JPH08290276A - Method and device for laser tack welding in billet joining - Google Patents

Method and device for laser tack welding in billet joining

Info

Publication number
JPH08290276A
JPH08290276A JP7096916A JP9691695A JPH08290276A JP H08290276 A JPH08290276 A JP H08290276A JP 7096916 A JP7096916 A JP 7096916A JP 9691695 A JP9691695 A JP 9691695A JP H08290276 A JPH08290276 A JP H08290276A
Authority
JP
Japan
Prior art keywords
laser
welding
laser beam
tack welding
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7096916A
Other languages
Japanese (ja)
Inventor
Naoya Hamada
直也 浜田
Katsuhiro Minamida
勝宏 南田
Hiroyuki Yamamoto
博之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7096916A priority Critical patent/JPH08290276A/en
Publication of JPH08290276A publication Critical patent/JPH08290276A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0085Joining ends of material to continuous strip, bar or sheet

Abstract

PURPOSE: To obtain a high joining strength in a short welding time and also to attain simplification and miniaturization of laser tack welding equipment by performing laser tack welding with an abutting part scanned with a laser beam polarized in the direction parallel to the abutting face. CONSTITUTION: In seat bar joining equipment, the tip end and the rear end of seat bars 1, 3 are cut off along the width direction of the bar by a flying shear 11 so that a linear joined face is formed. Then, the rear end face of the preceding seat bar 1 is joined with the front end face of the succeeding seat bar 3, with this linear abutting part 5 tack-welded 7 by laser welding. After that, both seat bars 1, 3 are continuously rolled through a line of rolling mills to complete the joining between the seat bars 1, 3. Accordingly, it is possible to obtain a high joining strength in a short welding time and also to attain the simplification and miniaturization of the laser tack welding equipment. In addition, misalignment is also suppressed at the time of laser tack welding in a line for rolling billets with various thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シートバーやスラブ
などの圧延鋼片の接合に用いられるレーザ仮付溶接方法
およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser tack welding method and apparatus used for joining rolled steel pieces such as sheet bars and slabs.

【0002】[0002]

【従来の技術】熱間または冷間圧延ラインにおいて、ス
ラブまたはシートバーなどの鋼片を連続圧延するため
に、圧延中の先行鋼片の後端部と後行鋼片の先端とを接
合し、接合した鋼片を連続圧延する方法がある。
2. Description of the Related Art In a hot or cold rolling line, in order to continuously roll a steel slab such as a slab or a sheet bar, the trailing end of the preceding billet being rolled and the leading end of the trailing billet are joined. , There is a method of continuously rolling the joined steel pieces.

【0003】WO.94/16838号公報には、圧延
中の先行鋼片の後端部と後行鋼片の先端部とを突き合わ
せてレーザビームにより仮付溶接し、仮付けした鋼片を
圧延して圧接し、連続圧延を行う方法が開示されてい
る。
WO. In 94/16838, the rear end portion of the preceding steel piece being rolled and the leading end portion of the trailing steel piece are butted and temporarily welded by a laser beam, and the temporarily attached steel piece is rolled and pressure welded, A method of performing continuous rolling is disclosed.

【0004】ここで、接合される鋼片の板厚は20〜5
0mmである。先行鋼片の後端部と後端部の先端部は、走
間シャー等によって整形されてから、突き合わされる
が、走間シャーによる切断形状は図1(b)に示すよう
に、ダレが発生するため、実際に突合せのできる厚みt
eは、図1(a)のように、鋼片厚みに依存して変化す
る。レーザ仮付溶接において、溶込み深さは基本的にこ
のteを越すことはできないが、鋼片の厚みが20〜5
0mmの範囲であれば、全厚みに対し30%以上を確保す
ることは可能である。
Here, the thickness of the steel pieces to be joined is 20 to 5
It is 0 mm. The rear end of the preceding steel piece and the front end of the rear end are shaped by a running shear or the like and then abutted, but the cutting shape by the running shear has a sag as shown in FIG. 1 (b). Since it occurs, the thickness t that can actually be abutted
e changes depending on the thickness of the billet as shown in FIG. In laser tack welding, the penetration depth basically cannot exceed this te, but the thickness of the steel slab is 20-5.
In the range of 0 mm, it is possible to secure 30% or more of the total thickness.

【0005】次に、仮付溶接による溶込み深さの全厚み
に対する比率と、仮付溶接後の圧延時に接合部に破断が
生じない割合の関係を、調べた結果を図2に示す。この
結果から、レーザ仮付溶接と圧延による圧接で高精度の
接合を行うには、溶込み深さの全厚みに対する比率が3
0%以上の仮付溶接を実現する必要がある。
Next, the relationship between the ratio of the penetration depth of the tack welding to the total thickness and the ratio of no fracture at the joint during rolling after the tack welding is shown in FIG. From this result, in order to perform highly accurate joining by laser tack welding and pressure welding by rolling, the ratio of the penetration depth to the total thickness is 3
It is necessary to realize tack welding of 0% or more.

【0006】以上から、仮付溶接による溶込み深さは、
できるだけ深くする必要がある。しかしレーザ溶接にお
ける溶込み深さは、集光されたレーザビームのパワー密
度とともに、集光スポット径に強く依存する。したがっ
て、レーザビームをできるだけ小さなスポットに集光す
る必要ある。一方、ビード幅と集光スポット径は強い正
の相関を持ち、スポット径を小さくすると、ビード幅が
狭くなる。このため、レーザビームを小さな集光スポッ
ト径に集光してレーザ仮付溶接を行う場合、レーザ照射
位置と突合せ面とを極めて精度高く一致させないと、溶
接ビードが突合せ面から目外れを起こし、有効な接合が
実現できない。このような問題点に対応するため、従来
は図3および図4に示すような対策が提案されていた
(特願平5−7335号)。
From the above, the penetration depth by tack welding is
It needs to be as deep as possible. However, the penetration depth in laser welding strongly depends on the focused spot diameter together with the power density of the focused laser beam. Therefore, it is necessary to focus the laser beam on a spot as small as possible. On the other hand, the bead width and the focused spot diameter have a strong positive correlation, and the smaller the spot diameter, the narrower the bead width. For this reason, when performing laser tack welding by focusing the laser beam on a small focused spot diameter, unless the laser irradiation position and the abutting surface are matched with each other with extremely high accuracy, the welding bead causes deviation from the abutting surface, Effective joining cannot be realized. In order to deal with such a problem, conventionally, measures as shown in FIGS. 3 and 4 have been proposed (Japanese Patent Application No. 5-7335).

【0007】図3に、レーザビームを鋼片突合せ面に対
して斜めから投入することによりビード幅を広げて目外
れを防ぐ方法を示す。図4に、レーザビームを突合せ面
に対して垂直方向に振動させることにより、やはりビー
ド幅を広げて目外れを防ぐ方法を示す。いずれの方法で
も目外れ許容幅は広がるが、不必要な溶込み部分が生じ
るため、レーザビームのエネルギーが浪費され、溶込み
深さが浅くなるという欠点があった。
FIG. 3 shows a method in which a laser beam is obliquely applied to the abutting surface of the steel slab to widen the bead width to prevent eye contact. FIG. 4 shows a method in which the bead width is also widened by vibrating the laser beam in the direction perpendicular to the abutting surface to prevent eye slippage. Although any of the methods widens the margin of deviation, there is a drawback that the energy of the laser beam is wasted and the penetration depth becomes shallow because an unnecessary penetration portion is generated.

【0008】溶込み深さを確保するために溶接速度を下
げる方法もあるが、圧延ライン上でで鋼片の接合を行う
際には、溶接速度をできるだけ速くする必要がある。ま
た、圧延設備が巨大になり大幅なコストアップとなって
しまう等の問題点を抱えていた。
There is also a method of lowering the welding speed in order to secure the penetration depth, but it is necessary to make the welding speed as fast as possible when joining the steel pieces on the rolling line. In addition, there is a problem that the rolling equipment becomes huge and the cost is significantly increased.

【0009】[0009]

【発明が解決しようとする課題】本発明は、短い溶接時
間で高い接合強度が得られ、しかもレーザ仮付溶接装置
の簡単・小型化を図ることができるレーザ仮付溶接方法
を提供するものである。また、多様な厚みの鋼片を圧延
する圧延ラインで、短い溶接時間で高い接合強度が得ら
れ、しかもレーザ仮付溶接時の目外れを抑制できる仮付
溶接方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a laser tack welding method capable of obtaining a high joining strength in a short welding time and capable of simplifying and miniaturizing a laser tack welding apparatus. is there. Further, the present invention provides a tack welding method capable of obtaining a high joining strength in a short welding time in a rolling line for rolling billets having various thicknesses and capable of suppressing deviation of eyes during laser tack welding.

【0010】[0010]

【課題を解決するための手段】第1の発明の鋼片の接合
におけるレーザ仮付溶接方法は、先行鋼片の後端部と後
行鋼片の先端部を突き合わせ、突合せ部をレーザ溶接に
よって仮付けし、先行鋼片と後行鋼片を圧接して接合す
る方法において、突合せ面と平行な方向に偏光させたレ
ーザビームで突合せ部を走査してレーザ仮付溶接を行う
ことを特徴とする。
According to a first aspect of the present invention, there is provided a laser tack welding method for joining steel slabs, wherein a trailing end of a preceding steel slab and a leading end of a trailing steel stake are abutted to each other and the abutting portion is welded by laser welding. In the method of temporarily joining and joining the preceding steel piece and the following steel piece by pressure welding, the laser tacky welding is performed by scanning the butted portion with a laser beam polarized in a direction parallel to the butted surface. To do.

【0011】第2の発明の鋼片の接合におけるレーザ仮
付溶接方法は、先行鋼片の後端部と後行鋼片の先端部を
突き合わせ、突合せ部をレーザ溶接によって仮付けし、
先行鋼片と後行鋼片を圧接して接合する方法において、
突合せ面と垂直な方向に偏光させたレーザビームで突合
せ部を走査してレーザ仮付溶接を行うことを特徴とす
る。
In the laser tack welding method for joining steel pieces of the second invention, the rear end portion of the preceding steel piece and the tip portion of the trailing steel piece are butted, and the butted portion is temporarily attached by laser welding.
In the method of joining the preceding steel piece and the following steel piece by pressure welding,
Laser butting welding is performed by scanning the abutting portion with a laser beam polarized in a direction perpendicular to the abutting surface.

【0012】第3の発明の鋼片の接合におけるレーザ仮
付溶接方法は、先行鋼片の後端部と後行鋼片の先端部を
突き合わせ、突合せ部をレーザ溶接によって仮付けし、
先行鋼片と後行鋼片を圧接して接合する方法において、
鋼片の厚みが40 mm 以上の場合には突合せ面と平行な
方向に偏光させたレーザビームで、鋼片の厚みが40mm
未満の場合には突合せ面と垂直な方向に偏光させたレ
ーザビームで突合せ部を走査してレーザ仮付溶接を行う
ことを特徴とする。
In the laser tack welding method for joining steel pieces of the third invention, the rear end portion of the preceding steel piece and the tip portion of the trailing steel piece are butted, and the butted portion is temporarily attached by laser welding.
In the method of joining the preceding steel piece and the following steel piece by pressure welding,
If the thickness of the billet is 40 mm or more, the thickness of the billet is 40 mm with a laser beam polarized in the direction parallel to the abutting surface.
If less than the above, the laser welding method is characterized by performing laser tack welding by scanning the abutting portion with a laser beam polarized in a direction perpendicular to the abutting surface.

【0013】第4の発明のレーザ仮付溶接装置は、第3
の発明の鋼片の接合におけるレーザ仮付溶接方法を実施
する際に使用される装置であって、レーザビームの偏光
面を突合せ面に平行な方向と突合せ面に垂直な方向とに
相互に切り換える偏光面切換え光学系を備えていること
を特徴としている。
A laser tack welding apparatus according to a fourth aspect of the present invention is the third aspect.
Which is used for carrying out the laser tack welding method for joining steel slabs according to the invention, wherein the polarization plane of the laser beam is switched between a direction parallel to the butt surface and a direction perpendicular to the butt surface. It is characterized by having a polarization plane switching optical system.

【0014】この発明において接合する鋼片は、厚み2
0〜50mmのシートバーもしくはスラブである。先行鋼
片の後端部と後行鋼片の先端部は、走間シャーやレーザ
切断装置などによって形状を整えてから、突き合わせて
レーザ溶接を行うようにしてもよい。
The steel pieces to be joined in the present invention have a thickness of 2
It is a 0-50mm sheet bar or slab. The rear end portion of the preceding steel piece and the front end portion of the following steel piece may be shaped into a shape by a running shear or a laser cutting device, and then abutted to perform laser welding.

【0015】レーザ溶接は、例えば出力25〜50kWの
連続波CO2 レーザ発振器を用い、圧延ライン上を走行
する鋼片の突合せ部に沿って、レーザビーム照射位置を
走査させて行うようにしてもよい。レーザビームの移動
速度は従来のレーザ溶接と同様に3〜20m/min とすれ
ばよい。
The laser welding may be carried out by using a continuous wave CO 2 laser oscillator having an output of 25 to 50 kW and scanning the laser beam irradiation position along the abutting portion of the steel strip running on the rolling line. Good. The moving speed of the laser beam may be 3 to 20 m / min as in the conventional laser welding.

【0016】レーザビームを図5(a)に示すように傾
斜させて鋼片を走査した場合の、鋼片表面でのレーザビ
ームの反射率rと、レーザビームの入射角θとの相関を
図5(b)に示す。ここで、(1−r)の割合で、鋼片
表面に照射されたレーザビームのエネルギーが鋼片に吸
収され、加工に寄与することになる。ここでS偏光とは
偏光面がレーザビーム走査方向に垂直である直線偏光の
レーザビームをいい、P偏光とは偏光面がレーザビーム
走査方向に平行である直線偏光のレーザビームをいう。
FIG. 5 is a graph showing the correlation between the reflectance r of the laser beam on the surface of the billet and the incident angle θ of the laser beam when the billet is scanned by inclining the laser beam as shown in FIG. 5 (b). Here, at a ratio of (1-r), the energy of the laser beam with which the surface of the steel slab is irradiated is absorbed by the steel slab and contributes to the processing. Here, S-polarized light refers to a linearly polarized laser beam whose plane of polarization is perpendicular to the laser beam scanning direction, and P-polarized light refers to a linearly polarized laser beam whose plane of polarization is parallel to the laser beam scanning direction.

【0017】レーザビームを鋼片表面の法線方向から投
入すると、図5(a),(b)ではθ=0°の条件に相
当し、S偏光のレーザビームとP偏光のレーザとの間
に、鋼片表面での反射率の差はない。ところが、実際の
レーザ溶接過程は、キーホール形成を伴っており、一度
キーホールが形成されると、レーザビームはキーホール
の側面に照射することになるため、図6に示すように、
入射角θは大幅に大きくなる。このため図5(b)に示
すように、P偏光の方が吸収率が大きくなり、溶込み性
が向上する。
When the laser beam is applied from the direction normal to the surface of the billet, it corresponds to the condition of θ = 0 ° in FIGS. 5 (a) and 5 (b), and is between the S-polarized laser beam and the P-polarized laser. In addition, there is no difference in reflectance on the surface of the billet. However, the actual laser welding process involves the formation of a keyhole, and once the keyhole is formed, the laser beam irradiates the side surface of the keyhole. Therefore, as shown in FIG.
The incident angle θ is significantly increased. Therefore, as shown in FIG. 5B, the P-polarized light has a higher absorptance, and the penetration property is improved.

【0018】これを実際に確認するため行った実験結果
を図7に示す。図7は、レーザビーム走査方向を直線偏
光レーザビームの偏光方向に対して逐次変化させた場合
の溶込み深さ、およびビード幅をまとめたものであり、
図5の定義ではβ=0、180°がS偏光、β=90、
270°がP偏光に相当する。図7より、P偏光を用い
た溶接ではビード幅が狭く、溶込み深さが深くなり、S
偏光を用いた溶接では、P偏光を用いた溶接に比べてビ
ード幅は広く、溶込み深さは浅くなることが分かる。
FIG. 7 shows the result of an experiment conducted to confirm this fact. FIG. 7 summarizes the penetration depth and the bead width when the laser beam scanning direction is sequentially changed with respect to the polarization direction of the linearly polarized laser beam.
In the definition of FIG. 5, β = 0, 180 ° is S-polarized, β = 90,
270 ° corresponds to P-polarized light. From FIG. 7, in welding using P-polarized light, the bead width is narrow, the penetration depth is deep, and S
It can be seen that in welding using polarized light, the bead width is wider and the penetration depth is shallower than in welding using P polarized light.

【0019】この実験結果から、溶込み深さの深い仮付
溶接を行うには、P偏光のレーザビームで溶接線を走査
すればよいことになるが、実際のレーザ仮付溶接におい
ては、突合せ部の形状を考慮する必要がある。図8
(a)は、理想的な突合せ面が得られた場合の模式図で
あり、溶込み深さを深くしたい場合、偏光面が紙面に垂
直なP偏光のレーザビームを用いればよい。一方、図8
(b)、(c)は、走間シャーによって形状を整えた鋼
片突合せ部の断面形状を示したものである。突合せ部
は、主として延性破断領域(el)と脆性破断領域(p
l)に分けられる。仮付溶接の際に有効な突合せ面が得
られるのはpl領域であり、この領域の全厚みに対する
比率は図1に示したように鋼片厚みに依存して変化す
る。したがって、厚鋼片の場合には図8(b)のように
比較的急勾配のel領域が得られ、薄鋼片の場合には図
8(c)に示されるように、理想的な突合せ面に近い形
状となる。そのため、鋼片厚みに対する溶込み深さを3
0%以上にするには、図8(b)の厚鋼片では深い溶込
み深さが要求されるが、図8(c)の薄鋼片では溶込み
深さが厚鋼片で要求される深さよりも浅くてもよい。
From the results of this experiment, it is necessary to scan the welding line with a P-polarized laser beam in order to perform tack welding with a deep penetration depth, but in actual laser tack welding, the butt welding is performed. It is necessary to consider the shape of the part. FIG.
(A) is a schematic diagram when an ideal butt surface is obtained, and when it is desired to deepen the penetration depth, a P-polarized laser beam whose polarization surface is perpendicular to the paper surface may be used. On the other hand, FIG.
(B) and (c) show the cross-sectional shape of the steel slab abutting portion whose shape has been adjusted by the running shear. The abutting part mainly consists of a ductile fracture area (el) and a brittle fracture area (p).
l). An effective butt surface is obtained in tack welding in the pl region, and the ratio of this region to the total thickness changes depending on the thickness of the billet as shown in FIG. Therefore, in the case of thick steel slab, a relatively steep el region is obtained as shown in FIG. 8B, and in the case of thin steel slab, as shown in FIG. The shape is close to the surface. Therefore, the penetration depth for the thickness of the billet is 3
In order to achieve 0% or more, the thick steel piece in FIG. 8 (b) requires a deep penetration depth, but the thin steel piece in FIG. 8 (c) requires a deep penetration depth in the thick steel piece. It may be shallower than the depth.

【0020】ここで、図8(b)、(c)に示される鋼
片突合せ部に、偏光面が図8の紙面に垂直な直線偏光の
レーザビームを照射して仮付溶接を行う場合を考える。
この場合、偏光面はレーザビーム走査方向に平行である
ので、図6の断面で見るとP偏光であるが、図8の断面
で見るとS偏光となる。したがって、溶接線方向に対し
て偏光面の平行なP偏光であることから仮付溶接の溶込
み深さは深くなるが、同時にビード幅が狭くなるため目
外れが発生しやすくなる。
Here, in the case where temporary welding is performed by irradiating the steel piece abutting portion shown in FIGS. 8B and 8C with a linearly polarized laser beam whose polarization plane is perpendicular to the paper surface of FIG. Think
In this case, since the plane of polarization is parallel to the laser beam scanning direction, it is P-polarized when viewed in the cross section of FIG. 6, but is S-polarized when viewed in the cross section of FIG. Therefore, the penetration depth of tack welding is deeper because it is P-polarized light whose polarization plane is parallel to the welding line direction, but at the same time, the bead width becomes narrower, so that eye spotting easily occurs.

【0021】しかし、このレーザビームの照射位置がず
れて、図8(b)中の急勾配のel領域に照射された場
合には、レーザビームの挙動はS偏光の特性に従い、入
射角の大きいレーザビームは実際の突合せ部に到達する
まで鋼片表面において高反射率で反射される。したがっ
て、ビード幅が狭いにもかかわらず、レーザビームの照
射位置がずれてもレーザビームは実際の突合せ部に到達
するので、目外れは発生しにくい。この現象を図9
(a)に模式的に示す。
However, when the irradiation position of the laser beam is shifted and the steep el region in FIG. 8B is irradiated, the behavior of the laser beam follows the characteristics of S-polarized light and the incident angle is large. The laser beam is reflected with high reflectance on the billet surface until it reaches the actual butt. Therefore, even if the bead width is narrow, even if the irradiation position of the laser beam deviates, the laser beam reaches the actual abutting portion, so that eye deviation is unlikely to occur. This phenomenon is shown in FIG.
It is schematically shown in (a).

【0022】また、図8(c)のel領域に照射された
場合には、el領域での勾配が急峻ではないため入射角
は小さく、レーザビームの照射された位置にビードが形
成される。そのため、たとえ深いビードが得られてもビ
ード幅が狭いため目外れが発生しやすくなる。この現象
を図9(b)に模式的に示す。
Further, when the light is irradiated to the el region of FIG. 8C, the incident angle is small because the gradient in the el region is not steep, and a bead is formed at the position irradiated with the laser beam. For this reason, even if a deep bead is obtained, the bead width is narrow, and thus eye slippage easily occurs. This phenomenon is schematically shown in FIG.

【0023】次に、図8(b)、(c)に示される鋼片
突合せ部に、偏光面が図8の紙面に平行な直線偏光のレ
ーザビームを照射して仮付溶接を行うと、上記とは逆の
効果が得られる。すなわち、図8(b)の場合には溶込
み深さが犠牲になるため、溶込み深さを鋼片厚みに対し
て30%以上の深さにすることが困難になる。図8
(c)の場合には、図8(b)の場合よりも浅い溶込み
深さで十分なので溶込み深さに問題はなく、またビード
幅もひろがるので目外れが発生しにくい。
Next, when the steel piece abutting portion shown in FIGS. 8 (b) and 8 (c) is irradiated with a linearly polarized laser beam whose polarization plane is parallel to the paper surface of FIG. 8, temporary welding is performed. The opposite effect is obtained. That is, in the case of FIG. 8B, since the penetration depth is sacrificed, it is difficult to make the penetration depth 30% or more of the thickness of the steel piece. FIG.
In the case of (c), a shallower penetration depth than in the case of FIG. 8 (b) is sufficient, so there is no problem with the penetration depth, and since the bead width is widened, eye drops are less likely to occur.

【0024】以上のように、図8(b)のような突合せ
部断面の厚鋼片に対しては偏光面が突合せ面に平行な直
線偏光レーザビームを、図8(c)のような突合せ部断
面の薄鋼片には偏光面が突合せ面に垂直な直線偏光レー
ザビームを用いれば、十分な接合強度が得られるととも
に、目外れも防止できることが明らかになった。
As described above, for the thick steel piece having the cross section of the abutting portion as shown in FIG. 8B, the linearly polarized laser beam whose polarization plane is parallel to the abutting surface is used as shown in FIG. 8C. It was clarified that if a linearly polarized laser beam whose polarization plane is perpendicular to the abutting surface is used for a thin steel piece having a partial cross section, sufficient bonding strength can be obtained and eye contact can be prevented.

【0025】このように、鋼片の突合せ形状や厚みによ
って直線偏光レーザビームの偏光面を切り換えてレーザ
仮付溶接を行うことが有効であることを示した。ここ
で、各種の板厚の鋼片を走間シャーで切断した場合の断
面形状を評価した結果、板厚が40 mm を境にして図8
(b)から図8(c)の如く断面形状が変化することが
わかった。したがって、接合する鋼片の厚みが40 mm
以上であれば、偏光面が突合せ面に平行な直線偏光レー
ザビームを用い、鋼片の厚みが40 mm 未満であれば、
偏光面が突合せ面に垂直な直線偏光レーザビームを用い
るようにするとよい。また、必要に応じて偏光面の方向
を切り換えることができるようにすれば、多様な厚みの
鋼片を1台のレーザ仮付溶接装置で適切に仮付けするこ
とができる。
As described above, it has been shown that it is effective to perform laser tack welding by switching the polarization plane of the linearly polarized laser beam depending on the butt shape and thickness of the steel piece. Here, as a result of evaluating the cross-sectional shapes when the steel plates having various plate thicknesses were cut by the shear during running, as a result, the plate thickness of 40 mm was taken as a boundary.
It was found from FIG. 8B that the cross-sectional shape changed as shown in FIG. Therefore, the thickness of the steel pieces to be joined is 40 mm.
If the above is the case, a linearly polarized laser beam whose polarization plane is parallel to the abutting surface is used, and if the thickness of the billet is less than 40 mm,
It is advisable to use a linearly polarized laser beam whose polarization plane is perpendicular to the butt plane. Further, if the directions of the polarization planes can be switched as needed, it is possible to appropriately temporarily attach steel pieces of various thicknesses with one laser tack welding device.

【0026】偏光面の方向を切り換える具体的な方法に
ついて以下に示す。 レーザ発振器からの発振ビーム自体の偏光面を切り換
える装置 図10(a)に示すように、全反射鏡21と部分透過鏡
31で構成されるレーザ発振器内23に偏光選択素子で
あるブリュースター板29を挿入する。図10(a)の
構成では、ブリュースター板29を図10の紙面と平行
な偏光成分のみが選択的に透過するので、その面内に偏
光した直線偏光で発振する。なお、ブリュースター板2
9が2枚あるのは、屈折による光軸シフトを補正するた
めである。この構成で破線内に2枚のブリュースター板
29を光軸に沿って90°回転させれば、図10の紙面
と直交した偏光面を有する直線偏光を得ることができ
る。さらに本発明において用いるような高出力レーザ発
振器になると、耐光強度の観点からブリュースター板2
9を挿入することが難しくなることが考えられる。この
場合、例えば図10(a)に示した小出力直線偏光出力
発振器23を注入シード用発振器35として用い、図1
0(b)のようにこの出力を大出力の不安定型発振器3
7にシードとして導入することにより、出力ビーム33
の偏光面を、注入シード用発振器35のそれに揃えるこ
とが可能となる。ここで、注入シード用発振器35の偏
光面を回転させれば大出力の出力ビーム33の偏光面も
回転することになり、偏光面の切換えが可能となる。凹
面鏡38および凸面鏡39は大出力レーザビームを得る
ために構成される不安定型発振器の共振ミラーである。
A specific method of switching the direction of the polarization plane will be shown below. Device for Switching Polarization Plane of Oscillation Beam itself from Laser Oscillator As shown in FIG. 10A, a Brewster plate 29 as a polarization selecting element is provided in a laser oscillator 23 composed of a total reflection mirror 21 and a partial transmission mirror 31. Insert. In the configuration of FIG. 10A, since only the polarized component parallel to the paper surface of FIG. 10 is selectively transmitted through the Brewster plate 29, linearly polarized light polarized in the plane oscillates. In addition, Brewster board 2
The number of 9 is two in order to correct the optical axis shift due to refraction. With this configuration, if two Brewster plates 29 are rotated by 90 ° along the optical axis within the broken line, linearly polarized light having a plane of polarization orthogonal to the plane of FIG. 10 can be obtained. Furthermore, in the case of a high-power laser oscillator used in the present invention, the Brewster plate 2 is used from the viewpoint of light resistance strength.
It may be difficult to insert 9. In this case, for example, the small output linearly polarized light output oscillator 23 shown in FIG.
This output is a large output unstable oscillator 3 like 0 (b).
Introduced as a seed into the output beam 33
It is possible to align the polarization plane of the same with that of the injection seed oscillator 35. Here, if the plane of polarization of the injection seed oscillator 35 is rotated, the plane of polarization of the output beam 33 with a large output also rotates, and the plane of polarization can be switched. The concave mirror 38 and the convex mirror 39 are resonant mirrors of an unstable oscillator configured to obtain a large output laser beam.

【0027】ビーム伝送路中で偏光面を切り換える装
置 図11(a)に示す如く、ビームを2回立体的におりま
げることで、P偏光をS偏光に変えることが可能にな
る。この現象を利用し、偏光を切り換えることができ
る。図11(b)において、ミラーA1,B1は同一高
さ面内にあり、偏光面は図示のようになる。図11
(c)では、A2ミラーからCミラーへ上方へ反射した
後、同一高さのDミラーへ伝送し、下向きに反射され
る。この構成では最終偏光面は図11(b)のそれと直
交することになる。したがってミラーC,Dを固定位置
に設置しておき、A1,A2のミラーの切換えとB1ミ
ラーが連動してシリンダー等で動く構成とすることで偏
光面の切り換えが可能となる。また、ここでは幾何的な
偏光面回転の例を示したが、位相遅延鏡によって偏光面
を90°回転させる構成と通常のミラー反射系を切り換
える方法でも良い。
Device for Switching the Plane of Polarization in the Beam Transmission Line As shown in FIG. 11 (a), it is possible to change the P-polarized light into the S-polarized light by fold the beam three-dimensionally. By using this phenomenon, the polarization can be switched. In FIG. 11B, the mirrors A1 and B1 are in the same height plane, and the polarization plane is as shown. Figure 11
In (c), after being reflected upward from the A2 mirror to the C mirror, it is transmitted to the D mirror of the same height and reflected downward. In this configuration, the final plane of polarization is orthogonal to that in FIG. 11 (b). Therefore, by setting the mirrors C and D at fixed positions and switching the mirrors of A1 and A2 and the B1 mirror in conjunction with each other to move by a cylinder or the like, the polarization plane can be switched. Further, although the example of the geometrical polarization plane rotation is shown here, a configuration of rotating the polarization plane by 90 ° by a phase delay mirror and a method of switching a normal mirror reflection system may be used.

【0028】[0028]

【実施例】本発明が適用される熱間圧延鋼片の接合設備
の一例について図面に基づいて説明する。図12は連続
熱間圧延設備に設けられたシートバー接合設備を模式的
に示す側面図であり、図13は同設備の平面図である。
図12および図13に示したシートバー接合設備におい
て、シートバー1、3の先端部および後端部は走間シャ
ー11でバー幅方向に沿って切り落とされ、直線状の接
合面が形成される。ついで、先行シートバー1の後端面
と後行シートバー3の前端面とを突き合わせ、この直線
状の突合せ部5をレーザ溶接で仮付溶接7する。仮付溶
接7に引き続いて、圧延機列16により、両シートバー
1、3を連続的に圧延して、シートバー1とシートバー
3の接合は完了する。このシートバー接合設備におい
て、図11の偏光面切り換え装置を用いてレーザ仮付溶
接を行い、仮付溶接を直線偏光レーザビームで行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a hot rolling steel piece joining facility to which the present invention is applied will be described with reference to the drawings. FIG. 12 is a side view schematically showing the sheet bar joining equipment provided in the continuous hot rolling equipment, and FIG. 13 is a plan view of the equipment.
In the seat bar joining equipment shown in FIG. 12 and FIG. 13, the leading and rear ends of the sheet bars 1 and 3 are cut off along the bar width direction by the running shear 11 to form a straight joining surface. . Then, the rear end surface of the preceding sheet bar 1 and the front end surface of the following sheet bar 3 are butted, and the linear butted portion 5 is temporarily welded 7 by laser welding. Subsequent to the tack welding 7, the rolling mill train 16 continuously rolls both the sheet bars 1 and 3 to complete the joining of the sheet bar 1 and the sheet bar 3. In this sheet bar joining facility, laser tack welding was performed using the polarization plane switching device of FIG. 11, and tack welding was performed with a linearly polarized laser beam.

【0029】[実施例1]厚み45 mm 、幅1100 m
m 、長さ40 m 、温度1000℃のシートバーのレー
ザ仮付溶接を行った。レーザ出力は45 kW 、レーザ走
査速度は10 m/min、直線偏光レーザビームの偏光面は
突合せ面に平行な方向とした。レーザ仮付溶接により突
合せ部に得られた溶込み深さは15mm、ビード幅は2mm
であり、溶込み深さはシートバー厚みの33%であっ
た。また、目外れ許容幅は1.3 mmであった。仮付溶
接したシートバーに、圧延機列16の初段圧延機17で
圧下率40%の圧延を行うことで、シートバーは十分な
接合強度で圧接されており、圧延時に破断は生じなかっ
た。なお、従来の無偏光レーザビームでレーザ仮付溶接
を行った場合には、突合せ部に得られる溶込み深さは1
2.5mm、ビード幅は2.4mmであり、溶込み深さはシ
ートバー厚みの30%に満たず、圧延機列16の初段圧
延機17で圧下率40%の圧延を行っても、十分な接合
強度は得られなかった。また、仮付溶接における目外れ
許容幅は0.9 mm であった。
[Example 1] Thickness 45 mm, width 1100 m
Laser tack welding of a sheet bar having a length of m 2, a length of 40 m and a temperature of 1000 ° C. was performed. The laser output was 45 kW, the laser scanning speed was 10 m / min, and the plane of polarization of the linearly polarized laser beam was parallel to the abutting surface. The penetration depth obtained by laser tack welding is 15 mm and the bead width is 2 mm.
The penetration depth was 33% of the thickness of the sheet bar. The allowable margin of deviation was 1.3 mm. By rolling the temporary tack welded sheet bar by the first-stage rolling mill 17 of the rolling mill train 16 at a rolling reduction of 40%, the sheet bar was pressure-welded with sufficient joining strength, and no fracture occurred during rolling. When laser tack welding is performed with a conventional non-polarized laser beam, the penetration depth obtained at the butt portion is 1
2.5mm, bead width is 2.4mm, penetration depth is less than 30% of the thickness of the sheet bar, even if the rolling of the first stage rolling mill 17 of the rolling mill row 16 rolling reduction of 40% is sufficient No good joint strength was obtained. The allowable margin of deviation in tack welding was 0.9 mm.

【0030】[実施例2]厚み25 mm 、幅1100 m
m 、長さ40 m 、温度1000℃のシートバーのレー
ザ仮付溶接を行った。レーザ出力は45 kW 、レーザ走
査速度は10 m/min、直線偏光レーザビームの偏光面は
突合せ面に垂直な方向とした。レーザ仮付溶接により突
合せ部に得られた溶込み深さは12mm、ビード幅は2.
8mmであり、溶込み深さはシートバー厚みの約50%で
あった。また、目外れ許容幅は1.2 mm であった。仮
付溶接したシートバーに、圧延機列16の初段圧延機1
7で圧下率40%の圧延を行うことで、シートバーは十
分な接合強度で圧接されており、圧延時に破断は生じな
かった。なお、従来の無偏光レーザビームでレーザ仮付
溶接を行った場合、突合せ部に得られる溶込み深さは1
2.5mm、ビード幅は2.4mmであり、溶込み深さには
問題はないが、目外れ許容幅が0.9 mm と本発明によ
る目外れ許容幅よりも小さく、目外れが発生しやすい。
Example 2 Thickness 25 mm, width 1100 m
Laser tack welding of a sheet bar having a length of m 2, a length of 40 m and a temperature of 1000 ° C. was performed. The laser output was 45 kW, the laser scanning speed was 10 m / min, and the plane of polarization of the linearly polarized laser beam was perpendicular to the abutting surface. The penetration depth obtained by laser tack welding is 12 mm and the bead width is 2.
It was 8 mm, and the penetration depth was about 50% of the thickness of the sheet bar. The allowable margin of deviation was 1.2 mm. The first-stage rolling mill 1 of the rolling mill row 16 is attached to the temporarily welded sheet bar.
By rolling with a rolling reduction of 40% in No. 7, the sheet bar was pressed with sufficient joining strength, and fracture did not occur during rolling. When laser tack welding is performed with a conventional non-polarized laser beam, the penetration depth obtained at the butt portion is 1
The penetration depth is 2.5 mm, the bead width is 2.4 mm, and there is no problem with the penetration depth. However, the allowable deviation range is 0.9 mm, which is smaller than the allowable deviation range according to the present invention, and the deviation occurs. Cheap.

【0031】[0031]

【発明の効果】本発明によれば、短い溶接時間で高い接
合強度が得られ、しかもレーザ仮付溶接装置の簡単・小
型化を図ることができる。また、多様な厚みの鋼片を圧
延する圧延ラインで、短い溶接時間で高い接合強度が得
られ、しかもレーザ仮付溶接時の目外れを抑制すること
ができる。
According to the present invention, a high joining strength can be obtained in a short welding time and the laser tack welding apparatus can be simplified and downsized. Further, in a rolling line for rolling billets having various thicknesses, a high joining strength can be obtained in a short welding time, and further, it is possible to suppress the deviation of the eye during laser tack welding.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)実際に突合せのできる厚みteと、鋼片
厚みtoとの関係を示すグラフである。 (b)走間シャーによる鋼片端部の切断形状を示す図面
である。
FIG. 1 (a) is a graph showing a relationship between a thickness te that can be actually butted and a steel piece thickness to. (B) It is drawing which shows the cutting shape of the steel piece end part by running shear.

【図2】仮付溶接による溶込み深さの全厚みに対する比
率と接合部に破断が生じない割合の関係を示すグラフで
ある。
FIG. 2 is a graph showing the relationship between the ratio of the penetration depth to the total thickness by tack welding and the ratio at which no fracture occurs at the joint.

【図3】レーザビームを鋼片突合せ面に対して斜めから
投入する方法を示す図面である。
FIG. 3 is a drawing showing a method of injecting a laser beam obliquely with respect to a steel piece abutting surface.

【図4】レーザビームを突合せ面に対して垂直方向に振
動させる方法を示す図面である。
FIG. 4 is a diagram showing a method of vibrating a laser beam in a direction perpendicular to a butt surface.

【図5】(a)鋼片に対するレーザビームの入射角、走
査方向の定義を示す図面である。 (b)鋼片表面でのレーザビームの反射率と、レーザビ
ームの入射角との相関を示すグラフである。
FIG. 5 (a) is a drawing showing the definition of the incident angle and scanning direction of a laser beam on a steel slab. (B) A graph showing the correlation between the reflectance of the laser beam on the surface of the steel slab and the incident angle of the laser beam.

【図6】キーホール溶接時の溶接線方向断面の挙動を示
す模式図である。
FIG. 6 is a schematic diagram showing the behavior of a cross section in the welding line direction during keyhole welding.

【図7】レーザビーム走査方向の直線偏光レーザビーム
の偏光方向に対する角度と、溶接特性の関係を示したグ
ラフである。
FIG. 7 is a graph showing the relationship between the welding characteristics and the angle of the laser beam scanning direction with respect to the polarization direction of the linearly polarized laser beam.

【図8】(a)仮想条件における突合せ面形状の模式図
である。 (b)厚鋼片の場合における、実際の突合せ面形状の模
式図である。 (c)薄鋼片の場合における、実際の突合せ面形状の模
式図である。
FIG. 8 (a) is a schematic view of a shape of an abutting surface under virtual conditions. (B) It is a schematic diagram of an actual butt surface shape in the case of a thick steel piece. (C) It is a schematic diagram of an actual butt surface shape in the case of a thin steel piece.

【図9】偏光面が溶接線方向である直線偏光レーザビー
ムを用いた仮付溶接において、レーザビーム照射位置が
突合せ部からずれた場合の形成ビードの模式図である。
FIG. 9 is a schematic view of a formed bead when a laser beam irradiation position is displaced from a butt portion in tack welding using a linearly polarized laser beam having a polarization plane in the welding line direction.

【図10】(a)安定型共振器の場合における、レーザ
発振器出力ビームの偏光面を切り換える光学系の概略構
成図である。 (b)不安定型共振器の場合における、レーザ発振器出
力ビームの偏光面を切り換える光学系の概略構成図であ
る。
FIG. 10A is a schematic configuration diagram of an optical system that switches a polarization plane of a laser oscillator output beam in the case of a stable resonator. FIG. 6B is a schematic configuration diagram of an optical system that switches the polarization plane of a laser oscillator output beam in the case of an unstable resonator.

【図11】(a)レーザビーム伝送中に直線偏光レーザ
ビームの偏光面を変更する原理の説明図である。 (b)直線偏光レーザビームを伝送する光学装置の概略
図である。 (c)レーザビーム伝送中に直線偏光レーザビームの偏
光面を(b)に対して90゜回転させる装置の概略図で
ある。
FIG. 11A is an explanatory diagram of the principle of changing the polarization plane of a linearly polarized laser beam during laser beam transmission. (B) A schematic view of an optical device for transmitting a linearly polarized laser beam. (C) is a schematic view of an apparatus for rotating the plane of polarization of a linearly polarized laser beam by 90 ° with respect to (b) during laser beam transmission.

【図12】連続熱間圧延設備に設けられた、本発明が適
用されるシートバー接合設備を模式的に示す側面図であ
る。
FIG. 12 is a side view schematically showing a sheet bar joining facility to which the present invention is applied, which is provided in a continuous hot rolling facility.

【図13】図12に示した設備の平面図である。FIG. 13 is a plan view of the equipment shown in FIG.

【符号の説明】[Explanation of symbols]

1 先行シートバー 3 後行シートバー 5 突合せ部 7 仮付溶接 11 走間シャー 13 レーザ発振器 14 レーザビーム伝送光学系 15 レーザ加工ヘッド 16 圧延機列 21 全反射鏡 23 レーザ発振器 25 ウィンドウ 29 ブリュースター板 31 部分透過鏡 33 レーザビーム 35 注入シード用発振器 37 不安定型発振器 38 凹面鏡 39 凸面鏡 1 Leading Seat Bar 3 Trailing Seat Bar 5 Butt Section 7 Temporary Welding 11 Running Shear 13 Laser Oscillator 14 Laser Beam Transmission Optical System 15 Laser Processing Head 16 Rolling Mill Row 21 Total Reflector 23 Laser Oscillator 25 Window 29 Brewster Plate 31 Partial Transmission Mirror 33 Laser Beam 35 Oscillator for Injection Seed 37 Unstable Oscillator 38 Concave Mirror 39 Convex Mirror

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 先行鋼片の後端部と後行鋼片の先端部を
突き合わせ、突合せ部をレーザ溶接によって仮付けし、
先行鋼片と後行鋼片を圧接して接合する方法において、
突合せ面と平行な方向に偏光させたレーザビームで突合
せ部を走査してレーザ仮付溶接を行うことを特徴とする
鋼片の接合におけるレーザ仮付溶接方法。
1. A rear end portion of a preceding steel piece and a front end portion of a following steel piece are butted, and the butted portion is temporarily attached by laser welding,
In the method of joining the preceding steel piece and the following steel piece by pressure welding,
A laser tack welding method for joining steel slabs, characterized in that laser tack welding is performed by scanning a butt portion with a laser beam polarized in a direction parallel to a butt surface.
【請求項2】 先行鋼片の後端部と後行鋼片の先端部を
突き合わせ、突合せ部をレーザ溶接によって仮付けし、
先行鋼片と後行鋼片を圧接して接合する方法において、
突合せ面と垂直な方向に偏光させたレーザビームで突合
せ部を走査してレーザ仮付溶接を行うことを特徴とする
鋼片の接合におけるレーザ仮付溶接方法。
2. The rear end portion of the preceding steel piece and the front end portion of the following steel piece are butted, and the butted portion is temporarily attached by laser welding,
In the method of joining the preceding steel piece and the following steel piece by pressure welding,
A laser tack welding method for joining steel slabs, characterized in that laser tack welding is performed by scanning the butted portion with a laser beam polarized in a direction perpendicular to the butted surface.
【請求項3】 先行鋼片の後端部と後行鋼片の先端部を
突き合わせ、突合せ部をレーザ溶接によって仮付けし、
先行鋼片と後行鋼片を圧接して接合する方法において、
鋼片の厚みが40 mm 以上の場合には突合せ面と平行な
方向に偏光させたレーザビームで、鋼片の厚みが40 m
m 未満の場合には突合せ面と垂直な方向に偏光させたレ
ーザビームで突合せ部を走査してレーザ仮付溶接を行う
ことを特徴とする鋼片の接合におけるレーザ仮付溶接方
法。
3. The rear end portion of the preceding steel piece and the leading end portion of the following steel piece are butted, and the butted portion is temporarily attached by laser welding,
In the method of joining the preceding steel piece and the following steel piece by pressure welding,
When the thickness of the steel slab is 40 mm or more, the laser beam polarized in the direction parallel to the abutting surface, and the thickness of the steel slab is 40 m.
A laser tack welding method for joining steel pieces, characterized in that when the length is less than m, laser welding is performed by scanning the butted portion with a laser beam polarized in a direction perpendicular to the butted surface.
【請求項4】 請求項3に記載のレーザ仮付溶接方法を
実施する際に使用される装置であって、レーザビームの
偏光面を突合せ面に平行な方向と突合せ面に垂直な方向
とを相互に切り換える偏光面切換え光学系を備えている
ことを特徴とするレーザ仮付溶接装置。
4. An apparatus used when carrying out the laser tack welding method according to claim 3, wherein the polarization plane of the laser beam is parallel to the abutting surface and perpendicular to the abutting surface. A laser tack welding apparatus, which is provided with a polarization plane switching optical system for switching between each other.
JP7096916A 1995-04-21 1995-04-21 Method and device for laser tack welding in billet joining Withdrawn JPH08290276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7096916A JPH08290276A (en) 1995-04-21 1995-04-21 Method and device for laser tack welding in billet joining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7096916A JPH08290276A (en) 1995-04-21 1995-04-21 Method and device for laser tack welding in billet joining

Publications (1)

Publication Number Publication Date
JPH08290276A true JPH08290276A (en) 1996-11-05

Family

ID=14177689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7096916A Withdrawn JPH08290276A (en) 1995-04-21 1995-04-21 Method and device for laser tack welding in billet joining

Country Status (1)

Country Link
JP (1) JPH08290276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227950A (en) * 2009-03-26 2010-10-14 Ihi Corp Laser beam welding apparatus and laser beam welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227950A (en) * 2009-03-26 2010-10-14 Ihi Corp Laser beam welding apparatus and laser beam welding method

Similar Documents

Publication Publication Date Title
US6087619A (en) Dual intensity multi-beam welding system
WO2011018989A1 (en) Laser machining device and laser machining method
JPS62254991A (en) Laser welding method and apparatus
GB2212430A (en) Method of and arrangement for laser welding.
JP2005313195A (en) Double wavelength superposing type laser beam emission unit, and laser beam machining apparatus
JP2002316282A (en) Laser beam machining method and device
KR100636852B1 (en) Scribing method and cutting method for glass using mode-locked uv-laser
JP4687243B2 (en) Laser welding method and laser welding apparatus
JP5030540B2 (en) Laser welding method for metal sheet
JPH08290276A (en) Method and device for laser tack welding in billet joining
JP3120013B2 (en) Hot rolled billet joining method
JP2000000683A (en) Laser welding method
JP2002210576A (en) Method for welding thin steel plate with resultant yag laser beam
JP2911744B2 (en) Laser joining method of aluminum alloy strip
JP3139953B2 (en) Vertical vibration laser tack welding method
JP2792340B2 (en) Laser welding method
JP3774536B2 (en) Butt welding method and apparatus for hot rolled steel slab
JP3210542B2 (en) Laser tack welding method for joining billets
JPH10202379A (en) Welding structure
JPH08290278A (en) Method for joining hot rolled billet
JP3583850B2 (en) Laser tack welding method
JP3397312B2 (en) Laser beam synthesizer and laser processing system
JPH08257775A (en) Method for joining hot rolled billet
JPH08290277A (en) Method for joining hot rolled billet
JPS60218425A (en) Method for preventing edge crack and rupture of electrical steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702