとして、実開平3−31712号、独国
実用新案第930353.7号に開示された技術が知ら
れている。また、特開昭60−260016号に開示さ
れた技術には、乾燥系対物レンズで比較的作動距離が長
い場合、平行平面板を対物レンズの先端に防水ガラスと
して装着あるいは組み込んで、水溶液中の試料を観察す
ることができると付記されている。
On the other hand, in order to observe a sample in an aqueous solution,
As a so-called water immersion objective lens in which the tip portion of the objective lens is directly immersed in an aqueous solution, the technique disclosed in Japanese Utility Model Laid-Open No. 3-31712 and German Utility Model No. 930353.7 is known. Further, in the technique disclosed in Japanese Patent Laid-Open No. 60-260016, when a dry objective lens has a relatively long working distance, a parallel flat plate is attached or incorporated as a waterproof glass at the tip of the objective lens to obtain a solution in an aqueous solution. It is noted that the sample can be observed.

【0004】[0004]

【発明が解決しようとする課題】近年、生物学の分野で
は、従来の細胞の形態観察から細胞間の情報伝達機構を
調べることに主眼が移りつつある。それに伴い、顕微鏡
及び対物レンズの高性能化に対するニーズも拡大してき
ている。例えば、直径数μm程度の微小なガラス電極を
細胞膜表面に密着させて、細胞内、細胞間の情報伝達に
重要な役割を担っている細胞膜のイオンチャンネルの電
気的特性を調べる、パッチクランプ法と呼ばれる手法が
最近多く用いられている。このパッチクランプ法を正立
型の顕微鏡で行おうとする場合、細胞は生体内に近い状
態を保ため、培養液中に置かれていることが多く、その
場合、培養液表面のゆらぎにより微小ガラス電極の操作
が困難になるため、一般には、培養液中に直接対物レン
ズを浸す水浸対物レンズを用いて培養液表面のゆらぎの
影響を排除している。
In recent years, in the field of biology, the focus is shifting from the conventional cell morphological observation to the investigation of the information transmission mechanism between cells. Along with this, needs for higher performance of microscopes and objective lenses are also expanding. For example, a patch clamp method, in which a minute glass electrode with a diameter of about several μm is brought into close contact with the cell membrane surface to examine the electrical characteristics of the ion channel of the cell membrane, which plays an important role in intracellular and intercellular information transmission The so-called method has been widely used recently. When attempting to perform this patch clamp method with an upright microscope, cells are often placed in a culture solution in order to maintain a state close to that in the living body. Since it is difficult to operate the electrodes, the influence of fluctuations on the surface of the culture solution is generally eliminated by using a water immersion objective lens in which the objective lens is directly immersed in the culture solution.

【0005】次に、水浸対物レンズを用いる場合、図1
に示すように、対物レンズ1と培養液3中の試料2の
間、すなわち、対物レンズ1の作動距離によりできる空
間に微小ガラス電極4を挿入して行き、細胞膜表面に密
着させて行くが、このときの微小ガラス電極4の操作性
を良くするために、対物レンズ1には、作動距離が長
く、先端の径はできる限り細くかつ尖鋭化すること、さ
らに、細胞膜表面をより広範囲で明瞭に観察するために
高開口数を有し、像の平坦性も良いことが望まれてい
る。また、対物レンズ1の倍率は、観察対象2の細胞の
大きさにより、40倍〜60倍程度を有することが望ま
しい。
Next, when a water immersion objective lens is used, as shown in FIG.
As shown in, the micro glass electrode 4 is inserted between the objective lens 1 and the sample 2 in the culture medium 3, that is, in the space formed by the working distance of the objective lens 1 and is brought into close contact with the cell membrane surface. In order to improve the operability of the fine glass electrode 4 at this time, the objective lens 1 should have a long working distance, the tip should be as thin and sharp as possible, and the cell membrane surface should be made wider and clearer. It is desired to have a high numerical aperture for observation and to have good image flatness. The magnification of the objective lens 1 is preferably about 40 to 60 times, depending on the size of the cell of the observation target 2.

【0006】しかしながら、前記の特開平6−1607
20号、特開昭54−79053号に開示された技術
は、それぞれ、40倍で開口数1.0、100倍で開口
数1.25と高開口数を有しているが、その代わり、作
動距離が非常に短く、対物レンズ先端の径も太いため、
上記のような微小ガラス電極の試料への挿入はほぼ不可
能と言わざるを得ない。
However, the above-mentioned Japanese Patent Laid-Open No. 6-1607.
The techniques disclosed in JP-A No. 20 and JP-A-54-79053 have a high numerical aperture of 1.0 and a numerical aperture of 1.25 and 40, respectively. Since the working distance is very short and the diameter of the tip of the objective lens is large,
It must be said that it is almost impossible to insert the micro glass electrode into the sample as described above.

【0007】次に、実開平3−31712号、独国実用
新案第930353.7号のものは、後記する本発明と
ほぼ同じ目的、すなわち、パッチクランプ法を正立型の
顕微鏡で行う場合に用いられる水浸顕微鏡対物レンズに
関する技術であるが、実開平3−31712号のもの
は、主に、培養液等により生ずるレンズ表面の変質や損
傷に対して、安価な先端部材の交換によって光学性能を
再現することに関する技術であり、また、独国実用新案
第930353.7号のものは、対物レンズ鏡枠部分が
培養液中の酸や塩により腐食されるのを防ぐために、対
物レンズ鏡枠部分を外側より樹脂で覆うことに関する技
術である。
Next, Japanese Utility Model Application No. 3-31712 and German Utility Model No. 930353.7 have almost the same purpose as that of the present invention described later, that is, when the patch clamp method is performed by an upright microscope. Regarding the technology of the water immersion microscope objective lens used, the one of Jitsukaihei 3-31712 is mainly used for the optical performance by the replacement of the inexpensive tip member against the alteration or damage of the lens surface caused by the culture solution or the like. In order to prevent the objective lens barrel part from being corroded by the acid or salt in the culture solution, the objective lens barrel This is a technique related to covering a portion with resin from the outside.

【0008】したがって、これらの技術では、微小ガラ
ス電極の操作性を良くするために、最近要望が高まって
きている、作動距離を長くし、また、先端の径はできる
限り細くかつ尖鋭化し、さらには、高開口数を有し、像
の平坦性も良いといった液浸系顕微鏡対物レンズを構成
することはできない。また、特開昭60−260016
号のものに付記されているように、乾燥系の対物レンズ
で比較的作動距離が長い場合に、平行平面板を対物レン
ズの先端に防水ガラスとして装着あるいは組み込んで水
溶液中の試料を観察することはできるが、この技術で
は、開口数が0.55と小さく、解像力が十分とは言え
ない。仮に、開口数を0.55より大きくできたとして
も、防水ガラスと対物レンズ第1面の間に空気層が介在
することにより、試料からレンズ第1面まで全て液体で
満たされている場合に比べて、軸上開口光線のレンズ第
1面への入射角が液体の屈折率の分、具体的に液体が水
の場合には約1.33倍、油浸液の場合は約1.52倍
程度と大きくなり、対物レンズ先端の径を細くかつ尖鋭
化することができない。
[0008] Therefore, in these techniques, in order to improve the operability of the micro glass electrode, the demand has recently been increased, the working distance is increased, and the tip diameter is made as thin and sharp as possible. Cannot have an immersion microscope objective lens having a high numerical aperture and a good image flatness. In addition, JP-A-60-260016
As described in No. 1), when a dry objective lens has a relatively long working distance, a parallel plane plate is attached or incorporated as a waterproof glass at the tip of the objective lens to observe a sample in an aqueous solution. However, with this technique, the numerical aperture is as small as 0.55 and the resolution cannot be said to be sufficient. Even if the numerical aperture can be made larger than 0.55, if the air layer is interposed between the waterproof glass and the first surface of the objective lens, the sample to the first surface of the lens are all filled with the liquid. In comparison, the angle of incidence of the axial aperture ray on the first surface of the lens is equal to the refractive index of the liquid, specifically about 1.33 times when the liquid is water, and about 1.52 when the liquid is an oil immersion liquid. It is about twice as large, and the diameter of the tip of the objective lens cannot be made thin and sharp.

【0009】本発明は従来技術のこのような状況に鑑み
てなされたものであり、その目的は、倍率が40倍〜6
0倍程度で、作動距離が比較的長く、像の平坦性も良
く、さらには、開口数が0.8〜0.95程度と大き
く、優れた結像性能を維持しながらも、対物レンズ先端
の径が細くかつ尖鋭化された液浸系顕微鏡対物レンズを
提供することである。
The present invention has been made in view of such a situation of the prior art, and its object is to increase the magnification from 40 times to 6 times.
About 0 times, the working distance is relatively long, the flatness of the image is good, and the numerical aperture is as large as 0.8 to 0.95. An object of the present invention is to provide an immersion microscope objective lens having a small diameter and a sharpened diameter.

【0010】[0010]

【課題を解決するための手段】上記目的を達成する本発
明の液浸系顕微鏡対物レンズは、物体側から順に、最も
物体側に配置され、正レンズ成分と物体側に凹面を向け
たメニスカスレンズ成分との接合レンズを有する正屈折
力の第1レンズ群と、負屈折力の第2レンズ群とから構
成され、以下の条件を満足することを特徴とするもので
ある。 (1) d2 <|r2 |<4.5F (2) |r1 /F|>7 ただし、Fは全系の焦点距離、r1 、r2 はそれぞれ前
記接合レンズの最も物体側のレンズ面の曲率半径、接合
面の曲率半径、d2 は前記接合レンズの像側に配置され
たメニスカスレンズ成分の中心肉厚である。
An immersion microscope objective according to the present invention that achieves the above object is a meniscus lens having a positive lens component and a concave surface facing the object side, which are arranged in order from the object side to the most object side. The first lens group having a positive refracting power and a second lens group having a negative refracting power, each of which has a cemented lens with a component, are characterized by satisfying the following conditions. (1) d 2 <| r 2 | <4.5F (2) | r 1 / F |> 7 where F is the focal length of the entire system and r 1 and r 2 are the most object side of the cemented lens. The radius of curvature of the lens surface, the radius of curvature of the cemented surface, and d 2 are the central thicknesses of the meniscus lens components arranged on the image side of the cemented lens.

【0011】この場合、さらに下記の条件を満足するこ
とが望ましい。 (3) 0.8<d0 /d1 <5 (4) n2 −n1 >0.1 ただし、d0 は物体面からレンズ第1面までの距離、d
1 は前記接合レンズの物体側に配置された正レンズ成分
の中心肉厚、n1 、n2 はそれぞれ前記接合レンズの物
体側に配置された正レンズ成分の屈折率、像側に配置さ
れたメニスカスレンズ成分の屈折率である。
In this case, it is desirable that the following condition is further satisfied. (3) 0.8 <d 0 / d 1 <5 (4) n 2 −n 1 > 0.1 where d 0 is the distance from the object plane to the first lens surface, d
1 is the center wall thickness of the positive lens component arranged on the object side of the cemented lens, n 1 and n 2 are the refractive indices of the positive lens component arranged on the object side of the cemented lens, and are arranged on the image side. It is the refractive index of the meniscus lens component.

【0012】さらに、前記接合レンズは、物体面から該
接合レンズへ入射する軸上開口光線の方向に傾斜した面
取り部分を有することが望ましい。
Further, it is preferable that the cemented lens has a chamfered portion which is inclined in a direction of an axial aperture ray incident on the cemented lens from the object surface.

【0013】[0013]

【作用】以下、本発明において上記構成を採用した理由
と作用について説明する。本発明の液浸系顕微鏡対物レ
ンズにおいて、正屈折力の第1レンズ群は、最も物体側
に配置され、直接液体に浸される正レンズ成分と物体側
に凹面を向けたメニスカスレンズ成分との接合レンズに
より、球面収差、像面湾曲等の発生量とこの接合レンズ
を射出する軸上開口光線の光線角度、光線高を低く抑え
ることをバランスさせながら、光束を第2レンズ群へと
導くようになっている。第2レンズ群は、その負屈折力
により、第1レンズ群で補正不足となっている球面収
差、像面湾曲、コマ収差を補正すると同時に、対物レン
ズの全長を所定の値、いわゆる同焦距離に保つ役割を果
たしている。一般に、対物レンズの設計においては、長
作動距離、高開口数を維持することと、対物レンズ先端
の径を細くかつ尖鋭化させることとは相反することであ
るが、本発明においては、これら第1、第2レンズ群の
各機能により、対物レンズ全体として良好な結像性能を
維持しながらも、対物レンズ先端の径が細くかつ尖鋭さ
れた液浸系顕微鏡対物レンズを構成している。
The reason why the above structure is adopted and the operation thereof will be described below. In the immersion microscope objective lens of the present invention, the first lens group having a positive refractive power is disposed on the most object side, and includes a positive lens component directly immersed in the liquid and a meniscus lens component having a concave surface facing the object side. With the cemented lens, the luminous flux is guided to the second lens group while balancing the occurrence of spherical aberration, field curvature, etc. with the ray angle of the axial aperture ray emerging from this cemented lens and keeping the ray height low. It has become. The second lens group corrects spherical aberration, field curvature, and coma that are undercorrected in the first lens group due to its negative refracting power, and at the same time, makes the entire length of the objective lens a predetermined value, that is, the so-called parfocal distance. Plays a role in keeping in. Generally, in the design of an objective lens, maintaining a long working distance and a high numerical aperture is contradictory to making the diameter of the tip of the objective lens thin and sharp, but in the present invention, these The functions of the first and second lens groups constitute an immersion microscope objective lens having a sharp and sharp tip diameter of the objective lens while maintaining good imaging performance as the entire objective lens.

【0014】以下、各条件式について説明する。条件式
(1)は、前記第1レンズ群中の最も物体側に配置され
た正レンズ成分と物体側に凹面を向けたメニスカスレン
ズ成分との接合面の曲率半径を定めたもので、球面収
差、像面湾曲、コマ収差の補正に関して設けられた条件
である。この条件式の下限のd2 を外れると、この接合
面の曲率半径がきつくなり、その接合面での負屈折力が
大きくなって、像面湾曲の補正には有利であるが、物体
からの光束を収斂する作用が弱くなり、この接合レンズ
を射出する軸上開口光線の光線角度、光線高を低く抑え
ることができなくなるばかりか、光線高が高くなること
により高次の球面収差が発生し、第2レンズ群では補正
しきれなくなる。このとき、軸上開口光線の光線角度、
光線高を低く抑えることは、作動距離を短くすれば可能
であるが、長作動距離の維持をも目的とした本発明にお
いては、適切な手段とは言えない。他方、この条件式の
上限の4.5Fを越えると、その接合面の曲率半径が緩
くなり、この接合レンズを射出する軸上開口光線の光線
角度、光線高を低く抑えることはできるが、像面湾曲が
大きく補正不足となってしまう。これを第2レンズ群で
補正しようとすると、第2レンズ群中に強い負屈折力面
を設けざるを得ないが、この強い負屈折力面により高次
の球面収差、コマ収差が発生し、対物レンズ全体として
良好な結像性能を維持することができなくなる。
Each conditional expression will be described below. Conditional expression (1) defines the radius of curvature of the cemented surface between the positive lens component arranged closest to the object side in the first lens unit and the meniscus lens component having a concave surface facing the object side, and the spherical aberration These are conditions provided for correction of field curvature and coma. If the lower limit d 2 of this conditional expression is not satisfied, the radius of curvature of this cemented surface becomes tight and the negative refractive power at that cemented surface becomes large, which is advantageous for correction of field curvature, but The effect of converging the light flux becomes weaker, and it is not possible to keep the ray angle and height of the axial aperture ray exiting this cemented lens low, but also the higher ray height causes higher-order spherical aberration. , The second lens group cannot be completely corrected. At this time, the ray angle of the on-axis aperture ray,
Although it is possible to suppress the ray height to a low level by shortening the working distance, it cannot be said to be an appropriate means in the present invention which also aims at maintaining a long working distance. On the other hand, when the upper limit of 4.5F in this conditional expression is exceeded, the radius of curvature of the cemented surface becomes gentle, and the ray angle and ray height of the axial aperture ray emerging from this cemented lens can be suppressed to a low level, but the image The surface curvature is large and the correction is insufficient. In order to correct this with the second lens group, a strong negative refractive power surface must be provided in the second lens group, but due to this strong negative refractive power surface, high-order spherical aberration and coma aberration occur, It becomes impossible to maintain good imaging performance as the entire objective lens.

【0015】条件式(2)は、前記第1レンズ群中の最
も物体側に配置された接合レンズの中、最も物体側にあ
り、直接液体に浸されるレンズ第1面の曲率半径を定め
たものである。レンズ第1面の曲率半径が負の場合に
は、この接合レンズがメニスカスレンズとなり、球面収
差、像面湾曲の補正にとって好ましいが、この条件の下
限の7を外れると、この接合レンズを射出する軸上開口
光線の光線角度、光線高を低く抑えることができなくな
る。無理に光線角度、光線高を低く抑えようとすると、
条件(1)式の下限を外れる場合と同様に、作動距離が
極端に短くなり好ましくない。レンズ第1面の曲率半径
が正の場合には、この接合レンズが両凸レンズとなり、
収斂作用が強くなるので、この接合レンズを射出する軸
上開口光線の光線角度、光線高を低く抑えることはでき
る。しかし、この条件の下限の7を越えて収斂作用が強
くなりすぎると、像面湾曲だけでなく球面収差、コマ収
差が大きく補正不足となり、第2レンズ群では補正しき
れなくなる。さらには、レンズ第1面の曲率半径がその
正負に係わらず、この条件の下限を外れた値の曲率半径
を有すると、浸液がレンズ周辺部分に入り込むことによ
り、拭き取れなくなったり、空気が入り込む可能性が高
くなる等の操作上の不具合が生じてしまう。
Conditional expression (2) defines the radius of curvature of the first surface of the lens which is closest to the object side among the cemented lenses arranged closest to the object side in the first lens group and which is directly immersed in the liquid. It is a thing. When the radius of curvature of the first lens surface is negative, this cemented lens becomes a meniscus lens, which is preferable for correction of spherical aberration and field curvature. However, when the lower limit of 7 of these conditions is not satisfied, this cemented lens is emitted. It becomes impossible to keep the ray angle and ray height of the axial aperture ray low. If you try to force the ray angle and ray height low,
As in the case where the lower limit of the condition (1) is not satisfied, the working distance becomes extremely short, which is not preferable. When the radius of curvature of the first lens surface is positive, this cemented lens becomes a biconvex lens,
Since the converging action becomes strong, the ray angle and the ray height of the axial aperture ray emerging from this cemented lens can be kept low. However, if the converging action becomes too strong beyond the lower limit of 7 of this condition, not only the field curvature but also the spherical aberration and the coma will be largely undercorrected, and the second lens group will not be able to fully correct. Further, regardless of whether the radius of curvature of the first surface of the lens is positive or negative, if the radius of curvature is out of the lower limit of this condition, the immersion liquid will enter the peripheral portion of the lens and will not be wiped off or air will enter. Operational problems such as a higher possibility will occur.

【0016】さらに、本発明において、より良好に収差
補正を行うために、条件式(3)、(4)を満たすこと
が望ましい。条件式(3)は、物体面からレンズ第1面
までの距離、すなわち、作動距離と第1レンズ群中の最
も物体側に配置された接合レンズの物体側に配置された
正レンズ成分の中心肉厚との比を定めたもので、この条
件の下限の0.8を外れると、上記正レンズ成分の中心
肉厚が相対的に厚くなりすぎ、軸上開口光線の光線角
度、光線高を低く抑えることができなくなる。他方、こ
の条件の上限の5を越えると、上記正レンズ成分の中心
肉厚が薄くなり、油浸顕微鏡対物レンズの先玉接合レン
ズによく用いられる、いわゆる埋め込みレンズの形状に
近くなり、加工上多大なコストアップを免れない。
Further, in the present invention, it is desirable to satisfy the conditional expressions (3) and (4) in order to perform the aberration correction better. Conditional expression (3) is the distance from the object surface to the first lens surface, that is, the working distance and the center of the positive lens component arranged on the object side of the cemented lens arranged on the most object side in the first lens group. The ratio to the wall thickness is determined. If the lower limit of 0.8 of this condition is not satisfied, the center wall thickness of the positive lens component becomes relatively thick, and the ray angle of the axial aperture ray and the ray height are It cannot be kept low. On the other hand, when the upper limit of 5 to this condition is exceeded, the center thickness of the positive lens component becomes thin, and the shape becomes close to the so-called embedded lens shape that is often used for a front lens cemented lens of an oil immersion microscope objective lens. There is an unavoidable increase in costs.

【0017】条件式(4)は、第1レンズ群中の最も物
体側に配置された接合レンズの物体側に配置された正レ
ンズ成分の屈折率と像側に配置されたメニスカスレンズ
成分の屈折率の関係を定めたものであり、像面湾曲の補
正に関するものである。この条件式の下限である0.1
を外れると、この接合レンズの接合面での発散力が弱く
なるため、像面湾曲が大きく補正不足となり、条件式
(1)の上限を越える場合と同様な理由により、第2レ
ンズ群では補正しきれなくなる。
Conditional expression (4) is defined by the refractive index of the positive lens component arranged on the object side of the cemented lens arranged on the most object side in the first lens group and the refraction of the meniscus lens component arranged on the image side. It defines the relationship of the ratios and relates to the correction of the field curvature. The lower limit of this conditional expression is 0.1
If the value is out of the range, the divergent power at the cemented surface of this cemented lens becomes weak, and the field curvature is largely undercorrected. For the same reason as when the upper limit of conditional expression (1) is exceeded, the second lens group corrects I can't run out.

【0018】また、本発明において、第1レンズ群中の
最も物体側に配置された接合レンズは、物体面からこの
接合レンズへ入射する軸上開口光線の方向に傾斜した面
取り部分を有する構成とし、対物レンズ先端の径をでき
る限り細くかつ尖鋭化させることが望ましい。
In the present invention, the cemented lens arranged closest to the object side in the first lens group has a chamfered portion which is inclined in the direction of the axial aperture ray incident on the cemented lens from the object plane. It is desirable to make the tip of the objective lens as thin and sharp as possible.

【0019】なお、軸上色収差を良好に補正するため
に、第1レンズ群は、最も物体側に配置された接合レン
ズに加え、発散性の接合面を持ち、正レンズと負レンズ
とからなる接合レンズをも有し、以下の条件を満足する
ことが望ましい。 (5) ν1P−ν1N>20 ただし、ν1P、ν1Nは、それぞれ、第1レンズ群中の最
も物体側に配置された接合レンズ以外の発散性の接合面
を有する接合レンズの中、少なくとも1つの正レンズの
アッベ数、負レンズのアッベ数である。
In order to satisfactorily correct the axial chromatic aberration, the first lens group includes a cemented lens arranged closest to the object side, a divergent cemented surface, and a positive lens and a negative lens. It is desirable to have a cemented lens and to satisfy the following conditions. (5) ν 1P −ν 1N > 20 where ν 1P and ν 1N are the cemented lenses having a divergent cemented surface other than the cemented lens arranged closest to the object side in the first lens group, respectively, At least one positive lens Abbe number and negative lens Abbe number.

【0020】条件式(5)の下限の20を外れると、軸
上色収差が大きく補正不足のまま残存してしまう。これ
を無理に補正しようとすると、発散性の接合面の曲率が
きつくなり、高次の球面収差が発生してしまう。
If the lower limit of 20 to condition (5) is not satisfied, axial chromatic aberration will be large and correction will remain insufficient. If this is attempted to be forcibly corrected, the curvature of the divergent cemented surface will become tight and high-order spherical aberration will occur.

【0021】さらに、像面湾曲と倍率色収差をより一層
良好に補正するために、負屈折力の第2レンズ群は、物
体側に凸面を向けた接合メニスカスレンズ成分、物体側
に凹面を向けた接合メニスカスレンズ成分よりなる、い
わゆるガウスタイプを有することが望ましい。
Further, in order to more favorably correct the field curvature and the chromatic aberration of magnification, the second lens unit having negative refracting power has a cemented meniscus lens component having a convex surface facing the object side and a concave surface facing the object side. It is desirable to have a so-called Gauss type, which is composed of a cemented meniscus lens component.

【0022】[0022]

【実施例】以下、本発明の液浸系顕微鏡対物レンズの実
施例1〜4について説明する。
EXAMPLES Examples 1 to 4 of the immersion microscope objective lens of the present invention will be described below.

【0023】各実施例のレンズデータは後記するが、図
2〜図4にそれぞれ実施例1〜3のレンズ構成を示す断
面図を示す。実施例4については、実施例1とほぼ同様
であるので図示は省く。
Although the lens data of each example will be described later, FIGS. 2 to 4 are sectional views showing the lens configurations of Examples 1 to 3, respectively. The fourth embodiment is almost the same as the first embodiment, and is not shown.

【0024】実施例1及び4は、図2に示すように、第
1レンズ群G1は、物体側に緩い凹面を向けた正メニス
カスレンズと同じく物体側に凹面を向けた正メニスカス
レンズとの接合正メニスカスレンズ、物体側に凹面を向
けた正メニスカスレンズ、両凸レンズと両凹レンズと両
凸レンズとの3枚接合レンズから構成され、第2レンズ
群G2は、負メニスカスレンズと両凸レンズと負メニス
カスレンズとの3枚接合レンズ、両凸レンズと両凹レン
ズとの接合メニスカスレンズ、両凹レンズと両凸レンズ
との接合メニスカスレンズから構成されている。
In Examples 1 and 4, as shown in FIG. 2, the first lens group G1 is cemented with a positive meniscus lens having a gentle concave surface facing the object side and a positive meniscus lens having a concave surface facing the object side. The second lens group G2 includes a positive meniscus lens, a positive meniscus lens having a concave surface facing the object side, and a double-convex lens, and a double-concave lens and a double-convex lens. The second lens group G2 includes a negative meniscus lens, a biconvex lens, and a negative meniscus lens. And a cemented meniscus lens of a biconvex lens and a biconcave lens, and a cemented meniscus lens of a biconcave lens and a biconvex lens.

【0025】実施例2は、図3に示すように、第1レン
ズ群G1は、物体側に緩い凸面を向けた両凸レンズと物
体側に凹面を向けた正メニスカスレンズとの接合正レン
ズ、物体側に凹面を向けた正メニスカスレンズ、両凸レ
ンズと両凹レンズと両凸レンズとの3枚接合レンズから
構成され、第2レンズ群G2は、負メニスカスレンズと
両凸レンズと負メニスカスレンズとの3枚接合レンズ、
両凸レンズと両凹レンズとの接合メニスカスレンズ、両
凹レンズと両凸レンズとの接合メニスカスレンズから構
成されている。
In the second embodiment, as shown in FIG. 3, the first lens group G1 is a cemented positive lens including a biconvex lens having a gentle convex surface facing the object side and a positive meniscus lens having a concave surface facing the object side. It is composed of a positive meniscus lens with a concave surface facing toward the side, a double-convex lens, a double-concave lens, and a double-convex lens, and a second lens group G2 includes a negative meniscus lens, a double-convex lens, and a negative meniscus lens. lens,
It is composed of a cemented meniscus lens of a biconvex lens and a biconcave lens, and a cemented meniscus lens of a biconcave lens and a biconvex lens.

【0026】実施例3は、図4に示すように、第1レン
ズ群G1は、平凸レンズと物体側に凹面を向けた正メニ
スカスレンズとの接合正レンズ、物体側に凹面を向けた
正メニスカスレンズ、両凸レンズと両凹レンズと両凸レ
ンズとの3枚接合レンズ、両凸レンズから構成され、第
2レンズ群G2は、負メニスカスレンズと両凸レンズと
両凹レンズとの3枚接合レンズ、両凸レンズと両凹レン
ズとの接合メニスカスレンズ、両凹レンズと両凸レンズ
との接合メニスカスレンズから構成されている。
In the third embodiment, as shown in FIG. 4, the first lens group G1 is a cemented positive lens composed of a plano-convex lens and a positive meniscus lens having a concave surface facing the object side, and a positive meniscus having a concave surface facing the object side. The second lens group G2 includes a double-convex lens, a double-concave lens, a double-concave lens, and a double-convex lens, and a double-convex lens. The second lens group G2 includes a negative meniscus lens, a double-convex lens, a double-concave lens, and a double-convex lens. It is composed of a cemented meniscus lens with a concave lens and a cemented meniscus lens with a biconcave lens and a biconvex lens.

【0027】以下に、各実施例のレンズデータを示す
が、記号は、上記の他、Fは対物レンズ全系の焦点距
離、βは倍率、NAは開口数、d0 は作動距離(試料面
から最も物体側のレンズの面頂までの距離)である。ま
た、r1 、r2 …は物体側から順に示した各レンズ面の
曲率半径、d1 、d2 …は物体側から順に示した各レン
ズ面間の間隔、nd1、nd2…は物体側から順に示した各
レンズのd線の屈折率、νd1、νd2…は物体側から順に
示した各レンズのアッベ数である。また、浸液としては
水を用い、そのd線の屈折率はnd =1.33304、
アッベ数はνd =55.79である。
The lens data of each example are shown below. In addition to the above, the symbols are F, the focal length of the entire objective lens system, β is the magnification, NA is the numerical aperture, and d 0 is the working distance (sample surface). To the top of the lens on the most object side). In addition, r 1 , r 2 ... Are the radii of curvature of the respective lens surfaces shown in order from the object side, d 1 , d 2 ... Are the intervals between the lens surfaces shown in order from the object side, and n d1 , n d2 . The d-line refractive index of each lens shown in order from the side, v d1 , v d2, ... Are Abbe numbers of each lens shown in order from the object side. Further, water is used as the immersion liquid, and the d-line has a refractive index of n d = 1.33304,
The Abbe number is ν d = 55.79.

【0028】実施例1 F=4.5,β=40×,NA=0.8,d0 =3.3 r1 = -50.0000 d1 = 1.7142 nd1 =1.51633 νd1 =64.15 r2 = -14.9837 d2 = 2.9404 nd2 =1.78650 νd2 =50.00 r3 = -6.4578 d3 = 0.2000 r4 = -18.4075 d4 = 2.2000 nd3 =1.49700 νd3 =81.61 r5 = -9.0329 d5 = 0.2000 r6 = 10.9628 d6 = 3.7000 nd4 =1.43875 νd4 =94.97 r7 = -43.3236 d7 = 1.0000 nd5 =1.78650 νd5 =50.00 r8 = 12.8380 d8 = 4.0000 nd6 =1.49700 νd6 =81.61 r9 = -18.9597 d9 = 0.2000 r10= 20.7312 d10= 0.9000 nd7 =1.59551 νd7 =39.29 r11= 9.7690 d11= 5.7000 nd8 =1.43875 νd8 =94.97 r12= -7.1490 d12= 1.0000 nd9 =1.78650 νd9 =50.00 r13= -23.0774 d13= 0.2000 r14= 6.6879 d14= 5.4198 nd10=1.49700 νd10=81.61 r15= -10.8851 d15= 2.9732 nd11=1.52944 νd11=51.72 r16= 5.9666 d16= 4.8172 r17= -3.2410 d17= 5.3712 nd12=1.50378 νd12=66.81 r18= 77.5188 d18= 3.2885 nd13=1.58144 νd13=40.75 r19= -9.0743 |r1 /F|=11.11 d0 /d1 = 1.93 n2 −n1 = 0.27 ν1P−ν1N =31.61 。Example 1 F = 4.5, β = 40 ×, NA = 0.8, d 0 = 3.3 r 1 = -50.0000 d 1 = 1.7142 n d1 = 1.51633 ν d1 = 64.15 r 2 =- 14.9837 d 2 = 2.9404 n d2 = 1.78650 ν d2 = 50.00 r 3 = -6.4578 d 3 = 0.2000 r 4 = -18.4075 d 4 = 2.2000 n d3 = 1.49700 ν d3 = 81.61 r 5 = -9.0329 d 5 = 0.2000 r 6 = 10.9628 d 6 = 3.7000 n d4 = 1.43875 ν d4 = 94.97 r 7 = -43.3236 d 7 = 1.0000 n d5 = 1.78650 ν d5 = 50.00 r 8 = 12.8380 d 8 = 4.0000 n d6 = 1.49700 ν d6 = 81.61 r 9 = -18.9597 d 9 = 0.2000 r 10 = 20.7312 d 10 = 0.9000 n d7 = 1.59551 ν d7 = 39.29 r 11 = 9.7690 d 11 = 5.7000 n d8 = 1.43875 ν d8 = 94.97 r 12 = -7.1490 d 12 = 1.0000 nd9 = 1.78650 ν d9 = 50.00 r 13 = -23.0774 d 13 = 0.2000 r 14 = 6.6879 d 14 = 5.4198 n d10 = 1.49700 ν d10 = 81.61 r 15 = -10.8851 d 15 = 2.9732 n d11 = 1.52944 ν d11 = 51.72 r 16 = 5.9666 d 16 = 4.8172 r 17 = -3.2410 d 17 = 5.3712 n d12 = 1.50378 ν d12 = 66 .81 r 18 = 77.5188 d 18 = 3.2885 n d13 = 1.58144 ν d13 = 40.75 r 19 = -9.0743 | r 1 / F | = 11.11 d 0 / d 1 = 1.93 n 2 −n 1 = 0.27 ν 1P −ν 1N = 31.61.

【0029】実施例2 F=4.5,β=40×,NA=0.8,d0 =3.3 r1 = 80.0000 d1 = 1.6912 nd1 =1.51633 νd1 =64.15 r2 = -8.8752 d2 = 2.5950 nd2 =1.78650 νd2 =50.00 r3 = -6.0510 d3 = 0.2000 r4 = -15.4999 d4 = 2.3337 nd3 =1.49700 νd3 =81.61 r5 = -9.1373 d5 = 0.2000 r6 = 10.5626 d6 = 3.7112 nd4 =1.43875 νd4 =94.97 r7 = -71.3466 d7 = 1.0000 nd5 =1.78650 νd5 =50.00 r8 = 15.0752 d8 = 3.9298 nd6 =1.49700 νd6 =81.61 r9 = -22.3245 d9 = 0.2000 r10= 20.1621 d10= 1.3847 nd7 =1.59551 νd7 =39.29 r11= 8.9947 d11= 5.6341 nd8 =1.43875 νd8 =94.97 r12= -6.6141 d12= 0.9018 nd9 =1.78650 νd9 =50.00 r13= -19.8617 d13= 0.3000 r14= 6.6746 d14= 5.4724 nd10=1.49700 νd10=81.61 r15= -10.8419 d15= 2.9912 nd11=1.52944 νd11=51.72 r16= 6.5021 d16= 4.7029 r17= -3.2522 d17= 4.9352 nd12=1.50378 νd12=66.81 r18= 30.1585 d18= 3.6414 nd13=1.58144 νd13=40.75 r19= -9.3897 |r1 /F|=17.78 d0 /d1 = 1.95 n2 −n1 = 0.27 ν1P−ν1N =31.61 。Example 2 F = 4.5, β = 40 ×, NA = 0.8, d 0 = 3.3 r 1 = 80.0000 d 1 = 1.6912 n d1 = 1.51633 ν d1 = 64.15 r 2 = -8.8752 d 2 = 2.5950 n d2 = 1.78650 ν d2 = 50.00 r 3 = -6.0510 d 3 = 0.2000 r 4 = -15.4999 d 4 = 2.3337 n d3 = 1.49700 ν d3 = 81.61 r 5 = -9.1373 d 5 = 0.2000 r 6 = 10.5626 d 6 = 3.7112 n d4 = 1.43875 ν d4 = 94.97 r 7 = -71.3466 d 7 = 1.0000 n d5 = 1.78650 ν d5 = 50.00 r 8 = 15.0752 d 8 = 3.9298 n d6 = 1.49700 ν d6 = 81.61 r 9 =- 22.3245 d 9 = 0.2000 r 10 = 20.1621 d 10 = 1.3847 n d7 = 1.59551 ν d7 = 39.29 r 11 = 8.9947 d 11 = 5.6341 n d8 = 1.43875 ν d8 = 94.97 r 12 = -6.6141 d 12 = 0.9018 n d9 = 1.78650 ν d9 = 50.00 r 13 = -19.8617 d 13 = 0.3000 r 14 = 6.6746 d 14 = 5.4724 n d10 = 1.49700 ν d10 = 81.61 r 15 = -10.8419 d 15 = 2.9912 n d11 = 1.52944 ν d11 = 51.72 r 16 = 6.5021 d 16 = 4.7029 r 17 = -3.2522 d 17 = 4.9352 n d12 = 1.50378 ν d12 = 66.8 1 r 18 = 30.1585 d 18 = 3.6414 n d13 = 1.58144 ν d13 = 40.75 r 19 = -9.3897 | r 1 / F | = 17.78 d 0 / d 1 = 1.95 n 2 −n 1 = 0.27 ν 1P −ν 1N = 31.61.

【0030】実施例3 F=3,β=60×,NA=0.95,d0 =2 r1 = ∞ d1 = 1.6786 nd1 =1.51633 νd1 =64.15 r2 = -4.7504 d2 = 2.8313 nd2 =1.78650 νd2 =50.00 r3 = -4.8697 d3 = 0.2000 r4 = -22.9988 d4 = 2.3000 nd3 =1.56907 νd3 =71.30 r5 = -8.8777 d5 = 0.2500 r6 = 14.0213 d6 = 4.5000 nd4 =1.49700 νd4 =81.10 r7 = -8.3387 d7 = 1.0000 nd5 =1.78650 νd5 =50.00 r8 = 38.5186 d8 = 3.8257 nd6 =1.43875 νd6 =94.97 r9 = -15.0470 d9 = 0.1500 r10= 11.7026 d10= 3.5500 nd7 =1.56907 νd7 =71.30 r11= -55.5525 d11= 0.4583 r12= 11.7215 d12= 1.6666 nd8 =1.78650 νd8 =50.00 r13= 4.9117 d13= 5.2000 nd9 =1.43875 νd9 =94.97 r14= -7.0332 d14= 1.0000 nd10=1.59551 νd10=39.29 r15= 29.9783 d15= 0.9834 r16= 10.2367 d16= 4.0000 nd11=1.49700 νd11=81.10 r17= -4.0244 d17= 4.5641 nd12=1.52944 νd12=51.72 r18= 3.2217 d18= 1.6475 r19= -2.8800 d19= 4.4943 nd13=1.50378 νd13=66.81 r20= 52.3711 d20= 2.5000 nd14=1.58144 νd14=40.75 r21= -6.2506 |r1 /F|=∞ d0 /d1 = 1.19 n2 −n1 = 0.27 ν1P−ν1N =31.61 。Example 3 F = 3, β = 60 ×, NA = 0.95, d 0 = 2 r 1 = ∞ d 1 = 1.6786 n d1 = 1.51633 ν d1 = 64.15 r 2 = -4.7504 d 2 = 2.8313 n d2 = 1.78650 ν d2 = 50.00 r 3 = -4.8697 d 3 = 0.2000 r 4 = -22.9988 d 4 = 2.3000 n d3 = 1.56907 ν d3 = 71.30 r 5 = -8.8777 d 5 = 0.2500 r 6 = 14.0213 d 6 = 4.5000 n d4 = 1.49700 ν d4 = 81.10 r 7 = -8.3387 d 7 = 1.0000 n d5 = 1.78650 ν d5 = 50.00 r 8 = 38.5186 d 8 = 3.8257 n d6 = 1.43875 ν d6 = 94.97 r 9 = -15.0470 d 9 = 0.1500 r 10 = 11.7026 d 10 = 3.5500 n d7 = 1.56907 ν d7 = 71.30 r 11 = -55.5525 d 11 = 0.4583 r 12 = 11.7215 d 12 = 1.6666 n d8 = 1.78650 ν d8 = 50.00 r 13 = 4.9117 d 13 = 5.2000 n d9 = 1.43875 ν d9 = 94.97 r 14 = -7.0332 d 14 = 1.0000 n d10 = 1.59551 ν d10 = 39.29 r 15 = 29.9783 d 15 = 0.9834 r 16 = 10.2367 d 16 = 4.0000 n d11 = 1.49700 ν d11 = 81.10 r 17 = -4.0244 d 17 = 4.5641 n d12 = 1.52944 ν d12 = 51.72 r 18 = 3. 2217 d 18 = 1.6475 r 19 = -2.8800 d 19 = 4.4943 n d13 = 1.50378 ν d13 = 66.81 r 20 = 52.3711 d 20 = 2.5000 n d14 = 1.58144 ν d14 = 40.75 r 21 = -6.2506 | r 1 / F | = ∞ d 0 / d 1 = 1.19 n 2 −n 1 = 0.27 ν 1P −ν 1N = 31.61.

【0031】実施例4 F=4.5,β=40×,NA=0.8,d0 =3.7 r1 = -50.0000 d1 = 1.2003 nd1 =1.51633 νd1 =64.15 r2 = -8.9713 d2 = 3.3118 nd2 =1.78650 νd2 =50.00 r3 = -6.3181 d3 = 0.2000 r4 = -15.6224 d4 = 2.2000 nd3 =1.49700 νd3 =81.61 r5 = -9.3413 d5 = 0.2000 r6 = 11.1102 d6 = 3.7000 nd4 =1.43875 νd4 =94.97 r7 = -43.2426 d7 = 1.0000 nd5 =1.78650 νd5 =50.00 r8 = 19.2603 d8 = 4.0000 nd6 =1.49700 νd6 =81.61 r9 = -18.8109 d9 = 0.2000 r10= 16.7250 d10= 0.9000 nd7 =1.59551 νd7 =39.29 r11= 8.2417 d11= 5.7000 nd8 =1.43875 νd8 =94.97 r12= -7.0879 d12= 1.0000 nd9 =1.78650 νd9 =50.00 r13= -31.8041 d13= 0.2000 r14= 6.5196 d14= 5.3629 nd10=1.49700 νd10=81.61 r15= -10.9160 d15= 2.8938 nd11=1.52944 νd11=51.72 r16= 5.7419 d16= 4.6506 r17= -3.1185 d17= 4.7817 nd12=1.50378 νd12=66.81 r18= 81.3310 d18= 3.9234 nd13=1.58144 νd13=40.75 r19= -8.8477 |r1 /F|=11.11 d0 /d1 = 3.08 n2 −n1 = 0.27 ν1P−ν1N =31.61 。Example 4 F = 4.5, β = 40 ×, NA = 0.8, d 0 = 3.7 r 1 = -50.0000 d 1 = 1.2003 n d1 = 1.51633 ν d1 = 64.15 r 2 =- 8.9713 d 2 = 3.3118 n d2 = 1.78650 ν d2 = 50.00 r 3 = -6.3181 d 3 = 0.2000 r 4 = -15.6224 d 4 = 2.2000 n d3 = 1.49700 ν d3 = 81.61 r 5 = -9.3413 d 5 = 0.2000 r 6 = 11.1102 d 6 = 3.7000 n d4 = 1.43875 ν d4 = 94.97 r 7 = -43.2426 d 7 = 1.0000 n d5 = 1.78650 ν d5 = 50.00 r 8 = 19.2603 d 8 = 4.0000 n d6 = 1.49700 ν d6 = 81.61 r 9 = -18.8109 d 9 = 0.2000 r 10 = 16.7250 d 10 = 0.9000 n d7 = 1.59551 ν d7 = 39.29 r 11 = 8.2417 d 11 = 5.7000 n d8 = 1.43875 ν d8 = 94.97 r 12 = -7.0879 d 12 = 1.0000 n d9 = 1.78650 ν d9 = 50.00 r 13 = -31.8041 d 13 = 0.2000 r 14 = 6.5196 d 14 = 5.3629 n d10 = 1.49700 ν d10 = 81.61 r 15 = -10.9160 d 15 = 2.8938 n d11 = 1.52944 ν d11 = 51.72 r 16 = 5.7419 d 16 = 4.6506 r 17 = -3.1185 d 17 = 4.7817 n d12 = 1.50378 ν d12 = 66. 81 r 18 = 81.3310 d 18 = 3.9234 n d13 = 1.58144 ν d13 = 40.75 r 19 = -8.8477 | r 1 / F | = 11.11 d 0 / d 1 = 3.08 n 2 −n 1 = 0.27 ν 1P −ν 1N = 31.61.

【0032】上記実施例1〜4は何れも対物レンズから
の射出光が平行光束となる無限遠補正型の対物レンズで
あり、それ自身では結像しない。そこで、例えば以下に
示すレンズデータを有し、図5にレンズ断面を示す結像
レンズと組み合わせて使用される。ただし、レンズデー
タ中、r1'、r2'…は物体側から順に示した各レンズ面
の曲率半径、d1'、d2'…は物体側から順に示した各レ
ンズ面間の間隔、nd1' 、nd2' …は物体側から順に示
した各レンズのd線の屈折率、νd1' 、νd2'…は物体
側から順に示した各レンズのアッベ数である。
Each of the first to fourth embodiments is an infinity correction type objective lens in which the light emitted from the objective lens becomes a parallel light beam, and does not form an image by itself. Therefore, for example, it is used in combination with the imaging lens having the lens data shown below and having the lens cross section shown in FIG. However, in the lens data, r 1 ′, r 2 ′ ... Are the radii of curvature of the respective lens surfaces shown in order from the object side, d 1 ′, d 2 ′ ... are the intervals between the lens surfaces shown in order from the object side, n d1 ', n d2 ' ... are d-line refractive indices of the lenses shown in order from the object side, and v d1 ', v d2 ' ... are Abbe numbers of the lenses shown in order from the object side.

【0033】 r1'= 68.7541 d1'= 7.7321 nd1'=1.48749 νd1'=70.20 r2'= -37.5679 d2'= 3.4742 nd2'=1.80610 νd2'=40.95 r3'= -102.8477 d3'= 0.6973 r4'= 84.3099 d4'= 6.0238 nd3'=1.83400 νd3'=37.16 r5'= -50.7100 d5'= 3.0298 nd4'=1.64450 νd4'=40.82 r6'= 40.6619 。R 1 '= 68.7541 d 1 ' = 7.7321 n d1 '= 1.48749 ν d1 ' = 70.20 r 2 '= -37.5679 d 2 ' = 3.4742 n d2 '= 1.80610 ν d2 ' = 40.95 r 3 '= -102.8477 d 3 '= 0.6973 r 4 ' = 84.3099 d 4 '= 6.0238 n d3 ' = 1.83400 ν d3 '= 37.16 r 5 ' = -50.7100 d 5 '= 3.0298 n d4 ' = 1.64450 ν d4 '= 40.82 r 6 ' = 40.6619.

【0034】この場合、実施例1〜4の対物レンズと図
5の結像レンズの間の間隔は50mm〜170mmの間
の何れの位置でもよいが、この間隔を120mmとした
場合の実施例1〜4の収差図をそれぞれ図6〜図9に示
す。ただし、これら収差図において、(a)は球面収
差、(b)はコマ収差、(c)は非点収差を示す。これ
ら収差図中、IM.Hは像高を示す。なお、上記間隔が
50mm〜170mmの間で120mm以外の位置にお
いてもほぼ同様の収差状況を示す。
In this case, the distance between the objective lens of Examples 1 to 4 and the imaging lens of FIG. 5 may be any position between 50 mm and 170 mm, but Example 1 when this distance is 120 mm Aberration diagrams of 4 to 4 are shown in FIGS. 6 to 9, respectively. However, in these aberration diagrams, (a) shows spherical aberration, (b) shows coma, and (c) shows astigmatism. In these aberration diagrams, IM. H indicates the image height. It should be noted that substantially the same aberration situation is exhibited at positions other than 120 mm when the distance is between 50 mm and 170 mm.

【0035】[0035]

【発明の効果】以上の説明から明らかなように、本発明
によれば、40倍〜60倍程度の倍率を有し、作動距離
が比較的長く、像の平坦性も良く、さらには、開口数は
0.8〜0.95程度と大きく、優れた結像性能を維持
しながらも、対物レンズ先端の径が細くかつ尖鋭化され
た液浸系顕微鏡対物レンズを提供することができる。
As is apparent from the above description, according to the present invention, the magnification is about 40 to 60 times, the working distance is relatively long, the flatness of the image is good, and the aperture is large. The number is as large as 0.8 to 0.95, and it is possible to provide an immersion microscope objective lens in which the diameter of the objective lens tip is thin and sharpened while maintaining excellent imaging performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】パッチクランプ法を実施する場合に水浸顕微鏡
対物レンズに要求される要件を説明するための図であ
る。
FIG. 1 is a diagram for explaining requirements required for a water immersion microscope objective lens when performing a patch clamp method.

【図2】本発明の液浸系顕微鏡対物レンズの実施例1の
レンズ断面図である。
FIG. 2 is a lens sectional view of Example 1 of the immersion microscope objective lens of the present invention.

【図3】実施例2のレンズ断面図である。FIG. 3 is a lens cross-sectional view of Example 2.

【図4】実施例3のレンズ断面図である。FIG. 4 is a lens cross-sectional view of Example 3.

【図5】各実施例の液浸系顕微鏡対物レンズと共に用い
る結像レンズの1例のレンズ断面図である。
FIG. 5 is a lens cross-sectional view of an example of an imaging lens used with the immersion microscope objective lens of each example.

【図6】実施例1の球面収差、コマ収差、非点収差を示
す収差図である。
FIG. 6 is an aberration diagram showing spherical aberration, coma and astigmatism of Example 1.

【図7】実施例2の球面収差、コマ収差、非点収差を示
す収差図である。
FIG. 7 is an aberration diagram showing spherical aberration, coma aberration, and astigmatism of Example 2.

【図8】実施例3の球面収差、コマ収差、非点収差を示
す収差図である。
FIG. 8 is an aberration diagram showing spherical aberration, coma and astigmatism of Example 3.

【図9】実施例4の球面収差、コマ収差、非点収差を示
す収差図である。
FIG. 9 is an aberration diagram showing spherical aberration, coma and astigmatism of Example 4.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 1…水浸顕微鏡対物レンズ 2…試料 3…培養液 4…微小ガラス電極 G1 ... 1st lens group G2 ... 2nd lens group 1 ... Water immersion microscope objective lens 2 ... Sample 3 ... Culture liquid 4 ... Micro glass electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、最も物体側に配置さ
れ、正レンズ成分と物体側に凹面を向けたメニスカスレ
ンズ成分との接合レンズを有する正屈折力の第1レンズ
群と、負屈折力の第2レンズ群とから構成され、以下の
条件を満足することを特徴とする液浸系顕微鏡対物レン
ズ。 (1) d2 <|r2 |<4.5F (2) |r1 /F|>7 ただし、Fは全系の焦点距離、r1 、r2 はそれぞれ前
記接合レンズの最も物体側のレンズ面の曲率半径、接合
面の曲率半径、d2 は前記接合レンズの像側に配置され
たメニスカスレンズ成分の中心肉厚である。
1. A first lens unit having a positive refracting power, which is arranged on the most object side in order from the object side and has a cemented lens of a positive lens component and a meniscus lens component having a concave surface facing the object side, and a negative refracting power. And a second lens group of No. 2, which satisfies the following conditions. (1) d 2 <| r 2 | <4.5F (2) | r 1 / F |> 7 where F is the focal length of the entire system and r 1 and r 2 are the most object side of the cemented lens. The radius of curvature of the lens surface, the radius of curvature of the cemented surface, and d 2 are the central thicknesses of the meniscus lens components arranged on the image side of the cemented lens.
【請求項2】 下記の条件を満足することを特徴とする
請求項1記載の液浸系顕微鏡対物レンズ。 (3) 0.8<d0 /d1 <5 (4) n2 −n1 >0.1 ただし、d0 は物体面からレンズ第1面までの距離、d
1 は前記接合レンズの物体側に配置された正レンズ成分
の中心肉厚、n1 、n2 はそれぞれ前記接合レンズの物
体側に配置された正レンズ成分の屈折率、像側に配置さ
れたメニスカスレンズ成分の屈折率である。
2. The immersion microscope objective lens according to claim 1, wherein the following conditions are satisfied. (3) 0.8 <d 0 / d 1 <5 (4) n 2 −n 1 > 0.1 where d 0 is the distance from the object plane to the first lens surface, d
1 is the center wall thickness of the positive lens component arranged on the object side of the cemented lens, n 1 and n 2 are the refractive indices of the positive lens component arranged on the object side of the cemented lens, and are arranged on the image side. It is the refractive index of the meniscus lens component.
【請求項3】 前記接合レンズは、物体面から該接合レ
ンズへ入射する軸上開口光線の方向に傾斜した面取り部
分を有することを特徴とする請求項1又は2記載の液浸
系顕微鏡対物レンズ。
3. The immersion microscope objective lens according to claim 1, wherein the cemented lens has a chamfered portion that is inclined in a direction of an axial aperture ray incident on the cemented lens from an object plane. .
JP7100875A 1995-04-25 1995-04-25 Liquid immersion microscope objective lens Pending JPH08292374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7100875A JPH08292374A (en) 1995-04-25 1995-04-25 Liquid immersion microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7100875A JPH08292374A (en) 1995-04-25 1995-04-25 Liquid immersion microscope objective lens

Publications (1)

Publication Number Publication Date
JPH08292374A true JPH08292374A (en) 1996-11-05

Family

ID=14285502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7100875A Pending JPH08292374A (en) 1995-04-25 1995-04-25 Liquid immersion microscope objective lens

Country Status (1)

Country Link
JP (1) JPH08292374A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337773B1 (en) 1997-06-23 2002-01-08 Canon Kabushiki Kaisha Optical element, jig for holding optical element, and apparatus including optical element
US6700710B2 (en) 2001-10-17 2004-03-02 Nikon Corporation Liquid immersion type microscope objective lens
JP2005266131A (en) * 2004-03-17 2005-09-29 Nikon Corp Immersion-type microscope objective lens
JP2006023389A (en) * 2004-07-06 2006-01-26 Olympus Corp Immersion objective optical system
US7133212B2 (en) 2004-07-24 2006-11-07 Carl Zeiss Jena Gmbh Liquid immersion microscope objective
JP2009134250A (en) * 2007-11-02 2009-06-18 Nikon Corp Immersion microscope objective lens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337773B1 (en) 1997-06-23 2002-01-08 Canon Kabushiki Kaisha Optical element, jig for holding optical element, and apparatus including optical element
US6700710B2 (en) 2001-10-17 2004-03-02 Nikon Corporation Liquid immersion type microscope objective lens
JP2005266131A (en) * 2004-03-17 2005-09-29 Nikon Corp Immersion-type microscope objective lens
US7262922B2 (en) 2004-03-17 2007-08-28 Nikon Corporation Immersion microscope objective lens
JP4496524B2 (en) * 2004-03-17 2010-07-07 株式会社ニコン Immersion microscope objective lens
JP2006023389A (en) * 2004-07-06 2006-01-26 Olympus Corp Immersion objective optical system
US7133212B2 (en) 2004-07-24 2006-11-07 Carl Zeiss Jena Gmbh Liquid immersion microscope objective
DE102004036114B4 (en) * 2004-07-24 2012-04-19 Carl Zeiss Microlmaging Gmbh Liquid immersion microscope objective
JP2009134250A (en) * 2007-11-02 2009-06-18 Nikon Corp Immersion microscope objective lens

Similar Documents

Publication Publication Date Title
JP3985937B2 (en) Microscope objective lens for fluorescence
JP3299808B2 (en) Immersion microscope objective lens
JP3457992B2 (en) Immersion microscope objective lens
JP3280402B2 (en) Microscope objective lens
JP2002031760A (en) Objective lens for microscope
JP3456323B2 (en) Microscope objective lens
JP3313163B2 (en) Microscope objective lens
JPH0735983A (en) Immersion objective lens system microscope
JP5445898B2 (en) Immersion microscope objective lens
US4721372A (en) Objective lens system for an endoscope
JPH10142510A (en) Objective lens for microscope
JP3454935B2 (en) Microscope objective lens
JP4082015B2 (en) Immersion microscope objective lens
JP4742355B2 (en) Immersion microscope objective lens
JP4959230B2 (en) Microscope objective lens
JP4884562B2 (en) Microscope objective lens
JP4488283B2 (en) Afocal zoom lens for microscope
JP4457666B2 (en) Microscope objective lens
JPH08292374A (en) Liquid immersion microscope objective lens
JP2000275522A (en) Zoom lens
JPH10288740A (en) Long operating distance microscope objective lens
JP3093835B2 (en) Microscope objective lens
JPH08136816A (en) Objective lens of microscope
JP2002098903A (en) Immersion system microscopic objective lens
US4624535A (en) Objective lens system for microscopes

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041006