JPH08291345A - Method for separating and recovering platinum group element in solution - Google Patents

Method for separating and recovering platinum group element in solution

Info

Publication number
JPH08291345A
JPH08291345A JP9513495A JP9513495A JPH08291345A JP H08291345 A JPH08291345 A JP H08291345A JP 9513495 A JP9513495 A JP 9513495A JP 9513495 A JP9513495 A JP 9513495A JP H08291345 A JPH08291345 A JP H08291345A
Authority
JP
Japan
Prior art keywords
platinum group
complex
group element
supercritical fluid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9513495A
Other languages
Japanese (ja)
Other versions
JP3348808B2 (en
Inventor
Hajime Kawasaki
始 川崎
Maki Amino
真樹 網野
Kenji Nishimura
建二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9513495A priority Critical patent/JP3348808B2/en
Publication of JPH08291345A publication Critical patent/JPH08291345A/en
Application granted granted Critical
Publication of JP3348808B2 publication Critical patent/JP3348808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To separate and recover platinum group elements in the form of powder or aq. soln. to allow easy treatment for reusing without addition of extraction assistants or excessive complexing agents by efficiently separating the platinum group elements with a relatively small amt. of the supercritical fluid from an aq. soln. or org. soln. of a metal salt mixture contg. the platinum group elements. CONSTITUTION: The complex of the platinum group elements is formed by the complexing agents, such as phosphines, phosphites, dialkyl sulfides, cyclopentadiene and carbon monoxide, etc., in the aq. soln. or org. soln. of the metal salt mixture contg. the platinum group elements. The supercritical fluid is brought into contact with this complex to extract the complex in the supercritical fluid. The supercritical fluid in which the complex is extracted is blown into an aq. ammonia soln. contg. hydrazine, sodium borohydride, thiourea or ammonium chloride in the state of maintaining the supercritical state, by which the platinum group elements dissolved in the form of the complex in the supercritical fluid are recovered into the aq. ammonia soln.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、白金族元素を含む金属
塩混合物の水溶液又は有機溶液から白金族元素を分離
し、これを回収する方法に関する。更に詳しくは超臨界
抽出法により、(1)核燃料再処理、非鉄金属湿式精錬工
程で得られる白金族元素を含む金属塩混合物から白金族
元素を分離して回収する方法、又は(2)白金族元素スク
ラップ等から白金族元素を分離して回収する方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a method for separating a platinum group element from an aqueous solution or an organic solution of a metal salt mixture containing the platinum group element and recovering the platinum group element. More specifically, by supercritical extraction method, (1) nuclear fuel reprocessing, a method of separating and recovering platinum group elements from a metal salt mixture containing platinum group elements obtained in the non-ferrous metal hydrometallurgical process, or (2) platinum group The present invention relates to a method for separating and recovering platinum group elements from element scraps and the like.

【0002】[0002]

【従来の技術】各種金属元素を錯化しこの錯体を超臨界
流体で抽出分離する方法が、例えば錯化剤としてアセチ
ルアセトンを用いた「超臨界状態のCO2ガスによるア
セチルアセトン錯体の抽出法(N.Saito et al., Bull.C
hem.Soc.Jpn Vol.63, 1532 (1990))」や「選択的な錯
化による廃棄物からの金属イオンの超臨界抽出法(Chie
nM. Wai et al., PNL-SA-21775 (1993))」等により試
みられている。後者の超臨界抽出法はジエチルチカルバ
ミン酸錯体の超臨界状態のCO2ガスによる抽出法であ
る。
2. Description of the Related Art A method of complexing various metal elements and extracting and separating this complex with a supercritical fluid is known, for example, "Extraction method of acetylacetone complex with CO 2 gas in supercritical state using acetylacetone as a complexing agent (N. Saito et al., Bull.C
hem.Soc.Jpn Vol.63, 1532 (1990)) "and" Supercritical extraction of metal ions from waste by selective complexation (Chie
nM. Wai et al., PNL-SA-21775 (1993)) ”and the like. The latter supercritical extraction method is an extraction method using CO 2 gas in a supercritical state of a diethylticarbamic acid complex.

【0003】またリン酸トリブチル(以下、TBPとい
う)抽出の媒体として二酸化炭素超臨界流体を用いて硝
酸水溶液中からランタノイド(III)を抽出分離する方法
が「二酸化炭素超臨界流体を用いる水溶液からのランタ
ノイドの抽出分離」(日本原子力学会,1994春の年会,A2
9(1994年3月)」という題目で発表され、更に硝酸水溶
液中のウラン(VI)イオンを2〜3%のTBPを含む超臨
界二酸化炭素中に抽出分離する方法が「超臨界二酸化炭
素を媒体とする金属の抽出分離法の開発(II)」(日本原
子力学会,1995春の年会,J2(1995年3月)」という題目で
発表されている。これらの学会発表の超臨界抽出法によ
れば、従来の溶媒抽出法と比べて、有機溶媒の代わりに
超臨界流体を用いるため、廃有機溶媒の発生量が減少
し、しかも媒体に毒性や引火性がなく抽出操作の安全性
が向上するメリットがある。
Further, a method of extracting and separating lanthanoid (III) from an aqueous nitric acid solution using a carbon dioxide supercritical fluid as a medium for extracting tributyl phosphate (hereinafter, referred to as TBP) is described as "from an aqueous solution using a carbon dioxide supercritical fluid. Extraction and Separation of Lanthanoids "(Japan Atomic Energy Society, 1994 Spring Annual Meeting, A2)
9 (March 1994) ”, and the method of extracting and separating uranium (VI) ions in nitric acid aqueous solution into supercritical carbon dioxide containing 2-3% TBP is called" supercritical carbon dioxide. " Development of extraction and separation method of metals as medium (II) "(Atomic Energy Society of Japan, 1995 Spring Annual Meeting, J2 (March 1995)). According to the above, compared with the conventional solvent extraction method, since the supercritical fluid is used instead of the organic solvent, the amount of waste organic solvent generated is reduced, and the medium is not toxic or flammable and the extraction operation safety is improved. There is a merit to do.

【0004】[0004]

【発明が解決しようとする課題】しかし、アセチルアセ
トン錯体やジエチルチカルバミン酸錯体を用いる上記2
つの超臨界抽出法では各種元素と錯化剤とを組合せた場
合、超臨界流体中への錯体溶解度が0.01%のオーダ
で非常に低いため、超臨界流体の延べ使用量が非常に多
くなり、実際の分離プロセスとして効率の良い抽出操作
が困難である問題点があった。この溶解度を向上させる
方法として、上記2つの例のように抽出助剤や錯化剤が
液体の場合には溶液中の元素を錯化するのに必要な量よ
り非常に多量の錯化剤を溶液に添加し、錯化剤を抽出助
剤として併用する方法等がある。しかしこの方法は、抽
出助剤がアルコールや種々の有機溶媒を加えて調製され
るため、結局溶媒抽出法に近いものになり、超臨界抽出
法の溶媒抽出法に対する上記メリットを明確に打ち出す
ことができず、好ましくない。またこれらの方法で抽出
された元素は金属錯体の形態であり、再利用のための後
工程での処理を考慮すると、粉末状もしくは水溶液状が
好ましく、この場合超臨界抽出と連続的な操作でこれら
の形態にすることが望まれる。
However, when the acetylacetone complex or the diethylticarbamic acid complex is used, the above-mentioned 2
In the two supercritical extraction methods, when various elements and complexing agents are combined, the solubility of the complex in the supercritical fluid is very low, on the order of 0.01%, so the total amount of supercritical fluid used is very large. Therefore, there is a problem that an efficient extraction operation is difficult as an actual separation process. As a method for improving the solubility, when the extraction aid or the complexing agent is a liquid as in the above two examples, a much larger amount of complexing agent than that required for complexing the elements in the solution is used. There is a method of adding it to a solution and using a complexing agent as an extraction aid together. However, in this method, since the extraction aid is prepared by adding alcohol and various organic solvents, it eventually becomes close to the solvent extraction method, and the above-mentioned advantages over the solvent extraction method of the supercritical extraction method can be clearly stated. No, it is not preferable. In addition, the elements extracted by these methods are in the form of metal complexes, and in consideration of the treatment in a later step for reuse, powdery or aqueous solution is preferable, and in this case, supercritical extraction and continuous operation are performed. These forms are desired.

【0005】そこで、本発明の目的は、白金族元素を含
む金属塩混合物の水溶液又は有機溶液から白金族元素を
比較的少量の超臨界流体で、抽出助剤や過剰な錯化剤を
添加することなく、再利用のための処理が容易な粉末状
もしくは水溶液状の形態で分離・回収できる方法を提供
することにある。
Therefore, an object of the present invention is to add an extraction aid or an excessive complexing agent to a platinum group element in a relatively small amount of a supercritical fluid from an aqueous solution or an organic solution of a metal salt mixture containing a platinum group element. It is an object of the present invention to provide a method capable of separating and recovering in the form of a powder or an aqueous solution, which can be easily processed for reuse without being used.

【0006】[0006]

【課題を解決するための手段】本発明者らは、超臨界流
体を用いた白金族元素の分離するに際して、白金族元素
に対する錯化剤の組合せを検討し、特定の白金族元素と
選択的に錯体を形成し、しかもその錯体が超臨界流体に
高い溶解度を有する組合せを見出し、更に超臨界流体に
溶解した元素錯体をヒドラジン等の還元剤、チオ尿素、
塩化アンモニウム等を含む水溶液に超臨界状態で吹き込
むことにより、金属又は酸化物粉末、或いは白金族元素
の水溶液として得られることに着目し、本発明に到達し
た。
Means for Solving the Problems In separating platinum group elements using a supercritical fluid, the inventors of the present invention examined combinations of complexing agents for platinum group elements, and selected specific platinum group elements and selective platinum group elements. A complex which forms a complex in the supercritical fluid and has a high solubility in the supercritical fluid was found, and the elemental complex dissolved in the supercritical fluid was added to a reducing agent such as hydrazine, thiourea,
The present invention has been achieved, focusing on the fact that it can be obtained as an aqueous solution of a metal or oxide powder or a platinum group element by blowing it into an aqueous solution containing ammonium chloride or the like in a supercritical state.

【0007】上記目的を達成するために、本発明の白金
族元素の分離方法は、白金族元素を含む金属塩混合物の
水溶液又は有機溶液中でホスフィン類、ホスファイト
類、ジアルキルサルファイド類、シクロペンタジエン及
び一酸化炭素からなる群より選ばれた1種又は2種以上
の錯化剤により上記白金族元素の錯体を生成し、この錯
体に超臨界流体を接触させて錯体を超臨界流体に抽出
し、この錯体を抽出した超臨界流体をヒドラジン、水素
化ホウ素ナトリウム、チオ尿素又は塩化アンモニウムを
含むアンモニア水溶液に超臨界状態を保った状態で吹き
込むことにより、超臨界流体に錯体として溶解している
白金族元素を上記アンモニア水溶液中に回収する方法で
ある。
In order to achieve the above object, the method for separating a platinum group element according to the present invention comprises a phosphine, a phosphite, a dialkyl sulfide and a cyclopentadiene in an aqueous solution or an organic solution of a metal salt mixture containing a platinum group element. And a complex of the platinum group element is formed by one or more complexing agents selected from the group consisting of carbon monoxide, and the complex is brought into contact with a supercritical fluid to extract the complex into a supercritical fluid. , The complex-extracted platinum is dissolved as a complex in the supercritical fluid by blowing the supercritical fluid extracted from the complex into an aqueous ammonia solution containing hydrazine, sodium borohydride, thiourea or ammonium chloride while maintaining the supercritical state. This is a method of recovering a group element in the aqueous ammonia solution.

【0008】以下、本発明を詳述する。本発明の水溶液
又は有機溶液は、核燃料再処理、非鉄金属湿式精錬工程
等で得られる。特に使用済核燃料には、ウラン、プルト
ニウム等の核分裂により生成されたルテニウム(R
u)、ロジウム(Rh)、パラジウム(Pd)等の白金
族元素が相当量含まれており、その再処理液にもこれら
の白金族元素が含まれている。本発明の白金族元素の錯
体は、白金族元素を含む金属塩混合物の水溶液又は有機
溶液とホスフィン類、ホスファイト類、ジアルキルサル
ファイド類、シクロペンタジエン、一酸化炭素等の錯化
剤とを直接混合して生成する以外に、上記水溶液又は有
機溶液に白金族元素の錯イオンを形成する錯化剤を添加
して抽出用錯体の前駆体を形成し、この前駆体に上記錯
化剤を添加して白金族元素の錯体を生成することもでき
る。
The present invention will be described in detail below. The aqueous solution or organic solution of the present invention can be obtained by nuclear fuel reprocessing, non-ferrous metal hydrometallurgical process or the like. Especially for spent nuclear fuel, ruthenium (R
u), rhodium (Rh), palladium (Pd), and other platinum group elements are contained in a considerable amount, and the reprocessing liquid also contains these platinum group elements. The platinum group element complex of the present invention is obtained by directly mixing an aqueous solution or an organic solution of a metal salt mixture containing a platinum group element with a complexing agent such as phosphines, phosphites, dialkyl sulfides, cyclopentadiene and carbon monoxide. In addition to the above, a complexing agent that forms a complex ion of a platinum group element is added to the above aqueous solution or organic solution to form a precursor of an extraction complex, and the above complexing agent is added to this precursor. It is also possible to form a platinum group element complex.

【0009】本発明の特徴ある白金族元素の錯化剤とし
ては、ホスフィン類、ホスファイト類、ジアルキルサル
ファイド類、シクロペンタジエン及び一酸化炭素からな
る群より選ばれた1種又は2種以上の錯化剤が挙げられ
る。ホスフィン類としてはトリメチルホスフィン、トリ
エチルホスフィン、トリプロピルホスフィン、トリブチ
ルホスフィン等が例示され、ホスファイト類としてはト
リメチルホスファイト、トリエチルホスファイト、トリ
プロピルホスファイト、トリブチルホスファイト等が例
示され、ジアルキルサルファイド類としてはブチルサル
ファイド、ヘキシルサルファイド、オクチルサルファイ
ド等が例示される。ホスフィン類はホスフィン錯体を、
ホスファイト類はホスファイト錯体を、ジアルキルサル
ファイド類はジアルキルサルファイド錯体をそれぞれ形
成する。またシクロペンタジエンはシクロペンタジエン
錯体を、一酸化炭素はカルボニル錯体を形成する。
The complexing agent for platinum group elements, which is a feature of the present invention, is one or more complexes selected from the group consisting of phosphines, phosphites, dialkyl sulfides, cyclopentadiene and carbon monoxide. Examples include agents. Examples of phosphines include trimethylphosphine, triethylphosphine, tripropylphosphine, tributylphosphine, and the like, examples of phosphites include trimethylphosphite, triethylphosphite, tripropylphosphite, tributylphosphite, and dialkylsulfides. Examples thereof include butyl sulfide, hexyl sulfide, octyl sulfide and the like. Phosphines are phosphine complexes,
The phosphites form a phosphite complex, and the dialkyl sulfides form a dialkyl sulfide complex. Cyclopentadiene forms a cyclopentadiene complex and carbon monoxide forms a carbonyl complex.

【0010】また抽出用錯体の前駆体を形成させるため
の白金族元素の錯イオンを形成する錯化剤としては、N
aCl、NH4Cl、シクロオクタジエン等が例示され
る。この錯化剤がNaCl又はNH4Clの場合、抽出
用錯体の前駆体としてテトラクロロ錯体が形成され、錯
化剤がシクロオクタジエンの場合、抽出用錯体の前駆体
としてシクロオクタジエン錯体が形成される。本発明の
超臨界流体としては、超臨界状態のCO2ガス、フロン
ガス又は亜酸化窒素ガスが挙げられる。安価で取扱いの
容易なCO2ガスが好ましい。このCO2ガスの超臨界状
態は圧力150〜350atmの範囲で温度40〜80
℃の範囲にあることが好ましい。
Further, as a complexing agent for forming a complex ion of a platinum group element for forming a precursor of the extraction complex, N is N.
Examples are aCl, NH 4 Cl, cyclooctadiene and the like. When the complexing agent is NaCl or NH 4 Cl, a tetrachloro complex is formed as a precursor of the extracting complex, and when the complexing agent is cyclooctadiene, a cyclooctadiene complex is formed as a precursor of the extracting complex. To be done. Examples of the supercritical fluid of the present invention include CO 2 gas, CFC gas or nitrous oxide gas in a supercritical state. CO 2 gas, which is inexpensive and easy to handle, is preferable. The supercritical state of this CO 2 gas is at a pressure of 150 to 350 atm and a temperature of 40 to 80 atm.
It is preferably in the range of ° C.

【0011】白金族元素の錯体と超臨界流体との接触方
法としては、固液分離された白金族元素の錯体と超臨界
流体との接触により行う方法と、白金族元素の錯体が共
存する反応液と超臨界流体との接触により行う方法があ
る。図1に示すように、後者の接触は、例えば予め白金
族元素の錯体が共存する反応液10を耐圧性の抽出容器
11内に入れておき、この容器11内の反応液10にボ
ンベ12に貯えられた超臨界流体を供給弁12aを開い
て導管13により吹き込むことにより行われる。超臨界
流体に錯体として溶解している白金族元素はヒドラジン
(N24)、水素化ホウ素ナトリウム(NaBH4)、
チオ尿素又は塩化アンモニウム(NH4Cl)を含むア
ンモニア水溶液に吹き込まれることにより、このアンモ
ニア水溶液に逆抽出される。このアンモニア水溶液を貯
える分離・回収容器は単一でもよいが、白金族元素の分
離・回収率を高めるためには、複数配置することが好ま
しい。図1には第1段の分離・回収容器14と最終段の
分離・回収容器15を有する多段の逆抽出工程が示され
る。説明を簡単にするために、途中の分離・回収容器は
図示されない。この場合、錯体を抽出した超臨界流体は
導管16を通って第1段の分離・回収容器14に貯えら
れた上記アンモニア水溶液17に超臨界状態を保った状
態で吹き込まれる。次いで分離・回収容器14から排出
される超臨界流体は導管を通って図示しない分離・回収
容器に貯えられたアンモニア水溶液に超臨界状態を保っ
た状態で吹き込まれ、以下同様に導管18を通って最終
段の分離・回収容器15に貯えられたアンモニア水溶液
17に超臨界状態を保った状態で吹き込まれる。最終段
の分離・回収容器15から排出される超臨界流体は排出
弁19を開放することにより、臨界圧力以下の所定の圧
力に下げられ、錯化剤20が容器21に回収される。
The platinum group element complex and the supercritical fluid may be contacted with each other by contacting the solid-liquid-separated platinum group element complex with the supercritical fluid or a reaction in which the platinum group element complex coexists. There is a method of contacting a liquid with a supercritical fluid. As shown in FIG. 1, for the latter contact, for example, the reaction solution 10 in which a complex of a platinum group element coexists is placed in a pressure-resistant extraction vessel 11 in advance, and the reaction solution 10 in the vessel 11 is transferred to a cylinder 12. It is performed by opening the supply valve 12a and blowing the stored supercritical fluid through the conduit 13. Platinum group elements dissolved in the supercritical fluid as a complex are hydrazine (N 2 H 4 ), sodium borohydride (NaBH 4 ),
By blowing into an aqueous ammonia solution containing thiourea or ammonium chloride (NH 4 Cl), the aqueous solution is back-extracted. A single separation / recovery container for storing the aqueous ammonia solution may be used, but a plurality of separation / recovery containers are preferably arranged to increase the separation / recovery rate of the platinum group element. FIG. 1 shows a multistage back-extraction process having a first stage separation / recovery container 14 and a final stage separation / recovery container 15. For ease of explanation, the separation / recovery container in the middle is not shown. In this case, the supercritical fluid from which the complex has been extracted is blown through the conduit 16 into the aqueous ammonia solution 17 stored in the first stage separation / recovery container 14 while maintaining the supercritical state. Next, the supercritical fluid discharged from the separation / recovery container 14 is blown through the conduit into the aqueous ammonia solution stored in the separation / recovery container (not shown) in a state of maintaining the supercritical state. It is blown into the aqueous ammonia solution 17 stored in the separation / recovery container 15 at the final stage while maintaining the supercritical state. The supercritical fluid discharged from the final stage separation / recovery container 15 is lowered to a predetermined pressure below the critical pressure by opening the discharge valve 19, and the complexing agent 20 is recovered in the container 21.

【0012】[0012]

【作用】本発明の溶液にホスフィン類、ホスファイト
類、ジアルキルサルファイド類、シクロペンタジエン、
一酸化炭素等の錯化剤を添加して反応させると、生成し
た錯体は比較的低分子量で対称性のある構造を有し、C
2、フロン、亜酸化窒素等の超臨界流体に化学的に親
和性のあるものになる。そのためこの錯体と本発明の超
臨界流体とを接触させると、錯体が超臨界流体に従来の
10〜100倍程度の溶解度で溶け込む。この錯体を抽
出した超臨界流体をヒドラジン、水素化ホウ素ナトリウ
ム、チオ尿素又は塩化アンモニウムを含むアンモニア水
溶液に超臨界状態を保った状態で吹き込むと、超臨界流
体に錯体として溶解している白金族元素は、水素化ホウ
素ナトリウム又はヒドラジンの場合には還元作用によ
り、或いは塩化アンモニウム又はチオ尿素の場合には錯
形成により、アンモニア水溶液に逆抽出され、即ち錯化
剤より分離する。そして金属又は酸化物粉末、或いは白
金族元素の水溶液の形態で上記アンモニア水溶液中に回
収される。回収された粉末状の白金族元素はろ別又は遠
心分離等の固液分離手段でアンモニア水溶液から取出さ
れて再利用される。水溶液状の白金族元素は還元剤を添
加することによりアンモニア水溶液から分離されて再利
用される。
[Function] In the solution of the present invention, phosphines, phosphites, dialkyl sulfides, cyclopentadiene,
When a complexing agent such as carbon monoxide is added and reacted, the resulting complex has a relatively low molecular weight and a symmetric structure, and C
It becomes chemically compatible with supercritical fluids such as O 2 , chlorofluorocarbon, and nitrous oxide. Therefore, when this complex is brought into contact with the supercritical fluid of the present invention, the complex dissolves in the supercritical fluid with a solubility of about 10 to 100 times that of the conventional one. When the supercritical fluid obtained by extracting this complex is blown into an aqueous ammonia solution containing hydrazine, sodium borohydride, thiourea or ammonium chloride while maintaining the supercritical state, the platinum group element dissolved as a complex in the supercritical fluid Is back-extracted into the aqueous ammonia solution, i.e. separated from the complexing agent, by the reducing action in the case of sodium borohydride or hydrazine, or by complexing in the case of ammonium chloride or thiourea. Then, it is recovered in the aqueous ammonia solution in the form of a metal or oxide powder or an aqueous solution of a platinum group element. The recovered powdery platinum group element is taken out from the aqueous ammonia solution by a solid-liquid separation means such as filtration or centrifugation, and is reused. The platinum group element in the form of an aqueous solution is separated from the aqueous ammonia solution and reused by adding a reducing agent.

【0013】[0013]

【実施例】次に本発明の具体的態様を示すために、本発
明を実施例に基づいて説明する。以下に述べる実施例は
本発明の技術的範囲を限定するものではない。 <実施例1>白金族元素を含む金属元素混合模擬液とし
て、Pd,Pt,Rh,Ru,Mo,Pb,Fe,C
u,Al元素を含有する塩酸酸性(フリー塩酸濃度約
1.0N)の水溶液を調製した。元素の濃度及び組成は
表1に示す通りである。
EXAMPLES The present invention will now be described based on examples in order to show specific embodiments of the present invention. The examples described below do not limit the technical scope of the present invention. <Example 1> Pd, Pt, Rh, Ru, Mo, Pb, Fe, C were used as a metal element mixed simulation liquid containing a platinum group element.
An aqueous hydrochloric acid solution (free hydrochloric acid concentration of about 1.0 N) containing u and Al elements was prepared. The concentrations and compositions of the elements are as shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】この溶液100mlにパラジウム(Pd)
の錯イオン形成剤としてNaCl又はNH4ClをPd
のモル数に対してNaCl/Pd又はNH4Cl/Pd
=2〜4の割合で添加・混合し、ホスフィン錯化剤と錯
体を形成し易いPdのテトラクロロ錯イオン(PdCl
4 2-)を形成させた。次にこの溶液にトリブチルホスフ
ィンをPdのモル数の2倍の割合で添加・混合し、Pd
のジクロロビストリブチルホスフィン錯体(PdCl2
(PBu32)を形成させた。生成した錯体は水に対し
て難溶性であり水溶液中に浮遊した状態であった。7個
の耐圧性のある抽出容器を用意し、各容器にこの液のま
ま、或いはこの液から水をろ別した錯体を入れ、これら
の抽出容器に超臨界状態のCO2又はCHF3(フロン)
を吹き込んだ。具体的には、CO2を吹き込む場合、表
2に示すようにその圧力を150atmと350atm
の2条件にし、その温度を40℃と80℃の2条件にし
て表2に示す時間で、超臨界抽出操作をそれぞれ行っ
た。CHF3を吹き込む場合、表2に示すようにその圧
力を350atmだけの1条件にし、その温度を40℃
と80℃の2条件にして表2に示す時間で、超臨界抽出
操作をそれぞれ行った。CO2又はCHF3の流量は液体
基準で3.0ml/分であった。超臨界抽出操作後、抽
出容器から排出されるCO2又はCHF3の圧力を大気圧
に下げて抽出された錯体の重量を測定し、錯体の元素の
組成分析を行った。この測定及び分析結果から、模擬水
溶液からのPdの回収率、Pd錯体の超臨界流体中の溶
解度を求めた。その結果を表2に示す。
Palladium (Pd) was added to 100 ml of this solution.
Na or NH 4 Cl as a complex ion forming agent of Pd
NaCl / Pd or NH 4 Cl / Pd with respect to the number of moles of
= 2 to 4 added / mixed to easily form a complex with a phosphine complexing agent, Pd tetrachloro complex ion (PdCl
4 2- ) was formed. Next, tributylphosphine was added to and mixed with this solution at a ratio of twice the number of moles of Pd.
Dichlorobistributylphosphine complex (PdCl 2
(PBu 3 ) 2 ) was formed. The formed complex was poorly soluble in water and was suspended in an aqueous solution. Seven pressure-resistant extraction vessels were prepared, and each vessel was filled with the solution as it was, or the complex obtained by filtering water from this solution was put into these extraction vessels, and CO 2 or CHF 3 (chlorofluorocarbon) in a supercritical state was placed in these extraction vessels. )
Blew in. Specifically, when blowing CO 2 , as shown in Table 2, the pressure is 150 atm and 350 atm.
Under the two conditions of 40 ° C. and 80 ° C., and the supercritical extraction operation was performed for the times shown in Table 2. When CHF 3 is blown in, as shown in Table 2, the pressure is set to one condition of 350 atm and the temperature is set to 40 ° C.
And the supercritical extraction operation was performed under the two conditions of 80 ° C. and the time shown in Table 2. The flow rate of CO 2 or CHF 3 was 3.0 ml / min on a liquid basis. After the supercritical extraction operation, the pressure of CO 2 or CHF 3 discharged from the extraction container was reduced to atmospheric pressure, the weight of the extracted complex was measured, and the composition of the elements of the complex was analyzed. From the measurement and analysis results, the recovery rate of Pd from the simulated aqueous solution and the solubility of the Pd complex in the supercritical fluid were determined. The results are shown in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】表2から明らかなように、超臨界流体とし
てCO2を用いたときの模擬水溶液からのPdの回収率
はろ別をしない場合でも93%であり、ろ別をすると9
7〜98%の高い回収率であった。またCO2及びCH
3の超臨界流体へのPd錯体の溶解度は1.2%以上
あり、従来の方法での溶解度が0.01%のオーダであ
ることと比較して約100倍であった。これはPd錯体
を分離するために使用される超臨界流体の延べ使用量は
従来法と比べて1/100程度となり、実施例の方法が
プロセスを構成する上でまた分離操作する上で実現性が
高い方法であることが判明した。
As is clear from Table 2, the recovery rate of Pd from the simulated aqueous solution when CO 2 was used as the supercritical fluid was 93% even when the filtration was not carried out.
The recovery rate was as high as 7 to 98%. CO 2 and CH
The solubility of the Pd complex in the supercritical fluid of F 3 was 1.2% or more, which was about 100 times that in the conventional method, which was on the order of 0.01%. This is because the total amount of the supercritical fluid used for separating the Pd complex is about 1/100 of that of the conventional method, and the method of the embodiment is feasible in constructing the process and in separating operation. Proved to be a high method.

【0018】更に得られたPdのジクロロビストリブチ
ルホスフィン錯体(以下、Pd−PBu3錯体という)
0.5g(Pd重量で102mg)を仕込み錯体として
5個の耐圧性のある抽出容器にそれぞれ入れた。一方、
10個の耐圧性のある分離・回収容器を用意し、各容器
に表3に示す5種類の逆抽出溶液を10mlずつ貯え
た。1段の抽出工程と2段の逆抽出工程を実現するため
に、逆抽出溶液の種類毎に上記抽出容器1個に対して上
記分離・回収容器2個を直列に接続した。これらの3個
の直列接続した容器を全て40℃に保ち、全容器にCO
2を圧力150atm、流量3.0ml/分で30分間
吹き込み、超臨界抽出と超臨界逆抽出を行った。1段目
の分離・回収容器と2段目の分離・回収容器におけるP
dの逆抽出回収率を調べた。その結果を表3に示す。1
段目も2段目もほぼ同じPdの回収率であったので、表
3には1段目の分離・回収容器におけるPdの回収率の
みを示す。またこのときの逆抽出液中のPdの回収形態
を表3に示す。
Further obtained Pd dichlorobistributylphosphine complex (hereinafter referred to as Pd-PBu 3 complex)
0.5 g (102 mg by weight of Pd) was charged as a charged complex into each of 5 extraction containers having pressure resistance. on the other hand,
Ten pressure-resistant separation / recovery containers were prepared, and 10 ml of each of the five kinds of back extraction solutions shown in Table 3 were stored in each container. In order to realize the one-stage extraction process and the two-stage back extraction process, two separation / recovery containers were connected in series to one extraction container for each type of back extraction solution. Keep all three containers connected in series at 40 ° C, and
2 was blown for 30 minutes at a pressure of 150 atm and a flow rate of 3.0 ml / min to perform supercritical extraction and supercritical back extraction. P in the first-stage separation / recovery container and the second-stage separation / recovery container
The back extraction recovery of d was investigated. Table 3 shows the results. 1
Since the recovery rates of Pd in the second and second stages were almost the same, Table 3 shows only the recovery rates of Pd in the separation / recovery container in the first stage. Table 3 shows the recovery form of Pd in the back extract at this time.

【0019】[0019]

【表3】 [Table 3]

【0020】表3から明らかなように、超臨界抽出で得
られた難溶性固体錯体であるPd−PBu3錯体が、N2
4、チオ尿素及びNH4Clを含む逆抽出液に一部溶解
してPdの水溶液として回収され、またNaBH4を含
む逆抽出液ではPd−PBu3錯体が還元されて金属P
dの粉末状の沈殿として回収された。上記逆抽出液によ
る1段の回収率は最低でも20%程度であり、特にチオ
尿素を10%含むアンモニア水溶液を逆抽出液としたも
のは50%近い高い回収率を示した。更に2段目の分離
・回収容器の排出系の最終トラップにおいて超臨界流体
であるCO2を除去して残留物を得た。この残留物を分
析したところ、2段の逆抽出工程で回収されなかったP
dの全量が検出された。
As is clear from Table 3, the Pd-PBu 3 complex, which is a hardly soluble solid complex obtained by supercritical extraction, was converted into N 2
The solution is partially dissolved in a back extract containing H 4 , thiourea and NH 4 Cl and recovered as an aqueous solution of Pd. In the back extract containing NaBH 4 , the Pd-PBu 3 complex is reduced and the metal P
It was recovered as a powdery precipitate of d. The one-stage recovery rate by the above-mentioned back extract was at least about 20%, and particularly the one using an aqueous ammonia solution containing 10% of thiourea as the back extract showed a high recovery rate of nearly 50%. Further, CO 2 as a supercritical fluid was removed in the final trap of the discharge system of the second stage separation / recovery container to obtain a residue. Analysis of this residue revealed that P was not recovered in the two-stage back extraction process.
The total amount of d was detected.

【0021】<実施例2>超臨界流体としてCO2の代
わりにCHF3を用い、Pd−PBu3錯体の仕込み量を
0.5g(Pd重量で102mg)にし、逆抽出液とし
てN24を含むアンモニア水溶液を用いた以外は、実施
例1と同様にして1段の超臨界抽出と2段の超臨界逆抽
出を行った。その結果を表4に示す。
Example 2 CHF 3 was used as the supercritical fluid instead of CO 2 , the charged amount of the Pd-PBu 3 complex was adjusted to 0.5 g (Pd weight 102 mg), and N 2 H 4 was used as the back extract. 1-stage supercritical extraction and 2-stage supercritical back extraction were carried out in the same manner as in Example 1 except that an aqueous ammonia solution containing was used. The results are shown in Table 4.

【0022】<実施例3>超臨界流体としてCO2の代
わりにN2Oを用い、Pd−PBu3錯体の仕込み量を
0.5g(Pd重量で102mg)にし、逆抽出液とし
てNH4Clを含むアンモニア水溶液を用いた以外は、
実施例1と同様にして1段の超臨界抽出と2段の超臨界
逆抽出を行った。その結果を表4に示す。
Example 3 N 2 O was used instead of CO 2 as a supercritical fluid, the charged amount of Pd-PBu 3 complex was adjusted to 0.5 g (Pd weight: 102 mg), and NH 4 Cl was used as a back extraction liquid. Except that an aqueous ammonia solution containing
In the same manner as in Example 1, one-stage supercritical extraction and two-stage supercritical back extraction were performed. The results are shown in Table 4.

【0023】[0023]

【表4】 [Table 4]

【0024】表4から明らかなように、逆抽出液の種類
によるPdの回収形態は実施例1と同じであった。上記
逆抽出液によるPdの回収率は20〜22%で実施例1
と比較すると低かった。
As is clear from Table 4, the recovery form of Pd according to the type of the back extract was the same as in Example 1. The recovery rate of Pd by the above-mentioned back extract was 20 to 22%, and Example 1 was used.
It was low compared to.

【0025】<実施例4>白金族元素を含む金属元素混
合模擬液として、Ru,Pd,Pt,Rh,Mo,P
b,Fe,Cu,Al元素を含有する塩酸酸性(フリー
塩酸濃度約0.5N)のエタノール水溶液を調製した。
元素の濃度及び組成は表5に示す通りである。
<Embodiment 4> Ru, Pd, Pt, Rh, Mo and P were used as a metal element mixed simulation liquid containing a platinum group element.
A hydrochloric acid-acidic (free hydrochloric acid concentration: about 0.5 N) ethanol aqueous solution containing b, Fe, Cu, and Al elements was prepared.
The element concentrations and compositions are shown in Table 5.

【0026】[0026]

【表5】 [Table 5]

【0027】この溶液100mlにルテニウム(Ru)
の錯化剤としてトリメチルホスファイトをRuのモル数
の4〜8倍の割合で添加し0℃、大気圧下で反応させ、
亜リン酸が4配位したRuのメチルホスファイト錯体
(RuCl2[P(OCH3)]4)を形成させた。この
錯体はエタノール水溶液に難溶性であり沈殿として得ら
れた。次に4つの耐圧性のある抽出容器を用意し、各容
器にこの沈殿をろ別して得られた錯体を入れ、これらの
抽出容器に超臨界状態のCO2又はN2O(亜酸化窒素)
を吹き込んだ。具体的には、CO2を吹き込む場合、表
6に示すようにその圧力を150atmと350atm
の2条件にし、その温度を40℃と80℃の2条件にし
て表6に示す時間で、超臨界抽出操作をそれぞれ行っ
た。N2Oを吹き込む場合、表6に示すようにその圧力
を350atmだけの1条件にし、その温度を40℃と
80℃の2条件にして表6に示す時間で、超臨界抽出操
作をそれぞれ行った。CO2又はN2Oの流量は液体基準
で3.0ml/分であった。超臨界抽出操作後、抽出容
器から排出されるCO2又はN2Oの圧力を大気圧に下げ
て抽出された錯体の重量を測定し、錯体の元素の組成分
析を行った。この測定及び分析結果から、模擬水溶液か
らのRuの回収率、Ru錯体の超臨界流体中の溶解度を
求めた。その結果を表6に示す。
Ruthenium (Ru) was added to 100 ml of this solution.
Trimethyl phosphite is added as a complexing agent of 4 to 8 times the molar number of Ru and reacted at 0 ° C. under atmospheric pressure.
A methylphosphite complex of Ru (RuCl 2 [P (OCH 3 )] 4 ) in which phosphorous acid was four-coordinated was formed. This complex was poorly soluble in aqueous ethanol and was obtained as a precipitate. Next, four extraction containers with pressure resistance are prepared, and the complex obtained by filtering this precipitate is put into each container, and CO 2 or N 2 O (nitrous oxide) in a supercritical state is put into these extraction containers.
Blew in. Specifically, when blowing CO 2 , as shown in Table 6, the pressure is 150 atm and 350 atm.
Under the two conditions of 40 ° C. and 80 ° C., and the supercritical extraction operation was performed for the times shown in Table 6. When N 2 O is blown in, as shown in Table 6, the pressure is set to one condition of 350 atm, the temperature is set to two conditions of 40 ° C. and 80 ° C., and the supercritical extraction operation is performed for each time shown in Table 6. It was The flow rate of CO 2 or N 2 O was 3.0 ml / min on a liquid basis. After the supercritical extraction operation, the pressure of CO 2 or N 2 O discharged from the extraction container was reduced to atmospheric pressure, the weight of the extracted complex was measured, and the composition of the elements of the complex was analyzed. From the measurement and analysis results, the recovery rate of Ru from the simulated aqueous solution and the solubility of the Ru complex in the supercritical fluid were determined. Table 6 shows the results.

【0028】[0028]

【表6】 [Table 6]

【0029】表6から明らかなように、模擬水溶液から
Ruを73%〜82%の高い回収率で回収でき、その他
の元素組成が高々10%であることから回収物はRuが
約90%の高い純度であった。
As is clear from Table 6, Ru can be recovered from the simulated aqueous solution at a high recovery rate of 73% to 82%, and the other elemental composition is at most 10%, so the recovered product has a Ru content of about 90%. It was of high purity.

【0030】<実施例5>白金族元素を含む金属元素混
合模擬液として、Ru,Pd,Pt,Rh,Mo,P
b,Fe,Cu,Al元素を含有する塩酸酸性(フリー
塩酸濃度約0.5N)のエタノール水溶液を調製した。
元素の濃度及び組成は表7に示す通りである。
<Embodiment 5> Ru, Pd, Pt, Rh, Mo and P were used as a metal element mixed simulation liquid containing a platinum group element.
A hydrochloric acid-acidic (free hydrochloric acid concentration: about 0.5 N) ethanol aqueous solution containing b, Fe, Cu, and Al elements was prepared.
The concentrations and compositions of the elements are as shown in Table 7.

【0031】[0031]

【表7】 [Table 7]

【0032】この溶液100mlにルテニウム(Ru)
の錯化剤としてシクロオクタジエンをRuのモル数の1
〜2倍の割合で添加し75℃、大気圧下で反応させ、R
uのシクロオクタジエン錯体(RuCl2(C812))
を形成させた。更にこの溶液にn−Bu3Sn(C
55)をRuのモル数の2〜4倍の割合で添加し75
℃、大気圧下で反応させ、ルテノセン錯体(Ru(C5
52)させた。生成した錯体はエタノール水溶液に難
溶性であり沈殿として得られた。次にこの沈殿をろ別し
て得られた錯体を抽出容器に入れ、この抽出容器に超臨
界状態のCO2を吹き込んだ。具体的には、表8に示す
ようにCO2の圧力を150atmと350atmの2
条件にし、その温度を40℃と80℃の2条件にして表
8に示す時間で、CO2による超臨界抽出操作をそれぞ
れ行った。CO2の流量は液体基準で3.0ml/分で
あった。超臨界抽出操作後、抽出容器から排出されるC
2の圧力を大気圧に下げて抽出された錯体の重量を測
定し、錯体の元素の組成分析を行った。この測定及び分
析結果から、模擬水溶液からのRuの回収率、Ru錯体
の超臨界流体中の溶解度を求めた。その結果を表8に示
す。
Ruthenium (Ru) was added to 100 ml of this solution.
Cyclooctadiene as a complexing agent for Ru in a molar number of 1
~ 2 times the ratio of addition and react at 75 ℃, atmospheric pressure, R
u cyclooctadiene complex (RuCl 2 (C 8 H 12 ))
Was formed. Furthermore, n-Bu 3 Sn (C
5 H 5 ) at a ratio of 2 to 4 times the number of moles of Ru, and
The reaction is carried out at ℃ and atmospheric pressure, and the ruthenocene complex (Ru (C 5
H 5 ) 2 ). The produced complex was hardly soluble in ethanol aqueous solution and was obtained as a precipitate. Next, the complex obtained by filtering off this precipitate was put into an extraction container, and CO 2 in a supercritical state was blown into the extraction container. Specifically, as shown in Table 8, the CO 2 pressure was set to 150 atm and 350 atm.
Under the conditions, the temperature was set to two conditions of 40 ° C. and 80 ° C., and the supercritical extraction operation with CO 2 was performed for the times shown in Table 8. The flow rate of CO 2 was 3.0 ml / min on a liquid basis. C discharged from the extraction container after the supercritical extraction operation
The pressure of O 2 was reduced to atmospheric pressure, the weight of the extracted complex was measured, and the elemental composition of the complex was analyzed. From the measurement and analysis results, the recovery rate of Ru from the simulated aqueous solution and the solubility of the Ru complex in the supercritical fluid were determined. Table 8 shows the results.

【0033】[0033]

【表8】 [Table 8]

【0034】表8から明らかなように、模擬水溶液から
Ruを78%〜88%の高い回収率で回収でき、その他
の元素組成が高々10%であることから回収物はRuが
約90%の高い純度であった。
As is clear from Table 8, Ru can be recovered from the simulated aqueous solution at a high recovery rate of 78% to 88%, and the other elemental composition is at most 10%, so the recovered product has a Ru content of about 90%. It was of high purity.

【0035】<実施例6>白金族元素を含む金属元素混
合模擬液として、Ru,Pd,Pt,Rh,Mo,P
b,Fe,Cu,Al元素を含有する塩酸酸性(フリー
塩酸濃度約0.5N)のエタノール水溶液を調製した。
元素の濃度及び組成は表9に示す通りである。
<Embodiment 6> Ru, Pd, Pt, Rh, Mo and P are used as a metal element mixed simulation liquid containing a platinum group element.
A hydrochloric acid-acidic (free hydrochloric acid concentration: about 0.5 N) ethanol aqueous solution containing b, Fe, Cu, and Al elements was prepared.
The concentrations and compositions of the elements are as shown in Table 9.

【0036】[0036]

【表9】 [Table 9]

【0037】この溶液100mlにルテニウム(Ru)
の錯化剤として一酸化炭素(CO)をRuのモル数の1
〜2倍の割合で添加し125℃、60atmで反応さ
せ、Ruのカルボニル錯体(Ru3(CO))を形成さ
せた。生成した錯体はエタノール水溶液に難溶性であり
沈殿として得られた。次にこの沈殿をろ別して得られた
錯体を抽出容器に入れ、この抽出容器に超臨界状態のC
2を吹き込んだ。具体的には、表10に示すようにC
2の圧力を150atmと350atmの2条件に
し、その温度を40℃と80℃の2条件にして表10に
示す時間で、CO2による超臨界抽出操作をそれぞれ行
った。CO2の流量は液体基準で3.0ml/分であっ
た。超臨界抽出操作後、抽出容器から排出されるCO2
の圧力を大気圧に下げて抽出された錯体の重量を測定
し、錯体の元素の組成分析を行った。この測定及び分析
結果から、模擬水溶液からのRuの回収率、Ru錯体の
超臨界流体中の溶解度を求めた。その結果を表10に示
す。
Ruthenium (Ru) was added to 100 ml of this solution.
Carbon monoxide (CO) is used as a complexing agent for Ru in a molar number of 1
It was added at a ratio of 2 times and reacted at 125 ° C. and 60 atm to form a Ru carbonyl complex (Ru 3 (CO)). The produced complex was hardly soluble in ethanol aqueous solution and was obtained as a precipitate. Next, the complex obtained by filtering off this precipitate is put into an extraction vessel, and C in a supercritical state is placed in this extraction vessel.
Blow O 2 . Specifically, as shown in Table 10, C
The supercritical extraction operation with CO 2 was carried out under the conditions of O 2 pressure of 150 atm and 350 atm and the temperature of 40 ° C. and 80 ° C. for the times shown in Table 10. The flow rate of CO 2 was 3.0 ml / min on a liquid basis. CO 2 discharged from the extraction container after the supercritical extraction operation
The pressure of was reduced to atmospheric pressure, the weight of the extracted complex was measured, and the elemental composition of the complex was analyzed. From the measurement and analysis results, the recovery rate of Ru from the simulated aqueous solution and the solubility of the Ru complex in the supercritical fluid were determined. The results are shown in Table 10.

【0038】[0038]

【表10】 [Table 10]

【0039】表10から明らかなように、模擬水溶液か
らRuを85%〜94%の高い回収率で回収でき、その
他の元素組成が高々15%であることから回収物はRu
が約85%の高い純度であった。
As is clear from Table 10, Ru can be recovered from the simulated aqueous solution at a high recovery rate of 85% to 94%, and the other elemental composition is at most 15%.
Was a high purity of about 85%.

【0040】<実施例7>仕込み錯体としてPdのヘル
キシルサルファイド錯体(以下、Pd−DHS錯体とい
う)0.5ml(Pd重量で12.5mg)を5個の耐
圧性のある抽出容器にそれぞれ入れた。一方、5個の耐
圧性のある分離・回収容器を用意し、各容器に表11に
示す5種類の逆抽出溶液を10mlずつ貯えた。1段の
抽出工程と1段の逆抽出工程を実現するために、逆抽出
溶液の種類毎に上記抽出容器1個に上記分離・回収容器
1個を直列に接続した。これらの2個の直列接続した容
器を全て40℃に保ち、全容器にCOを圧力150a
tm、流量3.0ml/分で30分間吹き込み、超臨界
抽出と超臨界逆抽出を行った。分離・回収容器における
Pdの逆抽出回収率を調べた。その結果を表11に示
す。またこのときの逆抽出液中のPdの回収形態を表1
1に示す。
<Example 7> As a charged complex, 0.5 ml of Pd-helxyl sulfide complex (hereinafter referred to as Pd-DHS complex) (12.5 mg by weight of Pd) was placed in each of 5 pressure-resistant extraction vessels. It was On the other hand, five pressure-resistant separation / recovery containers were prepared, and 10 ml of each of the five types of back extraction solutions shown in Table 11 were stored in each container. In order to realize the one-stage extraction process and the one-stage back extraction process, one separation / recovery container was connected in series to one extraction container for each type of back extraction solution. All of these two containers connected in series were kept at 40 ° C., and CO 2 was supplied to all the containers at a pressure of 150 a.
Supercritical extraction and supercritical back extraction were carried out by blowing at tm at a flow rate of 3.0 ml / min for 30 minutes. The reverse extraction recovery rate of Pd in the separation / recovery container was examined. The results are shown in Table 11. The recovery form of Pd in the back extract at this time is shown in Table 1.
It is shown in FIG.

【0041】[0041]

【表11】 [Table 11]

【0042】表11から明らかなように、逆抽出液の種
類によるPdの回収形態は実施例1と同じであった。上
記逆抽出液による1段の回収率は36%以上であり、特
にチオ尿素を10%含むアンモニア水溶液を逆抽出液と
したものは95%という極めて高い回収率を示した。
As is clear from Table 11, the recovery form of Pd depending on the type of the back extract was the same as in Example 1. The one-step recovery rate by the above-mentioned back extract was 36% or more, and particularly the one using an aqueous ammonia solution containing 10% of thiourea as a back extract showed an extremely high recovery rate of 95%.

【0043】[0043]

【発明の効果】以上述べたように、本発明によれば、錯
化剤としてホスフィン類、ホスファイト類、ジアルキル
サルファイド類、シクロペンタジエン、一酸化炭素等を
選定してこの錯化剤により白金族元素の錯体を生成する
と、この錯体は比較的低分子量で対称性のある構造を有
するようになり、この錯体とCO2、フロン、亜酸化窒
素等の超臨界流体とを接触させると、錯体が超臨界流体
に従来の10〜100倍程度の溶解度で溶け込む。この
錯体を抽出した超臨界流体をヒドラジン、水素化ホウ素
ナトリウム、チオ尿素又は塩化アンモニウムを含むアン
モニア水溶液に超臨界状態を保った状態で吹き込むと、
超臨界流体に錯体として溶解している白金族元素は上記
アンモニア水溶液に逆抽出され、回収される。
As described above, according to the present invention, phosphines, phosphites, dialkyl sulfides, cyclopentadiene, carbon monoxide and the like are selected as complexing agents, and the platinum group is selected by the complexing agent. When a complex of an element is formed, the complex has a relatively low molecular weight and a symmetric structure, and when the complex is brought into contact with a supercritical fluid such as CO 2 , chlorofluorocarbon, and nitrous oxide, the complex is formed. It dissolves in a supercritical fluid with a solubility of 10 to 100 times that of the conventional one. When the supercritical fluid extracted from this complex is blown into an aqueous ammonia solution containing hydrazine, sodium borohydride, thiourea or ammonium chloride while maintaining the supercritical state,
The platinum group element dissolved in the supercritical fluid as a complex is back-extracted and recovered in the aqueous ammonia solution.

【0044】この結果、白金族元素を含む金属塩混合物
が溶解した水溶液又は有機溶液から白金族元素を従来の
1/10〜1/100程度の比較的少量の超臨界流体で
効率よく分離することができるとともに、白金族元素を
再利用のための処理が容易な金属又は酸化物粉末、或い
は白金族元素の水溶液の形態で回収することができる。
As a result, it is possible to efficiently separate the platinum group element from the aqueous solution or organic solution in which the metal salt mixture containing the platinum group element is dissolved with a relatively small amount of supercritical fluid, which is about 1/10 to 1/100 of the conventional one. In addition, the platinum group element can be recovered in the form of a metal or oxide powder which can be easily treated for reuse or an aqueous solution of the platinum group element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の白金族元素の分離・回収装置の構成
図。
FIG. 1 is a block diagram of a platinum group element separation / recovery device of the present invention.

【符号の説明】[Explanation of symbols]

10 白金族元素の錯体が共存する反応液 11 抽出容器 12 超臨界流体を貯えるボンベ 14,15 分離・回収容器 17 アンモニア水溶液(逆抽出液) 20 錯化剤 10 Reaction liquid in which complex of platinum group element coexists 11 Extraction container 12 Cylinder for storing supercritical fluid 14, 15 Separation / recovery container 17 Aqueous ammonia solution (back extraction liquid) 20 Complexing agent

フロントページの続き (72)発明者 西村 建二 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社那珂エ ネルギー研究所内Front page continuation (72) Kenji Nishimura Inventor Kenji Nishimura 14 Nakamura, Naka-cho, Ibaraki Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 白金族元素を含む金属塩混合物の水溶液
又は有機溶液中でホスフィン類、ホスファイト類、ジア
ルキルサルファイド類、シクロペンタジエン及び一酸化
炭素からなる群より選ばれた1種又は2種以上の錯化剤
により前記白金族元素の錯体を生成し、 前記錯体に超臨界流体を接触させて前記錯体を前記超臨
界流体に抽出し、 前記錯体を抽出した超臨界流体をヒドラジン、水素化ホ
ウ素ナトリウム、チオ尿素又は塩化アンモニウムを含む
アンモニア水溶液に超臨界状態を保った状態で吹き込む
ことにより、前記超臨界流体に錯体として溶解している
白金族元素を前記アンモニア水溶液中に回収することを
特徴とする溶液中の白金族元素の分離・回収方法。
1. One or more selected from the group consisting of phosphines, phosphites, dialkyl sulfides, cyclopentadiene and carbon monoxide in an aqueous solution or organic solution of a metal salt mixture containing a platinum group element. The complexing agent of the platinum group element is generated by the complexing agent of, the supercritical fluid is brought into contact with the complex to extract the complex into the supercritical fluid, and the supercritical fluid from which the complex is extracted is hydrazine or borohydride. By blowing in an aqueous ammonia solution containing sodium, thiourea or ammonium chloride while maintaining a supercritical state, the platinum group element dissolved as a complex in the supercritical fluid is recovered in the aqueous ammonia solution. A method for separating and recovering platinum group elements in a solution.
【請求項2】 ホスフィン類がトリメチルホスフィン、
トリエチルホスフィン、トリプロピルホスフィン又はト
リブチルホスフィンである請求項1記載の溶液中の白金
族元素の分離・回収方法。
2. The phosphine is trimethylphosphine,
The method for separating and recovering a platinum group element in a solution according to claim 1, which is triethylphosphine, tripropylphosphine or tributylphosphine.
【請求項3】 ホスファイト類がトリメチルホスファイ
ト、トリエチルホスファイト、トリプロピルホスファイ
ト又はトリブチルホスファイトである請求項1記載の溶
液中の白金族元素の分離・回収方法。
3. The method for separating and recovering a platinum group element in a solution according to claim 1, wherein the phosphite is trimethylphosphite, triethylphosphite, tripropylphosphite or tributylphosphite.
【請求項4】 ジアルキルサルファイド類がブチルサル
ファイド、ヘキシルサルファイド、オクチルサルファイ
ドである請求項1記載の溶液中の白金族元素の分離・回
収方法。
4. The method for separating and recovering a platinum group element in a solution according to claim 1, wherein the dialkyl sulfides are butyl sulfide, hexyl sulfide and octyl sulfide.
【請求項5】 白金族元素の錯体と超臨界流体との接触
が固液分離された白金族元素の錯体と超臨界流体との接
触により行われる請求項1記載の溶液中の白金族元素の
分離・回収方法。
5. The platinum group element in the solution according to claim 1, wherein the platinum group element complex and the supercritical fluid are contacted with each other by contacting the solid-liquid separated platinum group element complex with the supercritical fluid. Separation / collection method.
【請求項6】 白金族元素の錯体と超臨界流体との接触
が白金族元素の錯体が共存する反応液と超臨界流体との
接触により行われる請求項1記載の溶液中の白金族元素
の分離・回収方法。
6. The platinum group element in the solution according to claim 1, wherein the contact between the platinum group element complex and the supercritical fluid is carried out by contact between the reaction solution in which the platinum group element complex coexists and the supercritical fluid. Separation / collection method.
【請求項7】 超臨界流体が超臨界状態のCO2ガス、
フロンガス又は亜酸化窒素ガスである請求項1記載の溶
液中の白金族元素の分離・回収方法。
7. A CO 2 gas in which the supercritical fluid is in a supercritical state,
The method for separating and recovering a platinum group element in a solution according to claim 1, which is a CFC gas or a nitrous oxide gas.
【請求項8】 超臨界状態のCO2ガスが圧力150〜
350atmの範囲で温度40〜80℃の範囲にあるC
2ガスである請求項7記載の溶液中の白金族元素の分
離・回収方法。
8. CO 2 gas in a supercritical state has a pressure of 150 to
C in the temperature range of 40 to 80 ° C. in the range of 350 atm
The method for separating and recovering a platinum group element in a solution according to claim 7, which is O 2 gas.
JP9513495A 1995-04-20 1995-04-20 Separation and recovery of platinum group elements in solution Expired - Fee Related JP3348808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9513495A JP3348808B2 (en) 1995-04-20 1995-04-20 Separation and recovery of platinum group elements in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9513495A JP3348808B2 (en) 1995-04-20 1995-04-20 Separation and recovery of platinum group elements in solution

Publications (2)

Publication Number Publication Date
JPH08291345A true JPH08291345A (en) 1996-11-05
JP3348808B2 JP3348808B2 (en) 2002-11-20

Family

ID=14129357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9513495A Expired - Fee Related JP3348808B2 (en) 1995-04-20 1995-04-20 Separation and recovery of platinum group elements in solution

Country Status (1)

Country Link
JP (1) JP3348808B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091104A (en) * 1995-06-20 1997-01-07 Kubota Corp Treatment of flying ash
KR100322761B1 (en) * 1999-11-26 2002-02-07 곽영훈 Method for recovering platinum and palladium from spent catalysts by sulfation reaction
WO2012169351A1 (en) 2011-06-10 2012-12-13 エム・テクニック株式会社 Fluid treatment method including extraction
CN105400958A (en) * 2015-12-03 2016-03-16 福建工程学院 Method and device for rapidly leaching out gold in waste circuit board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091104A (en) * 1995-06-20 1997-01-07 Kubota Corp Treatment of flying ash
KR100322761B1 (en) * 1999-11-26 2002-02-07 곽영훈 Method for recovering platinum and palladium from spent catalysts by sulfation reaction
WO2012169351A1 (en) 2011-06-10 2012-12-13 エム・テクニック株式会社 Fluid treatment method including extraction
KR20140019305A (en) 2011-06-10 2014-02-14 엠. 테크닉 가부시키가이샤 Fluid treatment method including extraction
US9764250B2 (en) 2011-06-10 2017-09-19 M. Technique Co., Ltd. Fluid processing method including extraction
CN105400958A (en) * 2015-12-03 2016-03-16 福建工程学院 Method and device for rapidly leaching out gold in waste circuit board
CN105400958B (en) * 2015-12-03 2018-02-02 福建工程学院 Golden method and device in a kind of Rapid Leaching waste printed circuit board

Also Published As

Publication number Publication date
JP3348808B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
CA2191243C (en) Fluid extraction
US7686865B2 (en) Method and system for recovering metal from metal-containing materials
Erkey Supercritical carbon dioxide extraction of metals from aqueous solutions: a review
US7128840B2 (en) Ultrasound enhanced process for extracting metal species in supercritical fluids
US5356538A (en) Supercritical fluid extraction
Albler et al. A comparison of two methods of recovering cobalt from a deep eutectic solvent: Implications for battery recycling
Charlesworth Separating the platinum group metals by liquid‐liquid extraction
WO1998004754A1 (en) Method and apparatus for back-extracting metal chelates
CN102933495A (en) Method for recovering gold by solvent extraction
US6187911B1 (en) Method for separating metal chelates from other materials based on solubilities in supercritical fluids
Dehghani et al. Extraction and separation of lanthanides using dense gas CO2 modified with tributyl phosphate and di (2-ethyl hexyl) phosphoric acid
Ruiu et al. Promising polymer-assisted extraction of palladium from supported catalysts in supercritical carbon dioxide
Nag et al. Rapid dissolution of noble metals in organic solvents
KR20000029571A (en) Fluid extraction of metals or metalloids
JP3348808B2 (en) Separation and recovery of platinum group elements in solution
WO1995033541A1 (en) Fluid extraction of metals and/or metalloids
Redden et al. The extraction of nickel with aliphatic oximes
RU2239666C1 (en) Method of preparing rhodium, palladium, and ruthenium concentrates from nitric acid solutions
JP2951290B2 (en) Regeneration of dithiophosphoric acid metal extractant
US3672875A (en) Extraction of fission product noble metals from spent nuclear fuels
JP2847182B2 (en) Lithium isotope separating agent and method for separating lithium isotope
JP2003073751A (en) Method for microwave acidolysis, and method for highly concentrating metal with use of supercritical fluid extraction
WO2006054893A2 (en) Process for the recovery of acids
Otgonbayar et al. Process Development for the Separation of Pt, Ru, and Ir by Solvent Extraction
JP2019127627A (en) Method for recovering noble metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees