JPH08288548A - Light-emitting diode - Google Patents

Light-emitting diode

Info

Publication number
JPH08288548A
JPH08288548A JP9264495A JP9264495A JPH08288548A JP H08288548 A JPH08288548 A JP H08288548A JP 9264495 A JP9264495 A JP 9264495A JP 9264495 A JP9264495 A JP 9264495A JP H08288548 A JPH08288548 A JP H08288548A
Authority
JP
Japan
Prior art keywords
layer
semiconductor substrate
light emitting
light
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9264495A
Other languages
Japanese (ja)
Inventor
Hiromitsu Abe
弘光 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP9264495A priority Critical patent/JPH08288548A/en
Publication of JPH08288548A publication Critical patent/JPH08288548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE: To provide an LED of a structure wherein even if a semiconductor substrate is made thin, a warpage and a crack, which are caused by a residual stress, are not generated and a high luminous efficiency can be maintained. CONSTITUTION: A light-emitting diode has a double heterojunction luminous layer 6, which consists of an n-type clad layer 3 formed using an InGaAlAs semiconductor material, an active layer 4 and a p-type clad layer 5, on a semiconductor substrate 1 and a second clad layer 7 consisting of an Alz Ga1-z Asc P1-c (0.4<=z<=1.0, 0.85<=c<=0.97) layer is provided on the side, which is opposite to the substrate 1, of the layer 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はダブルへテロ接合構造の
発光ダイオード(以下、LEDという)に関する。さら
に詳しくは、格子不整合を小さくして半導体基板を薄く
しても半導体基板が反ったり、割れが生じないLEDに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode (hereinafter referred to as LED) having a double heterojunction structure. More specifically, the present invention relates to an LED in which the semiconductor substrate does not warp or crack even if the lattice mismatch is reduced and the semiconductor substrate is thinned.

【0002】[0002]

【従来の技術】LEDの中でも活性層がn型クラッド層
とp型クラッド層とで挟持され、活性層のバンドギャッ
プエネルギーが両側のクラッド層のバンドギャップエネ
ルギーより小さくなるように材料が選ばれたダブルへテ
ロ接合構造のLEDは高輝度であり、信号機や自動車の
テールランプや屋外用の表示器などにも需要が拡大して
いる。
2. Description of the Related Art Among LEDs, a material is selected such that an active layer is sandwiched between an n-type clad layer and a p-type clad layer, and a bandgap energy of the active layer is smaller than bandgap energies of clad layers on both sides. The LED of the double-heterojunction structure has high brightness, and its demand is expanding to traffic lights, tail lamps of automobiles, and outdoor displays.

【0003】このようなLEDの従来の製法を図2を参
照しながら説明する。
A conventional method of manufacturing such an LED will be described with reference to FIG.

【0004】まず、n型GaAs基板21上に減圧MO
CVD法によりn型GaAsからなるバッファ層22、
シリコン(以下、Siという)をドープしたInGaA
lPからなるn型クラッド層23、ノンドープInGa
AlPからなる活性層24、亜鉛(以下、Znという)
をドープしたInGaAlPからなるp型クラッド層2
5、p型AlGaAsからなる電流拡散層26、p型G
aAsからなるコンタクト層27を順次結晶成長させ、
ついで、Au−Zn合金などからなるp側電極28、A
u−Ge−Ni合金などからなるn側電極29を蒸着な
どにより形成し、p側電極28およびコンタクト層27
は、光の取り出しの妨げとならないように、図2に示さ
れるように中心部を除いてエッチング除去する。
First, a reduced pressure MO is formed on the n-type GaAs substrate 21.
A buffer layer 22 made of n-type GaAs by the CVD method,
InGaA doped with silicon (hereinafter referred to as Si)
n-type cladding layer 23 made of IP, undoped InGa
Active layer 24 made of AlP, zinc (hereinafter referred to as Zn)
P-type cladding layer 2 made of InGaAlP
5, current diffusion layer 26 made of p-type AlGaAs, p-type G
The contact layer 27 made of aAs is sequentially crystal-grown,
Then, the p-side electrode 28 made of Au-Zn alloy or the like, A
An n-side electrode 29 made of u-Ge-Ni alloy or the like is formed by vapor deposition or the like, and a p-side electrode 28 and a contact layer 27 are formed.
Is etched away except the central portion as shown in FIG. 2 so as not to interfere with the extraction of light.

【0005】電流拡散層26はチップ中心部に設けられ
たp側電極28からn側電極29に向かう電流がチップ
の周縁部にも拡がって活性層24の全体に電流を流し、
発光効率を向上させるために設けられている。すなわ
ち、電流はp側電極28の真下に向かって流れ易いが、
p側電極28の真下の活性層を電流が流れて発光しても
上方に向かった光は金属からなるp側電極28で遮られ
て外部に光を取り出せないため、p側電極28の真下以
外のところに電流を流した方が効果的であるからであ
る。
In the current diffusion layer 26, the current flowing from the p-side electrode 28 provided in the central portion of the chip to the n-side electrode 29 spreads to the peripheral portion of the chip, and the current flows through the entire active layer 24.
It is provided to improve the luminous efficiency. That is, the current easily flows directly below the p-side electrode 28,
Even if a current flows through the active layer directly below the p-side electrode 28 and emits light, the upward light is blocked by the metal p-side electrode 28 and cannot be extracted to the outside. This is because it is more effective to pass an electric current there.

【0006】[0006]

【発明が解決しようとする課題】従来のInGaAlP
系の化合物半導体を用いたLEDは、前述のように、上
部(p側)電極の下部に電流が集中するのを防止してチ
ップ全体に電流が広がるように低抵抗のAlGaAs層
をp型クラッド層上に設けている。
[Problems to be Solved by the Invention] Conventional InGaAlP
As described above, the LED using the compound semiconductor of the system is such that the current is prevented from concentrating on the lower part of the upper (p-side) electrode and the low-resistance AlGaAs layer is p-type clad to spread the current over the entire chip. It is provided on the layer.

【0007】しかしクラッド層や活性層のInGaAl
P系化合物半導体は四元系化合物であり基板のGaAs
との格子整合をとることができるが、AlGaAS系化
合物半導体はGaAsとの格子整合をとることができ
ず、残留応力が残る。一方、コストの面よりLEDチッ
プの小型化を目指しチップサイズを150μm角程度と
すると、ウェハの厚さが従来通り250〜300μm程
度あると縦長で組立時に不安定となり歩留りが低下す
る。そのため基板を研磨して薄くする必要がある。しか
し、基板を研磨して薄くすると前述の残留応力により基
板が反ったり、割れが生じ易いという問題がある。
However, InGaAl for the clad layer and the active layer
The P-based compound semiconductor is a quaternary compound and the substrate GaAs
However, the AlGaAS-based compound semiconductor cannot be lattice-matched with GaAs, and residual stress remains. On the other hand, if the chip size is about 150 μm square aiming at downsizing of the LED chip from the viewpoint of cost, if the wafer thickness is about 250 to 300 μm as before, it becomes vertically long and unstable during assembly, and the yield decreases. Therefore, it is necessary to polish the substrate to make it thinner. However, when the substrate is thinned by polishing, there is a problem that the substrate is easily warped or cracked due to the above-mentioned residual stress.

【0008】また、電流拡散層を設けないと、活性層と
上部電極との距離が短くなり、上部電極から活性層へ向
う電流の広がりが充分えられなく、上部電極の真下以外
での発光の割合が増えないこと、上部電極へのワイヤボ
ンディングの際に活性層にボンディングの圧力が加わっ
て結晶性を損い発光効率が低下することなどの問題があ
る。しかしクラッド層を厚く形成しようとすると、In
GaAlP系からなる化合物半導体をMOCVD法によ
り成長するばあい、成長レートが3μm/hrと非常に
小さく、厚い層を形成するのに非常に時間がかかるとと
もに、InGaAlP系の化合物半導体層を厚く形成す
ると結晶性が劣化し実用的でなくなる。また、GaAs
などは光を吸収するため光を取り出す側に設けることが
できない。
Further, if the current diffusion layer is not provided, the distance between the active layer and the upper electrode becomes short, the current from the upper electrode to the active layer cannot be sufficiently spread, and the light is emitted only under the upper electrode. There is a problem that the ratio does not increase, the bonding pressure is applied to the active layer at the time of wire bonding to the upper electrode, the crystallinity is impaired, and the light emission efficiency is reduced. However, when trying to form a thick cladding layer, In
When a compound semiconductor made of GaAlP is grown by the MOCVD method, the growth rate is very small as 3 μm / hr, it takes a very long time to form a thick layer, and when the compound semiconductor layer of InGaAlP is made thick. Crystallinity deteriorates and becomes impractical. Also, GaAs
Since these absorb light, they cannot be provided on the light extraction side.

【0009】本発明はこのような問題を解決し、半導体
基板を薄くしても残留応力による反りや割れが生じな
く、かつ、発光効率を高く維持することができるLED
を提供することを目的とする。
The present invention solves such a problem, and even if the semiconductor substrate is made thin, warpage or cracking due to residual stress does not occur, and the light emission efficiency can be kept high.
The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明のLEDは、半導
体基板上にInGaAlP系の半導体材料を用いたn型
クラッド層、活性層およびp型クラッド層からなるダブ
ルへテロ接合構造の発光層を有するLEDであって、前
記発光層の半導体基板と反対側にAlzGa1-zAsc
1-c(0.4≦z≦1.0、0.85≦c≦0.97)
からなる第2クラッド層が設けられている。
The LED of the present invention comprises a light emitting layer having a double heterojunction structure composed of an n-type clad layer, an active layer and a p-type clad layer made of an InGaAlP based semiconductor material, on a semiconductor substrate. An LED having the same, wherein Al z Ga 1-z As c P is provided on the side of the light emitting layer opposite to the semiconductor substrate.
1-c (0.4 ≦ z ≦ 1.0, 0.85 ≦ c ≦ 0.97)
A second clad layer made of is provided.

【0011】前記第2クラッド層は前記半導体基板との
格子不整合が±1.5×10-3の範囲内となるようにP
の比率が定められていることが、半導体基板が薄く研磨
されても、反りや割れの発生が少なくなり好ましい。
The second cladding layer is made of P so that the lattice mismatch with the semiconductor substrate is within a range of ± 1.5 × 10 -3.
It is preferable that the ratio is defined because warpage and cracks are less likely to occur even when the semiconductor substrate is thinly polished.

【0012】ここに格子不整合とは、エピタキシャル成
長層の格子定数から基板の格子定数を引いたものを基板
の格子定数で割ったものを意味する。
Here, the lattice mismatch means a value obtained by subtracting the lattice constant of the substrate from the lattice constant of the epitaxial growth layer, divided by the lattice constant of the substrate.

【0013】[0013]

【作用】本発明によれば、発光層の半導体基板とは反対
側にAlGaAsPからなる第2クラッド層が設けられ
ているため、たとえばGaAsからなる半導体基板と格
子定数を整合させることができる。すなわち、たとえば
Al0.7Ga0.3AsはGaAsに対する格子不整合が
2.4×10-3程度であるが、Pを8%程度加えること
により格子不整合が4×10-4程度以下となり、Pを含
有させることにより格子定数をGaAsとほとんど等し
くすることができる。
According to the present invention, since the second cladding layer made of AlGaAsP is provided on the side of the light emitting layer opposite to the semiconductor substrate, the lattice constant can be matched with that of the semiconductor substrate made of GaAs, for example. That is, for example, Al 0.7 Ga 0.3 As has a lattice mismatch with GaAs of about 2.4 × 10 −3 , but by adding P by about 8%, the lattice mismatch becomes about 4 × 10 −4 or less, and P By including it, the lattice constant can be made almost equal to that of GaAs.

【0014】その結果、ウェハの厚さを100〜150
μm程度に薄くしても残留応力が残らず、製造工程での
反りや割れの発生が少なくなり、また使用に伴なう結晶
の変化による不良も発生せず、信頼性が大幅に向上す
る。
As a result, the wafer thickness is reduced to 100-150.
Even if the thickness is reduced to about μm, residual stress does not remain, warpage and cracks are less likely to occur in the manufacturing process, and defects due to crystal change due to use do not occur, and reliability is significantly improved.

【0015】さらにAlGaAsPは比抵抗も小さく、
電流をチップ外周まで広げる効果を有するとともに、ボ
ンディング部と活性層との距離を稼ぐことができ、ボン
ディング時に活性層の結晶性を低下させることもない。
Further, AlGaAsP has a small specific resistance,
In addition to having the effect of spreading the current to the outer periphery of the chip, the distance between the bonding portion and the active layer can be increased, and the crystallinity of the active layer does not deteriorate during bonding.

【0016】[0016]

【実施例】つぎに、図面を参照しながら本発明のLED
について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the LED of the present invention will be described with reference to the drawings.
Will be described.

【0017】図1は本発明のLEDの一実施例の断面説
明図である。
FIG. 1 is a sectional view showing an embodiment of the LED of the present invention.

【0018】まずSiが1×1018/cm3程度の濃度
にドープされたn型GaAs基板1の表面に減圧MOC
VD法によりセレン(以下、Seという)が1×1018
/cm3程度にドープされたGaAsからなるn型バッ
ファ層2を0.5μm程度成長し、ついでSeを3×1
17/cm3程度にドープしたIna(Ga1-xAlx
1-aP(0.48≦a≦0.50、0.5≦x≦1.
0、たとえばa=0.5、x=0.7)からなるn型ク
ラッド層3を1μm程度、ノンドープのInb(Ga1-y
Aly1-bP(0.48≦b≦0.50、0≦y≦0.
4、y<x、たとえばb=0.5、y=0.3)からな
る活性層4を0.5μm程度、Znを7×1017/cm
3程度にドープしたIna(Ga1-xAlx1-aPからな
るp型クラッド層5を1μm程度、Znを2×1018/c
3程度にドープしたAlzGa1-zAsc1-c(0.4
≦z≦1.0、0.85≦c≦0.97、たとえばz=
0.7、c=0.92)からなる第2クラッド層7を5
μm程度、Znを2×1019/cm3程度にドープしたp
型GaAsからなるコンタクト層8を0.4μm程度順
次エピタキシャル成長させる。半導体層としてInGa
AlP系の化合物半導体材料を用いたばあい、Alの比
率が多いとバンドギャップエネルギーが大きくなり、前
述のようにy<xとすることにより活性層4のバンドギ
ャップエネルギーがクラッド層3、6のそれより小さく
なり、ダブルへテロ接合構造が構成される。
First, the surface of an n-type GaAs substrate 1 doped with Si at a concentration of about 1 × 10 18 / cm 3 is depressurized MOC.
Selenium (hereinafter referred to as Se) is 1 × 10 18 by the VD method.
The n-type buffer layer 2 made of GaAs doped to about 3 / cm 3 is grown to about 0.5 μm, and then Se is added to 3 × 1.
In a (Ga 1-x Al x ) doped to about 0 17 / cm 3
1-a P (0.48 ≦ a ≦ 0.50, 0.5 ≦ x ≦ 1.
0, for example, a = 0.5, x = 0.7), the n-type clad layer 3 of about 1 μm and undoped In b (Ga 1 -y
Al y) 1-b P ( 0.48 ≦ b ≦ 0.50,0 ≦ y ≦ 0.
4, y <x, for example b = 0.5, y = 0.3), the active layer 4 is about 0.5 μm, and Zn is 7 × 10 17 / cm 3.
The p-type cladding layer 5 made of In a (Ga 1-x Al x ) 1-a P doped to about 3 is about 1 μm, and Zn is 2 × 10 18 / c.
Al doped to about m 3 z Ga 1-z As c P 1-c (0.4
≦ z ≦ 1.0, 0.85 ≦ c ≦ 0.97, for example z =
0.7, c = 0.92) and the second clad layer 7 composed of 5
p doped with Zn at about 2 × 10 19 / cm 3
A contact layer 8 made of type GaAs is sequentially epitaxially grown to a thickness of about 0.4 μm. InGa as a semiconductor layer
When an AlP-based compound semiconductor material is used, the bandgap energy becomes large when the ratio of Al is large, and by setting y <x as described above, the bandgap energy of the active layer 4 becomes larger than that of the cladding layers 3 and 6. It is smaller than that, and a double heterojunction structure is constructed.

【0019】そののち、Ti−Au合金などからなるp
側電極9およびAu−Ge−Ni合金などからなるn側
電極10を積層されたコンタクト層8の表面およびn型
GaAs基板1の裏面にそれぞれ蒸着などにより形成
し、図1に示されるように、p側電極9およびコンタク
ト層8は中心部以外をエッチングにより除去する。つい
で各チップにダイシングし、エポキシ樹脂などでモール
ドすることにより本発明によるLEDがえられる。
After that, p made of a Ti--Au alloy or the like is used.
The side electrode 9 and the n-side electrode 10 made of Au—Ge—Ni alloy or the like are formed on the surface of the laminated contact layer 8 and the back surface of the n-type GaAs substrate 1 by vapor deposition or the like, respectively, and as shown in FIG. The p-side electrode 9 and the contact layer 8 are removed by etching except the central portion. Next, the LED according to the present invention is obtained by dicing each chip and molding with an epoxy resin or the like.

【0020】本発明のLEDでは、n型クラッド層3、
活性層4、p型クラッド層5からなるダブルヘテロ接合
構造の発光層6のGaAs基板1とは反対側のクラッド
層(本実施例ではp型クラッド層5)側に該クラッド層
と同じ導電型(本実施例ではp型)の第2クラッド層7
をAlzGa1-zAsc1-c(0.4≦z≦1.0、0.
85≦c≦0.97)により5μm程度形成しているこ
とに特徴がある。すなわち、活性層4よりバンドギャッ
プエネルギーの大きい材料であるAlzGa1-zAsc
1-cからなる第2クラッド層7がもうけられていること
により、MOCVD法によるエピタキシャル成長でも成
長速度が速く、5μm程度の厚さでも40分程度で成膜
することができる。
In the LED of the present invention, the n-type cladding layer 3,
The light emitting layer 6 of the double heterojunction structure composed of the active layer 4 and the p-type clad layer 5 has the same conductivity type as the clad layer (p-type clad layer 5 in this embodiment) opposite to the GaAs substrate 1. (P-type in this embodiment) Second cladding layer 7
To Al z Ga 1-z As c P 1-c (0.4 ≦ z ≦ 1.0, 0.
85 ≦ c ≦ 0.97), the feature is that it is formed to about 5 μm. That is, Al z Ga 1-z As c P which is a material having a bandgap energy larger than that of the active layer 4.
Since the second cladding layer 7 made of 1-c is provided, the growth rate is high even in the epitaxial growth by the MOCVD method, and a film having a thickness of about 5 μm can be formed in about 40 minutes.

【0021】本発明では第2クラッド層7としてAlG
aAs系の材料にPを加えることにより、GaAsによ
り格子定数が大きくなるAlGaAsの格子定数を小さ
くしてGaAsと格子定数を整合させることができ、A
lGaAsPとGaAsの格子定数の差ΔaとGaAs
の格子定数aとの比である格子不整合(Δa/a)をた
とえば前述のz=0.7、c=0.92とすることによ
り4×10-4程度とすることができる。その結果、半導
体基板をラッピングして150μm程度の厚さにしても
反りや割れがほとんど発生せず、縦長の不安定な状態で
ダイボンドなどの作業をする必要がなく、後工程での作
業性がよくなり、歩留りも向上する。前述のAlGaA
sPのPの比率を大きくする程格子定数は小さくなる
が、通常のばあいAsとの合計を1として、0.03〜
0.15程度とすることにより、格子不整合を±1.5
×10-3程度の範囲内として、反りなどの問題がほとん
ど生じない程度にすることができる。
In the present invention, AlG is used as the second cladding layer 7.
By adding P to the aAs-based material, the lattice constant of AlGaAs, which has a larger lattice constant due to GaAs, can be reduced to match the lattice constant with GaAs.
Difference between lattice constant Δa of GaAsP and GaAs and GaAs
The lattice mismatch (Δa / a), which is the ratio to the lattice constant a of, can be set to approximately 4 × 10 −4 by setting, for example, z = 0.7 and c = 0.92. As a result, even if the semiconductor substrate is lapped to a thickness of about 150 μm, warpage and cracks hardly occur, and it is not necessary to perform work such as die bonding in a vertically unstable state, and workability in a post process is improved. Improves yield and improves yield. AlGaA mentioned above
The larger the ratio of P to sP, the smaller the lattice constant, but in the normal case, the sum of As and As is 0.03 to
By setting it to about 0.15, the lattice mismatch is ± 1.5.
Within a range of about 10 −3, it can be set to a level at which problems such as warpage hardly occur.

【0022】さらに本発明では第2クラッド層にAlG
aAsP系の化合物半導体を用いているため、比抵抗が
小さく、上部電極の真下のみならず、チップ周囲まで電
流が拡散し易く、上部電極の真下以外のところでの発光
の割合を増やすことができ、発光効率を向上させること
ができる。
Further, in the present invention, AlG is used as the second cladding layer.
Since an aAsP-based compound semiconductor is used, the specific resistance is small, the current easily diffuses not only directly under the upper electrode but also around the chip, and it is possible to increase the proportion of light emission in areas other than directly under the upper electrode. The luminous efficiency can be improved.

【0023】また、第2クラッド層として、AlGaA
sP系の材料にさらにInを添加することもできる。I
nを添加することにより、バンドギャップエネルギーを
調節することができる。
As the second cladding layer, AlGaA is used.
In may be further added to the sP-based material. I
The bandgap energy can be adjusted by adding n.

【0024】[0024]

【発明の効果】以上のように、本発明によれば、ダブル
ヘテロ接合構造の発光層の半導体基板とは反対側にAl
GaAsP系の化合物半導体からなる第2クラッド層が
設けられているため、発光層と上部電極とのあいだに半
導体基板と格子不整合の小さい厚い層を短時間で形成す
ることができる。その結果、半導体層に残留応力がほと
んど生ぜず、半導体基板が100〜150μm程度に薄
く研磨されても反りや割れの発生がなく、後の作業工程
での取扱いが容易になるとともに歩留りが向上する。
As described above, according to the present invention, Al is formed on the opposite side of the light emitting layer of the double heterojunction structure from the semiconductor substrate.
Since the second cladding layer made of a GaAsP-based compound semiconductor is provided, a thick layer having a small lattice mismatch with the semiconductor substrate can be formed between the light emitting layer and the upper electrode in a short time. As a result, there is almost no residual stress in the semiconductor layer, and even if the semiconductor substrate is thinly polished to a thickness of about 100 to 150 μm, warpage and cracks do not occur, which facilitates the handling in subsequent working steps and improves the yield. .

【0025】また、上部電極へのワイヤボンディングの
際に活性層に圧力が加わって結晶性を損い、発光効率を
低下させることがない。またAlGaAsP系の化合物
半導体は比抵抗が小さく上部電極の真下以外にも電流が
広がり易いため、上部電極の真下以外の発光層で発光し
た光を上部電極によって遮られることなく効率よく取り
出すことができ、発光効率を向上させることができる。
Further, pressure is not applied to the active layer during wire bonding to the upper electrode, so that crystallinity is not impaired and luminous efficiency is not lowered. In addition, since the AlGaAsP-based compound semiconductor has a small specific resistance, the current is likely to spread to areas other than directly below the upper electrode. Therefore, the light emitted from the light emitting layer other than directly below the upper electrode can be efficiently extracted without being blocked by the upper electrode. The luminous efficiency can be improved.

【0026】またAlGaAsにPを添加することによ
り、バンドギャップエネルギーを大きくすることができ
る。このことは、つまり、同じバンドギャップエネルギ
ーであれば、Pを添加することによりAl混晶比を低下
させることができる。したがってAl混晶比を下げるこ
とにより酸化による素子の信頼性の低下を防ぐことがで
きる。
The band gap energy can be increased by adding P to AlGaAs. This means that if the band gap energy is the same, the Al mixed crystal ratio can be lowered by adding P. Therefore, by lowering the Al mixed crystal ratio, it is possible to prevent the reliability of the element from lowering due to oxidation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のLEDの一実施例の断面説明図であ
る。
FIG. 1 is a cross-sectional explanatory view of an embodiment of an LED of the present invention.

【図2】従来のLEDの断面説明図である。FIG. 2 is a cross-sectional explanatory view of a conventional LED.

【符号の説明】[Explanation of symbols]

1 GaAs基板 3 n型クラッド層 4 活性層 5 p型クラッド層 6 発光層 7 第2クラッド層 1 GaAs substrate 3 n-type clad layer 4 active layer 5 p-type clad layer 6 light emitting layer 7 second clad layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にInGaAlP系の半導
体材料を用いたn型クラッド層、活性層およびp型クラ
ッド層からなるダブルへテロ接合の発光層を有する発光
ダイオードであって、前記発光層の半導体基板と反対側
にAlzGa1-zAsc1-c(0.4≦z≦1.0、0.
85≦c≦0.97)からなる第2クラッド層が設けら
れてなる発光ダイオード。
1. A light emitting diode having a light emitting layer of a double heterojunction composed of an n-type clad layer using an InGaAlP-based semiconductor material, an active layer and a p-type clad layer on a semiconductor substrate. the semiconductor substrate opposite Al z Ga 1-z as c P 1-c (0.4 ≦ z ≦ 1.0,0.
A light emitting diode provided with a second cladding layer of 85 ≦ c ≦ 0.97).
【請求項2】 前記第2クラッド層は前記半導体基板と
の格子不整合が±1.5×10-3の範囲内となるように
Pの比率が定められてなる請求項1記載の発光ダイオー
ド。
2. The light emitting diode according to claim 1, wherein the P ratio of the second cladding layer is determined so that the lattice mismatch with the semiconductor substrate is within a range of ± 1.5 × 10 −3. .
JP9264495A 1995-04-18 1995-04-18 Light-emitting diode Pending JPH08288548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9264495A JPH08288548A (en) 1995-04-18 1995-04-18 Light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9264495A JPH08288548A (en) 1995-04-18 1995-04-18 Light-emitting diode

Publications (1)

Publication Number Publication Date
JPH08288548A true JPH08288548A (en) 1996-11-01

Family

ID=14060167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9264495A Pending JPH08288548A (en) 1995-04-18 1995-04-18 Light-emitting diode

Country Status (1)

Country Link
JP (1) JPH08288548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300882A (en) * 2013-07-19 2015-01-21 安科太阳能股份有限公司 Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300882A (en) * 2013-07-19 2015-01-21 安科太阳能股份有限公司 Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells

Similar Documents

Publication Publication Date Title
US6838704B2 (en) Light emitting diode and method of making the same
US6583448B2 (en) Light emitting diode and method for manufacturing the same
JP3520270B2 (en) Light emitting diode and method of manufacturing the same
EP0434233B1 (en) Light-emitting diode with an electrically conductive window layer
JP2791448B2 (en) Light emitting diode
US6853011B2 (en) Light emitting diode and method of making the same
JPH0832112A (en) Group iii nitride semiconductor light emitting element
US20060186552A1 (en) High reflectivity p-contacts for group lll-nitride light emitting diodes
US20090026487A1 (en) Light-emitting devices having an active region with electrical contacts coupled to opposing surfaces thereof and methods of forming the same
TWI409973B (en) Light emitting diode and light emitting diode lamp, and lighting equipment
JPH1098212A (en) Substrate separation in iii-nitride semiconductor light-emitting device
JPH08255926A (en) Semiconductor light emitting element and fabrication thereof
JPH0614564B2 (en) Semiconductor light emitting element
JP4569859B2 (en) Method for manufacturing light emitting device
JP2002185044A (en) Nitride semiconductor multi-colored light-emitting element
JPH08293623A (en) Method of manufacturing light emitting diode
JP4569858B2 (en) Method for manufacturing light emitting device
JP2005277218A (en) Light-emitting element and its manufacturing method
JP3625088B2 (en) Semiconductor light emitting device
JP4341623B2 (en) Light emitting device and manufacturing method thereof
JP2001085742A (en) Semiconductor light emitting element and its manufacturing method
JP3691202B2 (en) Semiconductor light emitting device
JP4918245B2 (en) Light emitting diode and manufacturing method thereof
JPH08288548A (en) Light-emitting diode
JP2000174341A (en) Gallium nitride based compound semiconductor light- emitting element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608