JPH082904A - Production of hydrogen peroxide - Google Patents

Production of hydrogen peroxide

Info

Publication number
JPH082904A
JPH082904A JP13725294A JP13725294A JPH082904A JP H082904 A JPH082904 A JP H082904A JP 13725294 A JP13725294 A JP 13725294A JP 13725294 A JP13725294 A JP 13725294A JP H082904 A JPH082904 A JP H082904A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
concentration
oxygen
reaction
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13725294A
Other languages
Japanese (ja)
Inventor
Michiya Kawakami
道也 河上
Masao Ishiuchi
征夫 石内
Hiromitsu Nagashima
広光 長島
Takeshi Tomita
健 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP13725294A priority Critical patent/JPH082904A/en
Publication of JPH082904A publication Critical patent/JPH082904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To provide an industrially advantageous method for production of hydrogen peroxide, capable of producing high-concentration hydrogen peroxide at low cost by reducing the amount of used pure oxygen which is relatively expensive. CONSTITUTION:This is a method for producing hydrogen peroxide by catalytically reacting hydrogen with oxygen in the presence of a catalyst in an aqueous medium. In this method, the reaction is carried out while controlling the concentration of oxygen in feed gas to 10 to 30vol.%, 20 to 50vol.% and 30 to 95vol.% in the case the concentration of hydrogen peroxide in the reactor is respectively <5wt.%, <10wt.% and >=10wt.%. These conditions enable reduction of the amount of used pure oxygen while keeping the selectivity of hydrogen high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は反応媒体中で酸素と水素
を触媒と接触的に反応させ、過酸化水素を製造する改良
された方法に関するものである。更に詳しくは反応器内
に存在する過酸化水素の濃度に応じて、供給ガス中の酸
素濃度を制御することにより、経済的に、効率よく過酸
化水素を製造する方法に関する。
This invention relates to an improved process for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen with a catalyst in a reaction medium. More specifically, it relates to a method for economically and efficiently producing hydrogen peroxide by controlling the oxygen concentration in the feed gas in accordance with the concentration of hydrogen peroxide existing in the reactor.

【0002】[0002]

【従来の技術】現在、工業的に行われている過酸化水素
の主な製造方法は、アルキルアンスラキノンを媒体とす
る自動酸化法である。この方法の問題点として、還元、
酸化、水抽出分離、精製、濃縮等の多くの工程が必要で
ありプロセスが複雑となるため、装置費、運転費が大き
いということが挙げられる。更には、アルキルアンスラ
キノンの劣化による損失、還元用触媒の劣化等の問題も
ある。
2. Description of the Related Art Currently, the main method of industrially producing hydrogen peroxide is an autoxidation method using alkylanthraquinone as a medium. As a problem of this method, reduction,
Since many processes such as oxidation, water extraction / separation, purification, concentration, etc. are required and the process is complicated, the equipment cost and the operating cost are high. Further, there are problems such as loss due to deterioration of alkyl anthraquinone and deterioration of the reduction catalyst.

【0003】これらの問題点を改善するために、上記製
造方法以外の製造方法が試みられているが、その一つ
に、反応媒体中で触媒を用いて、酸素と水素から直接的
に過酸化水素を製造する方法がある。既に、白金族金属
を触媒として用い、酸素と水素から過酸化水素を製造す
る方法が提案されており、ある程度高い濃度の過酸化水
素が生成することが示されている。(特公昭56−47
121号、特公昭55−18646号、特公平1−23
401、特開昭63−156005号、US51942
42号、US4336239号の各公報参照)。
In order to solve these problems, production methods other than the above-mentioned production methods have been tried. One of them is to use a catalyst in the reaction medium to directly peroxidize oxygen and hydrogen. There is a method of producing hydrogen. A method for producing hydrogen peroxide from oxygen and hydrogen using a platinum group metal as a catalyst has already been proposed, and it has been shown that hydrogen peroxide of a certain high concentration is produced. (Japanese Patent Publication No. 56-47
No. 121, Japanese Patent Publication No. 55-18646, Japanese Patent Fair 1-23
401, JP-A-63-156005, US51942.
42, US Pat. No. 4,336,239).

【0004】これらの特許では反応ガスとして純酸素ま
たは空気の如き酸素と窒素の混合物から成るガスと水素
を用いて反応を行わせることにより過酸化水素の水溶液
を製造する方法を開示している。また、特公昭56−4
7121号公報では水素と酸素の比率を規定しており、
それによると反応系気相中の水素分圧を0.5気圧以
上、および酸素分圧を1.0気圧以上に保持し、水素分
圧に対する酸素分圧の比を1.5〜20に保持すること
によって高効率で過酸化水素を製造する方法を開示して
いる。
These patents disclose a method for producing an aqueous solution of hydrogen peroxide by carrying out a reaction by using hydrogen as a reaction gas, which is a gas composed of a mixture of oxygen and nitrogen such as pure oxygen or air. In addition, Japanese Examined Japanese Patent Sho 56-4
Japanese Patent No. 7121 defines the ratio of hydrogen and oxygen,
According to this, the hydrogen partial pressure in the reaction gas phase is kept at 0.5 atm or more, the oxygen partial pressure is kept at 1.0 atm or more, and the ratio of the oxygen partial pressure to the hydrogen partial pressure is kept at 1.5 to 20. Disclosed is a method for producing hydrogen peroxide with high efficiency.

【0005】しかしながら、単に酸素分圧の高い混合ガ
スを使用する方法においては、酸素分圧を上げるために
純酸素を多量に使用せざるを得ない割りには過酸化水素
の収量が上がらない。一般に、純酸素は比較的高価であ
り、供給ガス中の酸素濃度を高めるために使用される純
酸素の費用負担から生ずる経済的な問題点を解決する方
法が求められていた。
However, in the method of simply using a mixed gas having a high oxygen partial pressure, the yield of hydrogen peroxide does not increase in spite of using pure oxygen in a large amount in order to increase the oxygen partial pressure. In general, pure oxygen is relatively expensive, and there has been a need for a method of solving the economic problems caused by the cost burden of pure oxygen used for increasing the oxygen concentration in the feed gas.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、高濃
度の過酸化水素を経済的に得ることを可能とした過酸化
水素の製造方法を提供することである。特に、比較的高
価な純酸素の使用量を下げることのできる、工業的に有
利な過酸化水素の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing hydrogen peroxide, which makes it possible to obtain a high concentration of hydrogen peroxide economically. In particular, it is an object of the invention to provide an industrially advantageous method for producing hydrogen peroxide, which can reduce the amount of relatively expensive pure oxygen used.

【0007】[0007]

【課題を解決するための手段】本発明者らは、酸素と水
素から触媒を用いて接触的に過酸化水素を製造する方法
において、より高い水素選択率で高濃度の過酸化水素水
を安価に得る製造方法の検討を続けた結果、反応器内に
存在する過酸化水素の濃度と供給ガス中の酸素濃度との
関係が水素選択率と密接な相関がある事を見いだし、供
給ガス中の酸素濃度を反応器中の過酸化水素濃度に応じ
て制御することによって、その目的が達成されることを
見いだし、本発明を完成するに至った。
[Means for Solving the Problems] In the method for catalytically producing hydrogen peroxide from oxygen and hydrogen using a catalyst, the present inventors have made it possible to inexpensively produce a highly concentrated hydrogen peroxide solution with higher hydrogen selectivity. As a result of continuing the examination of the production method obtained in, the relationship between the concentration of hydrogen peroxide existing in the reactor and the oxygen concentration in the feed gas was found to have a close correlation with the hydrogen selectivity. The inventors have found that the object can be achieved by controlling the oxygen concentration according to the hydrogen peroxide concentration in the reactor, and have completed the present invention.

【0008】即ち、本発明は、酸素と水素を水媒体中で
接触的に反応させて過酸化水素を製造する方法におい
て、供給ガス中の酸素濃度を反応器中の過酸化水素濃度
に応じて制御すること、即ち反応器内に存在する過酸化
水素の濃度が高い場合には供給ガス中の酸素濃度を高く
制御し、過酸化水素濃度が低い場合には供給ガス中の酸
素濃度を低く制御することにより、経済的に過酸化水素
を製造する方法に関する。
That is, according to the present invention, in a method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in an aqueous medium, the oxygen concentration in the feed gas is adjusted according to the hydrogen peroxide concentration in the reactor. Controlling, that is, when the concentration of hydrogen peroxide existing in the reactor is high, the oxygen concentration in the feed gas is controlled to be high, and when the hydrogen peroxide concentration is low, the oxygen concentration in the feed gas is controlled to be low. By doing so, it relates to a method for economically producing hydrogen peroxide.

【0009】反応媒体中で酸素と水素を接触的に反応さ
せて過酸化水素を製造する方法において水素選択率は式
(1)で示される。
In the method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in a reaction medium, the hydrogen selectivity is represented by the formula (1).

【数1】式(1): 水素選択率(%)=[(反応により生成した過酸化水素
のモル量)÷(消費された水素量から算出した過酸化水
素の理論生成モル量)]×100 本発明者らは式(1)で求めた水素選択率が供給ガス中
の酸素濃度に大きく影響され、酸素濃度が高いほど水素
選択率が高くなる傾向を示すことを見いだした。すなわ
ち、供給ガス中の酸素濃度を高めることにより水素選択
率は向上し、過酸化水素の取得量は増加する。
Formula (1): Hydrogen selectivity (%) = [(molar amount of hydrogen peroxide produced by reaction) / (theoretical molar amount of hydrogen peroxide calculated from the amount of hydrogen consumed)] × The present inventors have found that the hydrogen selectivity obtained by the equation (1) is greatly influenced by the oxygen concentration in the supply gas, and that the higher the oxygen concentration, the higher the hydrogen selectivity tends to be. That is, by increasing the oxygen concentration in the supply gas, the hydrogen selectivity is improved and the hydrogen peroxide acquisition amount is increased.

【0010】本発明者らは更に検討を進め、酸素濃度に
よる水素選択率への影響は過酸化水素濃度が低い場合に
は比較的小さいが、過酸化水素濃度が高くなるにつれ、
水素選択率に対する酸素濃度の影響が大きくなるという
傾向を見いだし、本発明を完成した。
The present inventors further studied, and the effect of oxygen concentration on hydrogen selectivity was relatively small when the hydrogen peroxide concentration was low, but as the hydrogen peroxide concentration increased,
The present invention has been completed by finding a tendency that the influence of oxygen concentration on hydrogen selectivity increases.

【0011】本発明の方法によると、比較的酸素濃度の
影響の少ない過酸化水素の低濃度領域においては供給ガ
ス中の酸素濃度を低く制御し、酸素濃度の影響の大きい
過酸化水素の高濃度領域においては供給ガス中の酸素濃
度を高く制御することによって、純酸素の使用量を低減
し、かつ、高い水素選択率で反応を行なう事が可能とな
る。
According to the method of the present invention, the oxygen concentration in the feed gas is controlled to be low in the low concentration region of hydrogen peroxide, which is relatively less affected by the oxygen concentration, and the high concentration of hydrogen peroxide, which is greatly affected by the oxygen concentration, is increased. In the region, by controlling the oxygen concentration in the supply gas to be high, it becomes possible to reduce the amount of pure oxygen used and to carry out the reaction with a high hydrogen selectivity.

【0012】本発明においては、供給ガス中の酸素濃度
は、反応器内の過酸化水素濃度が0から5重量%未満の
領域においては供給ガス中の酸素濃度を10〜30容積
%、好ましくは、15〜25容積%に制御し、過酸化水
素濃度が5重量%以上10重量%未満の領域においては
供給ガス中の酸素濃度を20〜50容積%、好ましくは
25〜35容積%に制御し、さらに過酸化水素濃度が1
0重量%以上の領域においては供給ガス中の酸素濃度を
30〜95容積%、好ましくは35〜60容積%に制御
する。
In the present invention, the oxygen concentration in the feed gas is 10 to 30% by volume, preferably 10 to 30% by volume in the region where the hydrogen peroxide concentration in the reactor is 0 to less than 5% by weight. 15 to 25% by volume, and in the region where the hydrogen peroxide concentration is 5% by weight or more and less than 10% by weight, the oxygen concentration in the supply gas is controlled to 20 to 50% by volume, preferably 25 to 35% by volume. , And the hydrogen peroxide concentration is 1
In the range of 0% by weight or more, the oxygen concentration in the supply gas is controlled to 30 to 95% by volume, preferably 35 to 60% by volume.

【0013】供給ガス中の酸素濃度を前記した範囲に制
御するためには、酸素と水素との反応に障害とならない
ような不活性ガスを適当量、供給ガス中に存在させるこ
とにより実施される。不活性ガスとしては、窒素、アル
ゴンが例示される。酸素源としては、純酸素、空気又は
酸素富化空気などが使用される。供給ガス中の酸素濃度
を前記した範囲に制御するために、空気に純酸素又は酸
素富化空気を混合することは好ましい方法である。
In order to control the oxygen concentration in the feed gas within the above range, an appropriate amount of an inert gas that does not hinder the reaction between oxygen and hydrogen is present in the feed gas. . Examples of the inert gas include nitrogen and argon. Pure oxygen, air, oxygen-enriched air, or the like is used as the oxygen source. It is a preferred method to mix pure oxygen or oxygen-enriched air with the air in order to control the oxygen concentration in the feed gas within the above range.

【0014】前述した如く、反応媒体中で酸素と水素を
接触的に反応させて過酸化水素を製造する方法におい
て、より高濃度の酸素を含む供給ガスを用いる事により
水素選択率を向上させる事が出来るため、反応器内に存
在する過酸化水素の濃度が低い領域においても高い濃度
の酸素ガスを含有する供給ガスを用いる事が不可能では
ない事は言うまでもない。
As described above, in the method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen in the reaction medium, the hydrogen selectivity is improved by using a feed gas containing a higher concentration of oxygen. Therefore, it is needless to say that it is not impossible to use the feed gas containing a high concentration of oxygen gas even in the region where the concentration of hydrogen peroxide existing in the reactor is low.

【0015】しかし、本発明によれば、不必要に高濃度
の酸素を用いず、反応器内に存在する過酸化水素の濃度
に応じた効率的な酸素濃度を選択することになり、これ
によりもたらされる利点は効率面・経済面からみて極め
て大きい。本発明で規定する範囲外の酸素濃度の選択
は、効率面・経済面からみて不利になる。本発明による
過酸化水素の製造は、通常、反応圧力3kg/cm2
G〜150kg/cm2・G、反応温度0℃〜50℃の
条件下で行われる。水素濃度は、1〜20容積%であ
る。
However, according to the present invention, it is possible to select an efficient oxygen concentration according to the concentration of hydrogen peroxide existing in the reactor without using an unnecessarily high concentration of oxygen. The benefits provided are extremely large in terms of efficiency and economy. Selecting an oxygen concentration outside the range specified in the present invention is disadvantageous in terms of efficiency and economy. The production of hydrogen peroxide according to the present invention is usually carried out at a reaction pressure of 3 kg / cm 2 ·
G to 150 kg / cm 2 · G, and the reaction temperature is 0 ° C to 50 ° C. The hydrogen concentration is 1 to 20% by volume.

【0016】本発明に用いられる触媒としては白金族金
属が好ましく、パラジウム、白金が特に好ましい。触媒
の形状には特に制限はなく、ペレット状であっても粉末
状であっても差し支えない。また、一般的な触媒担体、
例えばシリカ、チタニア、アルミナ、マグネシア、ジル
コニア、セリア、ゼオライト及び活性炭等を用い、これ
らの担体上にパラジウムや白金等の白金族金属を担持す
ることによっても調製される。
The catalyst used in the present invention is preferably a platinum group metal, particularly preferably palladium or platinum. The shape of the catalyst is not particularly limited, and it may be in the form of pellet or powder. In addition, a general catalyst carrier,
For example, silica, titania, alumina, magnesia, zirconia, ceria, zeolite, activated carbon, or the like may be used, and a platinum group metal such as palladium or platinum may be supported on these carriers.

【0017】触媒の使用量は、通常1リットル当たり1
グラム以上が使用される。また、反応媒体中に触媒を多
量に加えてスラリー状態で反応を行うことも可能であ
る。本発明では高濃度の過酸化水素水が生成されるため
に、分解を抑制する目的で反応媒体である水中に過酸化
水素の安定剤を添加することも可能である。過酸化水素
の安定剤としては公知の水溶性の安定剤を用いることが
できる。
The amount of catalyst used is usually 1 per liter.
More than a gram is used. It is also possible to add a large amount of a catalyst to the reaction medium and carry out the reaction in a slurry state. In the present invention, since a high concentration of hydrogen peroxide water is generated, it is possible to add a stabilizer of hydrogen peroxide to water as a reaction medium for the purpose of suppressing decomposition. As the stabilizer for hydrogen peroxide, a known water-soluble stabilizer can be used.

【0018】安定剤の具体例としては、アミノトリ(メ
チレンホスホン酸)、1−ヒドロキシエチリデン−1,
1−ジホスホン酸、エチレンジアミンテトラ(メチレン
ホスホン酸)またこれらのナトリウム塩、さらにリン
酸、硫酸、硝酸やピロリン酸ナトリウムなどを挙げるこ
とができる。安定剤の使用量は安定剤の種類や過酸化水
素水濃度により異なってくるが、通常、水中の濃度とし
て0.1重量%以下、好ましくは0.1ppm以上10
0ppm以下である。
Specific examples of the stabilizer include aminotri (methylenephosphonic acid), 1-hydroxyethylidene-1,
Examples thereof include 1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), sodium salts thereof, phosphoric acid, sulfuric acid, nitric acid and sodium pyrophosphate. The amount of the stabilizer used varies depending on the kind of the stabilizer and the concentration of hydrogen peroxide solution, but normally, the concentration in water is 0.1 wt% or less, preferably 0.1 ppm or more 10
It is 0 ppm or less.

【0019】本発明の実施態様を説明すると、例えば、
バッチ反応装置の場合には、反応時間の経過ともに増加
する反応器中の過酸化水素濃度に応じて、供給ガス中の
酸素濃度を調節する。即ち反応初期の過酸化水素濃度が
5重量%未満の低濃度領域では酸素源として空気を用
い、反応の進行に伴う過酸化水素濃度の上昇に応じ、経
時的に供給ガス中の酸素含有量を増やして前記した濃度
に酸素濃度を次第に上げて行く。
An embodiment of the present invention will be described. For example,
In the case of a batch reactor, the oxygen concentration in the feed gas is adjusted according to the hydrogen peroxide concentration in the reactor, which increases with the passage of reaction time. That is, in the low concentration region where the hydrogen peroxide concentration in the initial stage of the reaction is less than 5% by weight, air is used as an oxygen source, and the oxygen content in the supply gas is changed with time as the hydrogen peroxide concentration increases with the progress of the reaction. The oxygen concentration is increased to gradually raise the oxygen concentration to the above-mentioned concentration.

【0020】また、反応器を2器以上備え、反応媒体が
各反応器内を逐次通過するようにした流通装置の場合に
は、反応媒体のそれぞれの反応器内での滞留時間を調整
することにより、各反応器内の過酸化水素の濃度が第1
反応器から適当な濃度を保って順に高くなるように調整
する。一方、各反応器に供給されるガス中の酸素濃度は
第1反応器から順に高くして行く。
Further, in the case of a flow apparatus having two or more reactors and allowing the reaction medium to sequentially pass through each reactor, the residence time of the reaction medium in each reactor should be adjusted. The concentration of hydrogen peroxide in each reactor is
From the reactor, adjust the concentration so that it becomes higher while maintaining an appropriate concentration. On the other hand, the oxygen concentration in the gas supplied to each reactor is gradually increased from the first reactor.

【0021】そのための好ましい方法は、各反応器に水
素を供給し、同時に並行して、酸素濃度の高い供給ガス
を最終反応器に供給し、最終反応器から出たオフガスを
その前段の反応器に供給するというように各反応器から
出たオフガスを順次その前段の反応器に供給することに
より、オフガスを反応媒体の流れとは逆に第1反応器に
向かって各反応器を順次通過するように導入する。
A preferred method therefor is to supply hydrogen to each reactor, simultaneously in parallel to supply a feed gas having a high oxygen concentration to the final reactor, and to supply off-gas from the final reactor to the reactor of the preceding stage. The off-gas from each reactor is sequentially supplied to the reactor at the preceding stage, so that the off-gas sequentially passes through each reactor toward the first reactor in the opposite direction to the flow of the reaction medium. To introduce.

【0022】この場合、供給ガス中の酸素ガスは、各反
応器を通過する際に消費され、第1反応器に向かってガ
ス中の酸素濃度は順次減少する。即ち、反応媒体と供給
ガスの流れを向流にすることで、反応器内の過酸化水素
濃度が高い領域では酸素濃度の高いガスによる反応が、
また過酸化水素濃度が低い領域では酸素濃度の低いガス
による反応が行われることになり、本発明による方法を
実行することができる。
In this case, the oxygen gas in the feed gas is consumed when passing through each reactor, and the oxygen concentration in the gas gradually decreases toward the first reactor. That is, by making the flow of the reaction medium and the supply gas countercurrent, the reaction by the gas with high oxygen concentration in the region where the hydrogen peroxide concentration is high in the reactor,
Further, in the region where the hydrogen peroxide concentration is low, the reaction with the gas having a low oxygen concentration is performed, and the method according to the present invention can be carried out.

【0023】以上の方法の他、供給ガス中の酸素濃度を
反応器内の過酸化水素濃度に応じて制御することが可能
である反応形式であればその形式、形状には制限はな
い。本発明を実施する反応装置の形式としては、一般的
には撹拌式の反応器が採用されるが、水媒体と触媒を充
分に分散させる動力を与えることが出来れば、気泡塔や
流動床式反応器等を制限なく用いることができる。
In addition to the above method, there is no limitation on the form and shape as long as it is a reaction type in which the oxygen concentration in the supply gas can be controlled according to the hydrogen peroxide concentration in the reactor. As the type of the reaction apparatus for carrying out the present invention, a stirred reactor is generally adopted, but if a power for sufficiently dispersing the aqueous medium and the catalyst can be given, a bubble column or a fluidized bed reactor can be used. A reactor or the like can be used without limitation.

【0024】[0024]

【実施例】以下、実施例及び比較例によって本発明を更
に詳細に説明する。実施例、比較例において水素反応
量、供給ガス中の酸素濃度は反応器出口ガス組成、反応
器入口ガス組成をガスクロマトグラフによって分析し求
めた。また、反応媒体中の過酸化水素濃度の測定は、硫
酸酸性過マンガン酸カリウム溶液による滴定法により行
った。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. In the Examples and Comparative Examples, the hydrogen reaction amount and the oxygen concentration in the supply gas were determined by analyzing the reactor outlet gas composition and the reactor inlet gas composition by a gas chromatograph. The hydrogen peroxide concentration in the reaction medium was measured by a titration method using a sulfuric acid-acidic potassium permanganate solution.

【0025】実施例1 内容積6リットルのSUS316製冷却ジャケット付オ
ートクレーブに、臭素酸ナトリウムを0.5ミリモル/
リットル、硫酸を0.1モル/リットル含有する水溶液
3000ミリリットルと、触媒としてN.Eケムキャッ
ト(株)製5重量%Pd/TiO2触媒10gを加えて
懸濁させた。オートクレーブを閉め、空気を720Nl
/hrにてオートクレーブ内に導入し、圧力調節弁によ
りオートクレーブの圧力が9Kg/cm2・Gになるま
で昇圧した。空気の通気を続けながら、反応圧力を9K
g/cm2・G、反応温度を25℃に保ち、1500r
pmの速度で撹拌を開始した。
Example 1 An autoclave with a cooling jacket made of SUS316 and having an internal volume of 6 liters was charged with 0.5 mmol / mol of sodium bromate.
Liter, 3000 ml of an aqueous solution containing 0.1 mol / liter of sulfuric acid, and N.V. as a catalyst. 10 g of a 5 wt% Pd / TiO 2 catalyst manufactured by E Chemcat Corporation was added and suspended. Close the autoclave and let air 720Nl
The pressure of the autoclave was increased to 9 Kg / cm 2 · G by the pressure control valve. While continuing the ventilation of air, the reaction pressure is 9K
g / cm 2 · G, keep reaction temperature at 25 ° C, 1500r
Stirring was started at a speed of pm.

【0026】条件が安定した後、水素ガス60Nl/h
r及び空気と純酸素の混合ガス720Nl/hrを同時
に通気し、反応を開始した。空気と純酸素の混合ガス中
の両者の比率は、反応開始後2.5時間までが720:
0(供給ガス中酸素濃度19.4容積%)、2.5〜
4.5時間が663:57(同25.2容積%)、4.
5〜6.5時間が615:105(同30.0容積%)
とし、供給ガス中の酸素濃度を順次上昇させた。
After the conditions are stabilized, hydrogen gas 60 Nl / h
r and a mixed gas of air and pure oxygen (720 Nl / hr) were simultaneously aerated to start the reaction. The ratio of both in the mixed gas of air and pure oxygen is 720: until 2.5 hours after the start of the reaction.
0 (oxygen concentration in supply gas 19.4% by volume), 2.5-
4.5 hours 663: 57 (25.2% by volume), 4.
5 to 6.5 hours 615: 105 (30.0% by volume)
The oxygen concentration in the supply gas was gradually increased.

【0027】それぞれの反応時間における過酸化水素の
濃度は、反応開始後2.5時間までが0〜4.52重量
%、2.5〜4.5時間が4.52〜7.20重量%で
あり、6.5時間の反応終了時における過酸化水素濃度
は9.57重量%、水素反応量は全体で14.8モルで
あった。供給ガス中の酸素濃度を高めるために反応終了
迄に空気に加えた純酸素の量は324Nlであり、過酸
化水素1gを製造するのに使用した純酸素は、全体で
1.13Nl/g-H2O2であった。なお、全反応時間
(6.5時間)を通しての水素選択率は57%であっ
た。
The concentration of hydrogen peroxide in each reaction time is 0 to 4.52% by weight up to 2.5 hours after the start of the reaction, and 4.52 to 7.20% by weight for 2.5 to 4.5 hours. At the end of the reaction for 6.5 hours, the hydrogen peroxide concentration was 9.57% by weight, and the hydrogen reaction amount was 14.8 mol in total. The amount of pure oxygen added to the air by the end of the reaction to increase the oxygen concentration in the feed gas was 324 Nl, and the pure oxygen used to produce 1 g of hydrogen peroxide was 1.13 Nl / gH 2 in total. It was O 2 . The hydrogen selectivity over the entire reaction time (6.5 hours) was 57%.

【0028】比較例1 水素流量を60Nl/hr、空気流量を615Nl/h
r、純酸素流量を105Nl/hrとして、供給ガス中
の酸素濃度を30容積%に固定して酸素濃度を変化させ
ずに反応を6.5時間行った以外は実施例1と同様の反
応を行った。6.5時間の反応終了後、過酸化水素濃度
は9.95重量%、全水素反応量は14.6モルであっ
た。反応終了迄に空気に加えた純酸素の量は683Nl
であり、過酸化水素1g生成するのに使用した純酸素
は、全体で2.29Nl/g-H2O2であった。なお、全反
応時間(6.5時間)を通しての水素選択率は60%で
あった。
Comparative Example 1 Hydrogen flow rate is 60 Nl / hr, and air flow rate is 615 Nl / h.
r, the pure oxygen flow rate was 105 Nl / hr, the same reaction as in Example 1 was performed except that the oxygen concentration in the supply gas was fixed at 30% by volume and the reaction was performed for 6.5 hours without changing the oxygen concentration. went. After completion of the reaction for 6.5 hours, the hydrogen peroxide concentration was 9.95% by weight, and the total hydrogen reaction amount was 14.6 mol. The amount of pure oxygen added to the air by the end of the reaction is 683 Nl.
The pure oxygen used to generate 1 g of hydrogen peroxide was 2.29 Nl / g H 2 O 2 in total. The hydrogen selectivity was 60% over the entire reaction time (6.5 hours).

【0029】以上より明らかなように、過酸化水素の濃
度に応じて供給ガス中の酸素濃度を変化させて反応を行
う実施例1と比較して、酸素濃度を固定させて反応を行
うと水素選択率はほぼ同等であるにもかかわらず、純酸
素の使用量は2倍強となった。
As is clear from the above, as compared with Example 1 in which the reaction is carried out by changing the oxygen concentration in the feed gas according to the hydrogen peroxide concentration, hydrogen is produced when the reaction is carried out with the oxygen concentration fixed. Although the selectivities were almost the same, the amount of pure oxygen used was more than doubled.

【0030】比較例2 純酸素を用いず酸素源として空気のみを用い、水素流量
を60Nl/hr、空気流量を720Nl/hrとし、
供給ガス酸素濃度を19容積%に固定して反応を6.5
時間行った以外は比較例1と同様の反応を行った。6.
5時間の反応終了後、水素反応量は全体で14.7モル
であったが、過酸化水素濃度は7.88重量%しかなか
った。全反応時間(6.5時間)を通しての水素選択率
は47%であった。
Comparative Example 2 Pure air was not used but only air was used as an oxygen source. The hydrogen flow rate was 60 Nl / hr and the air flow rate was 720 Nl / hr.
The reaction was carried out at 6.5 with the oxygen concentration in the feed gas fixed at 19% by volume.
The same reaction as in Comparative Example 1 was carried out except that the reaction was carried out for a time. 6.
After completion of the reaction for 5 hours, the hydrogen reaction amount was 14.7 mol in total, but the hydrogen peroxide concentration was only 7.88% by weight. The hydrogen selectivity over the entire reaction time (6.5 hours) was 47%.

【0031】比較例3 純酸素を用いず酸素源として空気のみを用い、水素流量
を60Nl/hr、空気流量を720Nl/hrとし、
供給ガス酸素濃度を19容積%に固定して反応を9時間
行った以外は比較例1と同様の反応を行った。9時間の
反応終了後、水中の過酸化水素濃度は9.57重量%に
まで上昇したが、水素反応量は全体で20.2モルで全
反応時間を通しての水素選択率は42%に低下した。
Comparative Example 3 Only pure air was used as the oxygen source without using pure oxygen, the hydrogen flow rate was 60 Nl / hr, and the air flow rate was 720 Nl / hr.
The same reaction as in Comparative Example 1 was carried out except that the oxygen concentration in the feed gas was fixed at 19% by volume and the reaction was carried out for 9 hours. After the completion of the reaction for 9 hours, the hydrogen peroxide concentration in water increased to 9.57% by weight, but the total hydrogen reaction amount was 20.2 mol, and the hydrogen selectivity over the entire reaction time decreased to 42%. .

【0032】実施例2 内容積6リットルのSUS316製の撹拌機と冷却ジャ
ケットを備えたオートクレーブ3器を用い、反応媒体及
び反応ガスそれぞれが各反応器内を順次、向流で通過す
るように接続した。各反応器にそれぞれ、臭素酸ナトリ
ウムを0.5ミリモル/リットル、硫酸を0.1モル/
リットル含有する水溶液3000ミリリットルと触媒と
してN.Eケムキャット(株)製5重量%Pd担持チタ
ニア触媒10gを加えて懸濁させた。オートクレーブを
閉め、空気615Nl/hr及び純酸素105Nl/h
rを第3反応器底に導入し、第3反応器から排出された
ガスを第2反応器底に導入し、第2反応器から排出され
たガスを第1反応器底に導入した。第1反応器出口ガス
ラインに設置した圧力調節弁により第1反応器内の圧力
を9.0Kg/cm2・Gになるまで昇圧した。これに
対応して、第2、第3反応器の圧力はそれぞれ9.1K
g/cm2・G、9.2Kg/cm2・Gとなった。
Example 2 Using an autoclave 3 units equipped with a stirrer made of SUS316 having an internal volume of 6 liters and a cooling jacket, the reaction medium and the reaction gas were connected so as to sequentially pass in the respective reactors in countercurrent. did. 0.5 mmol / l sodium bromate and 0.1 mol / sulfuric acid were added to each reactor.
3000 ml of an aqueous solution containing liter and N. 10 g of a 5 wt% Pd-supporting titania catalyst manufactured by E-Chem Cat Co., Ltd. was added and suspended. Close the autoclave, air 615 Nl / hr and pure oxygen 105 Nl / h
r was introduced into the bottom of the third reactor, the gas discharged from the third reactor was introduced into the bottom of the second reactor, and the gas discharged from the second reactor was introduced into the bottom of the first reactor. The pressure in the first reactor was increased to 9.0 Kg / cm 2 · G by the pressure control valve installed in the gas line at the outlet of the first reactor. Correspondingly, the pressure in the second and third reactors is 9.1K each.
It was g / cm 2 · G and 9.2 Kg / cm 2 · G.

【0033】臭素酸ナトリウムを0.5ミリモル/リッ
トル、硫酸を0.1モル/リットル含有する水溶液を1
350ミリリットル/hrで第1反応器に導入し、第1
反応器内の液量が3000ミリリットルに維持されるよ
うに反応液をフィルターを通して抜き出し、抜き出した
反応液をポンプを用いて第2反応器に導入した。第2反
応器も同様に、液量3000ミリリットルになるように
反応液をフィルターを通して抜き出し、その反応液を第
3反応器に導入した。第3反応器も同様に液量3000
ミリリットルになるように反応液を抜き出した。
An aqueous solution containing 0.5 mmol / liter of sodium bromate and 0.1 mol / liter of sulfuric acid was used.
Introduced into the first reactor at 350 ml / hr,
The reaction liquid was extracted through a filter so that the liquid amount in the reactor was maintained at 3000 ml, and the extracted reaction liquid was introduced into the second reactor using a pump. Similarly, in the second reactor, the reaction liquid was extracted through a filter so that the liquid amount became 3000 ml, and the reaction liquid was introduced into the third reactor. The third reactor also has a liquid volume of 3000.
The reaction solution was withdrawn so that the volume became milliliter.

【0034】空気と純酸素の通気及び水溶液の導入を続
けながら、第1反応器内の圧力を9Kg/cm2・G、
各反応器温度を25℃、各反応器液量を3000ミリリ
ットルに保ち、1500rpmで撹拌を開始した。条件
が安定した後、水素ガスを各反応器にそれぞれ60Nl
/hrにて通気し反応を開始した。反応開始18時間後
に各反応器の過酸化水素濃度が定常状態に達した。
While continuing the aeration of air and pure oxygen and the introduction of the aqueous solution, the pressure in the first reactor was adjusted to 9 Kg / cm 2 · G.
The temperature of each reactor was kept at 25 ° C., the liquid volume of each reactor was kept at 3000 ml, and stirring was started at 1500 rpm. After the conditions were stabilized, hydrogen gas was added to each reactor at 60 Nl.
The reaction was initiated by aeration at / hr. 18 hours after the start of the reaction, the hydrogen peroxide concentration in each reactor reached a steady state.

【0035】定常状態における第1反応器出口から流出
する反応液中の過酸化水素濃度は3.94重量%、第1
反応器に導入された混合ガス中の酸素濃度は21.5容
積%、第2反応器においてはそれぞれ7.00重量%、
26.1容積%、第3反応器においてはそれぞれ9.2
4重量%、30.0容積%であった。全反応時間を通し
ての純酸素使用量は105Nl/hrであり、過酸化水
素1g生成するのに使用した純酸素は、全体で0.84
Nl/g-H2O2であった。なお、反応器3器全体での水素
選択率は49%であった。
In the steady state, the hydrogen peroxide concentration in the reaction liquid flowing out from the outlet of the first reactor is 3.94% by weight,
The oxygen concentration in the mixed gas introduced into the reactor was 21.5% by volume, and in the second reactor was 7.00% by weight, respectively.
26.1% by volume, 9.2 in each third reactor
It was 4% by weight and 30.0% by volume. The amount of pure oxygen used during the entire reaction time was 105 Nl / hr, and the total amount of pure oxygen used to generate 1 g of hydrogen peroxide was 0.84.
Was Nl / gH 2 O 2. The hydrogen selectivity of the entire three reactors was 49%.

【0036】比較例4 反応ガスを各反応器に個別に導入し、各反応器から出た
ガスを再使用することなくそのまま系外に放出した以外
は実施例2と同様の反応を行った。各ガスの通気量は、
それぞれの容器に対して空気615Nl/hr、純酸素
105Nl/hr、水素60Nl/hrとした。反応開
始16時間後に各反応器の過酸化水素濃度が定常状態に
達した。定常状態における第1反応器出口から流出する
反応液中の過酸化水素濃度は4.01重量%、第1反応
器に導入された混合ガス中の酸素濃度は30.0容積
%、第2反応器においてはそれぞれ7.02重量%、3
0.0容積%、第3反応器においてはそれぞれ9.24
重量%、30.0容積%であった。
Comparative Example 4 The same reaction as in Example 2 was carried out except that the reaction gas was individually introduced into each reactor and the gas discharged from each reactor was directly discharged to the outside of the system without reuse. The ventilation volume of each gas is
Air 615 Nl / hr, pure oxygen 105 Nl / hr, and hydrogen 60 Nl / hr were used for each container. 16 hours after the start of the reaction, the hydrogen peroxide concentration in each reactor reached a steady state. In the steady state, the hydrogen peroxide concentration in the reaction liquid flowing out from the outlet of the first reactor was 4.01% by weight, the oxygen concentration in the mixed gas introduced into the first reactor was 30.0% by volume, and the second reaction In the container, 7.02% by weight, 3
0.0% by volume, 9.24 each in the third reactor
% By weight, 30.0% by volume.

【0037】全反応を通しての純酸素使用量は315N
l/hrであり、過酸化水素1g生成するのに使用した
純酸素は、全体で2.45Nl/g-H2O2であった。な
お、反応器3器全体での合計水素選択率は54%であっ
た。以上より明らかなように、反応ガスを各反応器に反
応媒体と向流で流す実施例2と比較して、純酸素の使用
量は3倍近くに達した。
The amount of pure oxygen used throughout the reaction is 315 N
1 / hr and the total amount of pure oxygen used to produce 1 g of hydrogen peroxide was 2.45 Nl / g H 2 O 2 . The total hydrogen selectivity of all three reactors was 54%. As is clear from the above, the amount of pure oxygen used was nearly three times that of Example 2 in which the reaction gas was passed countercurrently to the reaction medium in each reactor.

【0038】[0038]

【発明の効果】本発明によれば、酸素と水素を水媒体中
で触媒と接触的に反応させて過酸化水素を製造する方法
において、反応器内の過酸化水素濃度に応じて供給ガス
中の酸素濃度を制御することにより、水素選択率の大幅
な低下を招くことなく、純酸素の使用量を低減すること
が可能となる。その結果、高濃度の過酸化水素を経済的
に製造することが可能になる。特に、比較的高価な純酸
素が効率的に使用されるので、工業的に有利な過酸化水
素の製造方法が提供される。
According to the present invention, in a method for producing hydrogen peroxide by catalytically reacting oxygen and hydrogen with a catalyst in an aqueous medium, in a supply gas depending on the hydrogen peroxide concentration in the reactor. By controlling the oxygen concentration of, the use amount of pure oxygen can be reduced without causing a significant decrease in hydrogen selectivity. As a result, it becomes possible to economically produce a high concentration of hydrogen peroxide. Particularly, since relatively expensive pure oxygen is efficiently used, an industrially advantageous method for producing hydrogen peroxide is provided.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年9月29日[Submission date] September 29, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Name of item to be corrected] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】触媒の使用量は、通常1リットル当たり1
グラム以上が使用される。また、反応媒体中に触媒を多
量に加えてスラリー状態で反応を行うことも可能であ
る。過酸化水素生成反応の選択率を高めるために、水媒
体としてハロゲンイオン及び/又は酸を含む水溶液を使
用することが好ましい。本発明では高濃度の過酸化水素
水が生成されるために、過酸化水素の分解を抑制する目
的で反応媒体である水中に過酸化水素の安定剤を添加す
ることも可能である。過酸化水素の安定剤としては公知
の水溶性の安定剤を用いることができる。
The amount of catalyst used is usually 1 per liter.
More than a gram is used. It is also possible to add a large amount of a catalyst to the reaction medium and carry out the reaction in a slurry state. In order to increase the selectivity of the hydrogen peroxide generating reaction, it is preferable to use an aqueous solution containing halogen ions and / or an acid as the aqueous medium. In the present invention, since a high-concentration hydrogen peroxide solution is produced, it is possible to add a stabilizer for hydrogen peroxide to water as a reaction medium for the purpose of suppressing decomposition of hydrogen peroxide. As the stabilizer for hydrogen peroxide, a known water-soluble stabilizer can be used.

フロントページの続き (72)発明者 富田 健 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所内Front page continued (72) Inventor Ken Tomita 6-1-1 Shinjuku, Katsushika-ku, Tokyo Mitsubishi Gas Chemical Co., Ltd. Tokyo Research Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸素と水素を水媒体中で触媒と接触的に
反応させて過酸化水素を製造する方法において、反応器
内の過酸化水素濃度が5重量%未満の時の供給ガス中の
酸素濃度が10〜30容積%、過酸化水素濃度が5重量
%以上10重量%未満の時の供給ガス中の酸素濃度が2
0〜50容積%、過酸化水素濃度が10重量%以上の時
の供給ガス中の酸素濃度が30〜95容積%であること
を特徴とする請求項1記載の過酸化水素の製造方法。
1. A method for producing hydrogen peroxide by reacting oxygen and hydrogen with a catalyst in an aqueous medium in a catalytic manner, wherein the hydrogen peroxide concentration in the reactor is less than 5% by weight. When the oxygen concentration is 10 to 30% by volume and the hydrogen peroxide concentration is 5% by weight or more and less than 10% by weight, the oxygen concentration in the supply gas is 2
The method for producing hydrogen peroxide according to claim 1, wherein the oxygen concentration in the supply gas is 0 to 50% by volume and the oxygen concentration in the supply gas is 30 to 95% by volume when the hydrogen peroxide concentration is 10% by weight or more.
【請求項2】 触媒が白金族触媒である請求項1記載の
過酸化水素の製造方法。
2. The method for producing hydrogen peroxide according to claim 1, wherein the catalyst is a platinum group catalyst.
【請求項3】 水媒体がハロゲンイオン及び/又は酸を
含む水溶液である請求項1記載の過酸化水素の製造方
法。
3. The method for producing hydrogen peroxide according to claim 1, wherein the aqueous medium is an aqueous solution containing halogen ions and / or acids.
【請求項4】 水媒体が過酸化水素の安定剤を含む水溶
液である請求項1記載の過酸化水素の製造方法。
4. The method for producing hydrogen peroxide according to claim 1, wherein the aqueous medium is an aqueous solution containing a stabilizer for hydrogen peroxide.
【請求項5】 酸素と水素を不活性ガスの存在下または
不存在下に水媒体中で触媒の存在下で反応温度0℃〜5
0℃、反応圧力3kg/cm2・G〜150kg/cm2
・Gで反応せしめる請求項1記載の過酸化水素の製造方
法。
5. Oxygen and hydrogen in the presence or absence of an inert gas in an aqueous medium in the presence of a catalyst at a reaction temperature of 0 ° C. to 5 ° C.
0 ° C, reaction pressure 3 kg / cm 2 · G to 150 kg / cm 2
The method for producing hydrogen peroxide according to claim 1, wherein the reaction is carried out with G.
JP13725294A 1994-06-20 1994-06-20 Production of hydrogen peroxide Pending JPH082904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13725294A JPH082904A (en) 1994-06-20 1994-06-20 Production of hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13725294A JPH082904A (en) 1994-06-20 1994-06-20 Production of hydrogen peroxide

Publications (1)

Publication Number Publication Date
JPH082904A true JPH082904A (en) 1996-01-09

Family

ID=15194321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13725294A Pending JPH082904A (en) 1994-06-20 1994-06-20 Production of hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPH082904A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309477A (en) * 1997-05-05 1998-11-24 Akzo Nobel Nv Manufacture of catalyst
JP2001501904A (en) * 1996-10-16 2001-02-13 ビーエーエスエフ アクチェンゲゼルシャフト Production method of hydrogen peroxide
EP3511295A1 (en) 2018-01-15 2019-07-17 Univerza V Ljubljani Method for preparation of isotopically labeled hydrogen peroxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501904A (en) * 1996-10-16 2001-02-13 ビーエーエスエフ アクチェンゲゼルシャフト Production method of hydrogen peroxide
JPH10309477A (en) * 1997-05-05 1998-11-24 Akzo Nobel Nv Manufacture of catalyst
EP3511295A1 (en) 2018-01-15 2019-07-17 Univerza V Ljubljani Method for preparation of isotopically labeled hydrogen peroxide

Similar Documents

Publication Publication Date Title
JP5073134B2 (en) Continuous production method of hydrogen peroxide
KR100445847B1 (en) Catalyst and process for the direct synthesis of hydrogen peroxide
US6040467A (en) High purity oxygen for ethylene oxide production
US6844464B2 (en) Process for producing alkyl nitrite
JPS6041056B2 (en) Cyclohexane oxidation method
JP2004505880A (en) Method for producing hydrogen peroxide
JP2859395B2 (en) Continuous production of dialkyl carbonate
JP2002511378A (en) Production method of hydrogen peroxide by direct synthesis
US4146731A (en) Process for preparing glyoxylic acid
JP4335671B2 (en) Method for producing hydroxylammonium salt
JPH082904A (en) Production of hydrogen peroxide
US5952523A (en) Method for producing vinyl acetate
JP2003327562A (en) Method for producing alkyl nitrite
JPWO2002059071A1 (en) Process for producing alkanedicarboxylic acid
CN109415289B (en) Method for producing 2-methoxyacetic acid
JP3769312B2 (en) Method for producing succinic acid
JPS6217989B2 (en)
JP2000026387A (en) Manufacture of cyclohexanone oxime
JP2697787B2 (en) Method for producing trimellitic acid
CN117776904A (en) Method for preparing calcium gluconate by micro-channel continuous flow reaction technology
JPH0769605A (en) Production of hydrogen peroxide
WO2015008740A1 (en) METHOD FOR PRODUCING α-HYDROXYISOBUTYRIC ACID AMIDE AND REACTOR
JP4981791B2 (en) Method for producing trimellitic acid
JPH05286914A (en) Production of acrylamide
JPH0733410A (en) Production of hydrogen peroxide