JPH08292177A - Flaw detection device - Google Patents

Flaw detection device

Info

Publication number
JPH08292177A
JPH08292177A JP7098565A JP9856595A JPH08292177A JP H08292177 A JPH08292177 A JP H08292177A JP 7098565 A JP7098565 A JP 7098565A JP 9856595 A JP9856595 A JP 9856595A JP H08292177 A JPH08292177 A JP H08292177A
Authority
JP
Japan
Prior art keywords
laser
flaw detection
crack
emitted
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7098565A
Other languages
Japanese (ja)
Inventor
Toru Goto
徹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7098565A priority Critical patent/JPH08292177A/en
Publication of JPH08292177A publication Critical patent/JPH08292177A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE: To obtain a flaw detection device capable of enhancing the accuracy of detection of a flaw. CONSTITUTION: A flaw detection device 3 is inserted into a heat-transmitting pipe 15 to be heated and both of copper mirrors of a laser heater 4 are provided in opposition to a position to be subjected to flaw detection. Next, a laser light emitted from a laser source 5 is emitted to the both of the mirrors and the laser reflected thereby is emitted by nipping a crack 17 to form two laser- emitted regions. At that time, an inner wall 15a of the heat-transmitting pipe is heated and a compressing stress is generated on the inner wall of the heat- transmitting pipe 15 at the both of laser-emitted regions. A tensile stress is generated on the outer face of the heat-transmitting pipe 15, then it is expanded as a whole. Therefore, the tensile stress which is not so inclined and roughly constant is generated in a lengthwise direction on the inner wall in both of the laser-emitted regions of the heat-transmitting pipe 15 so that the crack is opened. After that, the flaw detection device is lowered and an ultrasonic sensor 3 (ultrasonic flaw detection probe) is opposed to the crack, thereby executing the flaw detection of the crack 17 by using the ultrasonic wave from the ultrasonic wave sensor 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、管、例えば加圧水型原
子炉(PWR)の蒸気発生器の伝熱管の外周部に円周方
向に沿って存在する亀裂を検査する探傷装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flaw detection apparatus for inspecting cracks existing along the circumferential direction on the outer peripheral portion of a pipe, for example, a heat transfer pipe of a steam generator of a pressurized water reactor (PWR). .

【0002】[0002]

【従来の技術】図5(a)(b)は、従来のミラー回転
型超音波探傷プローブを示している。このミラー回転型
超音波探傷プローブは、伝熱管(図1、図4の15参
照)内に挿入し、探傷部高さ位置で超音波センサー3か
ら発振した超音波をミラー2により反射し、水中を通っ
て伝熱管に伝えて、伝熱管の管外周部に円周方向に沿っ
て存在する亀裂を走査する。そして円周方向の探傷領域
は、ミラー2を回転させることにより、カバーするもの
である。
2. Description of the Related Art FIGS. 5A and 5B show a conventional mirror rotation type ultrasonic flaw detection probe. This mirror rotation type ultrasonic flaw detection probe is inserted into a heat transfer tube (refer to 15 in FIG. 1 and FIG. 4), and the ultrasonic wave oscillated from the ultrasonic sensor 3 at the height position of the flaw detection portion is reflected by the mirror 2 and To the heat transfer tube to scan for cracks existing along the circumferential direction on the outer circumference of the heat transfer tube. The flaw detection area in the circumferential direction is covered by rotating the mirror 2.

【0003】このミラー回転型超音波探傷プローブの中
には、ミラー2とこのミラー2を回転させるミラー回転
用モータ1とが設置されている。また同超音波探傷プロ
ーブの下部には、水シール9があり、その上面部に水が
貯えられている。なお8はスタビ、10は案内用円筒で
ある。
In this mirror rotation type ultrasonic flaw detection probe, a mirror 2 and a mirror rotation motor 1 for rotating the mirror 2 are installed. A water seal 9 is provided below the ultrasonic flaw detection probe, and water is stored on the upper surface of the water seal 9. In addition, 8 is a stabilizer and 10 is a guide cylinder.

【0004】[0004]

【発明が解決しようとする課題】加圧水型原子炉(PW
R)の蒸気発生器の伝熱管の亀裂の有無を検査する探傷
装置では、探傷検出能の精度を向上させる必要がある
が、前記図5(a)(b)に示す従来のミラー回転型超
音波探傷プローブでは、探傷検出能の精度を向上させる
のに限界があった。
[Problems to be Solved by the Invention] Pressurized water reactor (PW)
In the flaw detector for inspecting the heat transfer tube of the steam generator of R) for cracks, it is necessary to improve the precision of flaw detection detectability. The ultrasonic flaw detection probe has a limit in improving the precision of flaw detection detectability.

【0005】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、探傷検出能の精度を向上
できる探傷装置を提供しようとする点にある。
The present invention is proposed in view of the above problems, and an object thereof is to provide a flaw detection device capable of improving the precision of flaw detection detectability.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、管外周部に円周方向に沿って発生した
亀裂を検査する探傷装置において、前記亀裂の発生した
管部を加熱して管長手方向に引張応力を発生させて亀裂
を開口させる加熱機構と、同亀裂に超音波を照射する超
音波探傷子とを具えている。
In order to achieve the above-mentioned object, the present invention provides a flaw detector for inspecting cracks generated along the circumferential direction on the outer peripheral portion of a pipe, and The heating mechanism includes a heating mechanism for heating and generating tensile stress in the longitudinal direction of the pipe to open a crack, and an ultrasonic flaw detector for irradiating the crack with ultrasonic waves.

【0007】[0007]

【作用】本発明の探傷装置は前記のように構成されてお
り、探傷装置を伝熱管内に挿入して、上昇させ、加熱機
構を伝熱管の探傷箇所に対向させて、レーザ光を伝熱管
内面壁へ照射し、亀裂発生した伝熱管部分に管長手方向
の引張応力を発生させて、亀裂を開口させ、亀裂先端の
超音波の発散・回析を高めて、亀裂面の反射能を高めた
後、探傷装置を下降させ、超音波探傷子を亀裂に対向さ
せて、超音波により探傷する。
The flaw detector of the present invention is configured as described above, and the flaw detector is inserted into the heat transfer tube and raised, and the heating mechanism is opposed to the flaw detection point of the heat transfer tube to transfer the laser light. Irradiate the inner wall of the pipe and generate tensile stress in the longitudinal direction of the heat transfer pipe where the crack has occurred to open the crack, enhance the divergence and diffraction of ultrasonic waves at the crack tip, and enhance the reflectivity of the crack surface. After that, the flaw detector is lowered, the ultrasonic flaw detector is made to face the crack, and the flaw is detected by ultrasonic waves.

【0008】[0008]

【実施例】次に本発明の探傷装置を図1〜図4に示す一
実施例により説明すると、図1の1がミラー回転用モー
タ、2が同回転用モータ1により回転するミラー、3が
超音波センサー(超音波探傷子)、4がレーザ加熱器、
5が後記レーザ光13を発生させるレーザ源、6が超音
波を発生させる超音波装置、7がコントローラ、図2の
8がスタビ、9が水シール、10が案内用円筒である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the flaw detector of the present invention will be described with reference to an embodiment shown in FIGS. 1 to 4. In FIG. 1, 1 is a mirror rotation motor, 2 is a mirror rotation motor 1, and 3 is a mirror rotation motor. Ultrasonic sensor (ultrasonic flaw detector), 4 is a laser heater,
Reference numeral 5 is a laser source for generating a laser beam 13 which will be described later, 6 is an ultrasonic device for generating ultrasonic waves, 7 is a controller, 8 is a stabilizer, 9 is a water seal, and 10 is a guiding cylinder.

【0009】図2、3の11が上記レーザ加熱器4の銅
鏡、12がレーザファイバー、13が上記レーザ源5か
らのレーザ光、14が同レーザ光13の発散角で、上記
レーザ加熱器4は、銅鏡11とレーザファイバー12と
を有し、加熱機構がレーザ加熱器4とレーザ源5とによ
り構成されている。図2、3の15が伝熱管、15aが
伝熱管15の内面壁、図4の16が伝熱管内面壁15a
のレーザ照射域、17が伝熱管15の外周部に円周方向
に沿って発生した亀裂で、上記レーザ加熱器4の銅鏡1
1とレーザファイバー12とが水シール9よりも下方の
案内用円筒10の180°隔たった対称位置にそれぞれ
1個ずつ設置されている。
2 and 3, 11 is a copper mirror of the laser heater 4, 12 is a laser fiber, 13 is a laser beam from the laser source 5, and 14 is a divergence angle of the laser beam 13. Has a copper mirror 11 and a laser fiber 12, and the heating mechanism is composed of a laser heater 4 and a laser source 5. 2 and 3, 15 is a heat transfer tube, 15a is an inner wall of the heat transfer tube 15, and 16 of FIG. 4 is a heat transfer tube inner wall 15a.
Laser irradiation area 17 is a crack generated in the outer peripheral portion of the heat transfer tube 15 along the circumferential direction, and the copper mirror 1 of the laser heater 4 is
One and one laser fiber 12 and one laser fiber 12 are installed at the symmetrical positions 180 ° apart from each other in the guiding cylinder 10 below the water seal 9.

【0010】次に前記図1〜図4に示す探傷装置の作用
を具体的に説明する。探傷装置を伝熱管15内に挿入
し、上昇させて、レーザ加熱器4の両銅鏡11を伝熱管
15の探傷箇所に対向させ、次いでレーザ源5で発生し
たレーザ光13を両レーザファイバー12を通して両銅
鏡11へ±12°の発散角14をもって照射する。その
際、レーザファイバー12と銅鏡11とは24mm程度
離れており、銅鏡11上では、照射域が約10mm径の
円になる(図3参照)。
Next, the operation of the flaw detector shown in FIGS. 1 to 4 will be specifically described. The flaw detector is inserted into the heat transfer tube 15 and raised to make both copper mirrors 11 of the laser heater 4 face the flaw detection portion of the heat transfer tube 15, and then the laser light 13 generated by the laser source 5 is passed through both laser fibers 12. Irradiate both copper mirrors 11 with a divergence angle 14 of ± 12 °. At that time, the laser fiber 12 and the copper mirror 11 are separated from each other by about 24 mm, and the irradiation area on the copper mirror 11 is a circle having a diameter of about 10 mm (see FIG. 3).

【0011】両銅鏡11は、光軸に対して45°傾斜し
ており、そこから反射したレーザ光13は、光軸から6
mm程度離れた伝熱管内面壁15aに亀裂17を挟んで
照射されて、2つのレーザ照射域16が形成される(図
4参照)。このとき、伝熱管内面壁15aは、加熱され
て、両レーザ照射域16では、伝熱管15内面に圧縮応
力が発生し、伝熱管15外面に引張応力が発生して、所
謂曲げ応力分布になるが、全体として膨張するので、両
レーザ照射域16の間の伝熱管15内面壁15aには、
あまり勾配の立たない略一様な引張応力が管長手方向に
発生する。
Both copper mirrors 11 are tilted at 45 ° with respect to the optical axis, and the laser light 13 reflected from the copper mirrors 6 is 6
The heat transfer tube inner wall 15a separated by about mm is irradiated with the crack 17 sandwiched therebetween to form two laser irradiation areas 16 (see FIG. 4). At this time, the heat transfer tube inner surface wall 15a is heated, and in both laser irradiation regions 16, compressive stress is generated on the heat transfer tube 15 inner surface and tensile stress is generated on the heat transfer tube 15 outer surface, resulting in a so-called bending stress distribution. However, since it expands as a whole, the inner surface wall 15a of the heat transfer tube 15 between both laser irradiation regions 16 has
A substantially uniform tensile stress with little slope is generated in the longitudinal direction of the pipe.

【0012】計算例では、管内径約20mm、管壁厚さ
約1mmの場合、両レーザ照射域16に24万kal/
2 h°Cの熱流速を約10秒与えると、伝熱管15の
内面の温度が材質上問題にならない400°C程度に上
昇して、両レーザ照射域16間の中心では、伝熱管15
外面に200MPa以上の引張応力が管長手方向のに発
生する。なお亀裂17部の温度は、200°C程度であ
る。200MPaの引張応力は、想定される供用時の伝
熱管15の曲げ応力振幅よりも遙かに大きくて、亀裂1
7を塑性的に開口させるのに十分な値である。
In the calculation example, when the tube inner diameter is about 20 mm and the tube wall thickness is about 1 mm, 240,000 kal / in both laser irradiation areas 16.
When a heat flow rate of m 2 h ° C is applied for about 10 seconds, the temperature of the inner surface of the heat transfer tube 15 rises to about 400 ° C, which is not a material problem, and at the center between both laser irradiation areas 16, the heat transfer tube 15
A tensile stress of 200 MPa or more is generated on the outer surface in the pipe longitudinal direction. The temperature of the 17th crack is about 200 ° C. The tensile stress of 200 MPa is much larger than the assumed bending stress amplitude of the heat transfer tube 15 in service, and cracks 1
This is a value sufficient to plastically open No. 7.

【0013】その後、探傷装置を下降させ、超音波セン
サー(超音波探傷子)3を亀裂17に対向させて、超音
波センサー3からの超音波により亀裂17を探傷する。
このように伝熱管15に発生した亀裂17を開口させ
て、探傷を行うが、開口した亀裂17は、開口前の亀裂
17に比べて亀裂先端の超音波の発散・回析が高められ
て、亀裂17面の反射能が高められる。
Thereafter, the flaw detector is lowered, the ultrasonic sensor (ultrasonic flaw detector) 3 is made to face the crack 17, and the crack 17 is flaw-detected by the ultrasonic wave from the ultrasonic sensor 3.
Thus, the crack 17 generated in the heat transfer tube 15 is opened to perform flaw detection, but the opened crack 17 has higher divergence / diffraction of ultrasonic waves at the crack tip than the crack 17 before opening, The reflectivity of the surface of the crack 17 is enhanced.

【0014】[0014]

【発明の効果】本発明の探傷装置は前記のように探傷装
置を伝熱管内に挿入して、上昇させ、加熱機構を伝熱管
の探傷箇所に対向させて、レーザ光を伝熱管内面壁へ照
射し、亀裂発生した伝熱管部分に管長手方向の引張応力
を発生させて、亀裂を開口させ、亀裂先端の超音波の発
散・回析を高めて、亀裂面の反射能を高めた後、探傷装
置を下降させ、超音波探傷子を亀裂に対向させて、超音
波により探傷するので、探傷検出能の精度を向上でき
る。
As described above, the flaw detector according to the present invention inserts the flaw detector into the heat transfer tube and raises it so that the heating mechanism faces the flaw detection portion of the heat transfer tube and the laser beam is directed to the inner wall of the heat transfer tube. Irradiate, generate tensile stress in the tube longitudinal direction in the heat transfer tube part where the crack has occurred, open the crack, enhance the divergence and diffraction of ultrasonic waves at the crack tip, and enhance the reflectivity of the crack surface, Since the flaw detector is lowered, the ultrasonic flaw detector is made to face the crack, and the flaw is detected by ultrasonic waves, the precision of flaw detection detectability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の探傷装置の一実施例を示す縦断側面図
である。
FIG. 1 is a vertical cross-sectional side view showing an embodiment of a flaw detection device of the present invention.

【図2】同探傷装置の加熱機構を示す縦断側面図であ
る。
FIG. 2 is a vertical sectional side view showing a heating mechanism of the flaw detection apparatus.

【図3】同探傷装置の加熱機構の作用説明図である。FIG. 3 is an operation explanatory view of a heating mechanism of the flaw detection apparatus.

【図4】同加熱機構の照射域(加熱域)を示す側面図で
ある。
FIG. 4 is a side view showing an irradiation area (heating area) of the heating mechanism.

【図5】(a)は従来の探傷装置を示す側面図、(b)
は縦断側面図である。
FIG. 5A is a side view showing a conventional flaw detector, and FIG.
Is a vertical side view.

【符号の説明】[Explanation of symbols]

1 ミラー回転用モータ 2 ミラー 3 超音波センサー(超音波探傷子) 4 レーザ加熱器(加熱機構) 5 レーザ源 6 超音波装置 7 コントローラ 11 レーザ加熱器4の銅鏡 12 レーザ加熱器4のレーザファイバー 15 伝熱管 16 レーザ加熱器4の照射域(加熱域) 17 伝熱管15の亀裂 1 Mirror Rotation Motor 2 Mirror 3 Ultrasonic Sensor (Ultrasonic Flaw Detector) 4 Laser Heater (Heating Mechanism) 5 Laser Source 6 Ultrasonic Device 7 Controller 11 Copper Mirror of Laser Heater 4 12 Laser Fiber of Laser Heater 4 15 Heat transfer tube 16 Irradiation area (heating area) of laser heater 4 17 Crack of heat transfer tube 15

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 管外周部に円周方向に沿って発生した亀
裂を検査する探傷装置において、前記亀裂の発生した管
部を加熱して管長手方向に引張応力を発生させて亀裂を
開口させる加熱機構と、同亀裂に超音波を照射する超音
波探傷子とを具えていることを特徴とした探傷装置。
1. A flaw detection device for inspecting a crack generated along the circumferential direction at the outer peripheral portion of a pipe, wherein the cracked pipe portion is heated to generate tensile stress in the longitudinal direction of the pipe to open the crack. A flaw detection device comprising a heating mechanism and an ultrasonic flaw detector that radiates ultrasonic waves to the crack.
JP7098565A 1995-04-24 1995-04-24 Flaw detection device Withdrawn JPH08292177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7098565A JPH08292177A (en) 1995-04-24 1995-04-24 Flaw detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7098565A JPH08292177A (en) 1995-04-24 1995-04-24 Flaw detection device

Publications (1)

Publication Number Publication Date
JPH08292177A true JPH08292177A (en) 1996-11-05

Family

ID=14223211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7098565A Withdrawn JPH08292177A (en) 1995-04-24 1995-04-24 Flaw detection device

Country Status (1)

Country Link
JP (1) JPH08292177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004787A (en) * 2015-06-26 2015-10-28 广东电网有限责任公司电力科学研究院 Electric metal part cleaning and flaw detection robot control system and method
CN106225454A (en) * 2016-08-24 2016-12-14 桂林浩新科技服务有限公司 A kind of auto-parts baking box that can detect a flaw
CN109668926A (en) * 2018-12-25 2019-04-23 中国矿业大学 The Equivalent Thermal Conductivities test macro and calculation method of crack rock cellular construction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004787A (en) * 2015-06-26 2015-10-28 广东电网有限责任公司电力科学研究院 Electric metal part cleaning and flaw detection robot control system and method
CN106225454A (en) * 2016-08-24 2016-12-14 桂林浩新科技服务有限公司 A kind of auto-parts baking box that can detect a flaw
CN109668926A (en) * 2018-12-25 2019-04-23 中国矿业大学 The Equivalent Thermal Conductivities test macro and calculation method of crack rock cellular construction
CN109668926B (en) * 2018-12-25 2023-11-10 中国矿业大学 Equivalent heat conductivity coefficient testing system and calculating method for fractured rock mass unit structure

Similar Documents

Publication Publication Date Title
US5457997A (en) Laser ultrasonic detection method and apparatus therefor
EP0129205A2 (en) Noncontacting ultrasonic flaw detecting method
EP1061364A2 (en) Method for the inspection of steam generator tubing utilizing nonaxisymmetric guided waves
US20080037695A1 (en) Method and apparatus for ultrasonic inspection of reactor pressure vessel
JP2017506742A (en) Phased array ultrasonic transducer for nondestructive inspection of jet pump riser tube welds and welded fixtures
WO2021182032A1 (en) Defect detection method, defect detection device, and shaping device
CN106645417A (en) Detection method for weld joint defect of thick-wall small-diameter tube
EP1193490A1 (en) Method for weld seam testing and device therefore
JPH08292177A (en) Flaw detection device
JP2502184B2 (en) Laser ultrasonic flaw detection method and device
US4173899A (en) Method and device for scanning by means of a focused ultrasonic beam
JPH11285868A (en) Method for repairing member by irradiating member with laser beam and its device, and medium wherein program which execute repairing method using this device is recorded
JP4827670B2 (en) Ultrasonic inspection equipment
WO2019181243A1 (en) Ultrasonic wave inspection method, ultrasonic wave inspection device, and high-pressure fuel supply pump manufacturing method using ultrasonic wave inspection method
CN113406213B (en) Curved surface sound-transmitting wedge design method for circumferential ultrasonic detection of small-diameter pipe
JPH0819881A (en) Laser beam device for heating of tubular body
CN103217485B (en) A kind of measurement test block of angle probe ultrasonic field sound pressure distribution
JP4027261B2 (en) Laser ultrasonic generator using multiple beam irradiation
JP2682390B2 (en) Ultrasonic flaw detector for welds
Yoda et al. Laser-based maintenance and repair technologies for reactor components
US5253276A (en) Dual-longitudinal-mode ultrasonic testing
JP2020159884A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
KR102225562B1 (en) A testing device for nuclear fuel cladding using ultra-sonic wave
Miyamoto et al. Properties of the plasma plume in CO2 laser welding of thin sheets: an analytical approach to laser welding (Report 1)
JPS58197221A (en) Production of pipe flange

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702