JPH08288229A - Vapor growth method of compound semiconductor - Google Patents
Vapor growth method of compound semiconductorInfo
- Publication number
- JPH08288229A JPH08288229A JP13987096A JP13987096A JPH08288229A JP H08288229 A JPH08288229 A JP H08288229A JP 13987096 A JP13987096 A JP 13987096A JP 13987096 A JP13987096 A JP 13987096A JP H08288229 A JPH08288229 A JP H08288229A
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- layer
- gaas layer
- tmga
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は化合物半導体の気相
成長方法に関し、特に有機金属化合物を用いる気相成長
方法を用いたIII−V族化合物半導体層のエピタキシ
ャル成長方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method for compound semiconductors, and more particularly to a method for epitaxially growing a III-V group compound semiconductor layer using a vapor phase growth method using an organometallic compound.
【0002】[0002]
【従来の技術】III−V族化合物半導体デバイス、例
えばGaAsバイポーラトランジスタは、第3図に示す
ようにn+−GaAs基板(n〜1×1018cm-3)1
上に、n-−GaAsコレクタ層(n〜5×1016cm
-3)2、p−GaAsベース層(p〜3×1017c
m-3)3、n+−エミッタ層(n〜5×1018cm-3)
4を順次エピタキシャル成長して構成される。この種の
積層構造の形成は一般に気相成長方法や分子線結晶成長
などの膜厚制御性に優れたエピタキシャル成長方法が適
している。有機金属化合物を用いる気相成長方法すなわ
ちMOVPE方を適用する場合、一般的にはそのIII
族及びV族元素であるガリウム(Ga)とヒ素(As)
の輸送原料として夫々トリメチルガリウム(TMGa)
とアルシン(AsH3)が用いられている。第3図の積
層構造を形成する各層の導電型及びキャリア濃度はn型
及びp型のドーパントのセレン(Se)、亜鉛(Zn)
の各輸送原料であるセレン化水素(H2Se)、ジメチ
ル亜鉛(DMZn)を用い、これらを上記III族及び
V族元素の輸送原料と共に供給して制御していた。2. Description of the Related Art A III-V compound semiconductor device such as a GaAs bipolar transistor has an n + -GaAs substrate (n to 1 × 10 18 cm -3 ) 1 as shown in FIG.
On top, an n − − GaAs collector layer (n to 5 × 10 16 cm
-3 ) 2, p-GaAs base layer (p ~ 3 x 10 17 c
m −3 ) 3, n + − emitter layer (n to 5 × 10 18 cm −3 )
4 are sequentially grown epitaxially. Generally, a vapor phase growth method or an epitaxial growth method having excellent film thickness controllability, such as molecular beam crystal growth, is suitable for forming this kind of laminated structure. When the vapor phase growth method using an organometallic compound, that is, the MOVPE method is applied, it is generally III
Group and Group V elements gallium (Ga) and arsenic (As)
Trimethylgallium (TMGa) as a transport material
And arsine (AsH 3 ) are used. The conductivity type and carrier concentration of each layer forming the laminated structure of FIG. 3 are n-type and p-type dopants such as selenium (Se) and zinc (Zn).
Hydrogen selenide (H 2 Se) and dimethylzinc (DMZn), which are the respective transport raw materials, were used, and these were supplied and controlled together with the transport raw materials of the group III and group V elements.
【0003】[0003]
【発明が解決しようとする課題】上記の説明で明らかな
ように、第3図に示す積層構造は従来のMOVPE法で
形成可能である。然るに、従来の方法で形成した上記積
層構造はベース層3に拡散係数が大きく、メモリー効果
のあるZnをドーパントとして用いているため、コレク
タ層2及びエミッタ層4へのZn拡散等が起こり、急峻
なキャリア濃度プロファイルが得られないという問題が
あった。As is clear from the above description, the laminated structure shown in FIG. 3 can be formed by the conventional MOVPE method. However, in the above-described laminated structure formed by the conventional method, since the base layer 3 has a large diffusion coefficient and Zn having a memory effect is used as a dopant, Zn diffusion to the collector layer 2 and the emitter layer 4 and the like occur, and the sharpness is steep. There was a problem that a good carrier concentration profile could not be obtained.
【0004】本発明はかかる点に鑑みなされたもので、
故意にドーパントを用いることなくノンドープの化合物
半導体層の不純物濃度制御によって導電型及びキャリア
濃度を制御し、かつ急峻なドーピングプロファイルを有
する高品質な化合物半導体層のエピタキシャル成長方法
の提供を目的とする。[0004] The present invention has been made in view of such a point,
It is an object of the present invention to provide a method for epitaxially growing a high-quality compound semiconductor layer having a steep doping profile by controlling the conductivity type and carrier concentration by controlling the impurity concentration of a non-doped compound semiconductor layer without intentionally using a dopant.
【0005】[0005]
【課題を解決するための手段】本発明は上記問題点を解
決するため、MOVPE法により化合物半導体層をエピ
タキシャル成長するに際して、ノンドープの化合物半導
体層の導電型やキャリア濃度が用いるV族元素の輸送原
料の性質や供給量に強く依存するという知見に基づいて
なされたもので、有機金属化合物を用いるIII−V族
化合物半導体の気相成長方法により結晶基板上にGaA
s層をエピタキシャル成長する際、前記GaAs層のG
aの輸送原料にTMGaを用い、Asの輸送原料にTM
Asを用い、前記GaAs層の導電型を制御するように
した化合物半導体の気相成長方法とする。In order to solve the above problems, the present invention uses a transport source of a group V element which is used depending on the conductivity type and carrier concentration of a non-doped compound semiconductor layer when a compound semiconductor layer is epitaxially grown by the MOVPE method. It was made based on the finding that it strongly depends on the properties and supply amount of GaA on a crystal substrate by a vapor phase growth method of a III-V group compound semiconductor using an organometallic compound.
When epitaxially growing the s layer, the G of the GaAs layer is
TMGa is used as the transportation material of a and TM is used as the transportation material of As.
A vapor phase growth method of a compound semiconductor in which the conductivity type of the GaAs layer is controlled by using As.
【0006】この技術的手段による作用は次のようにな
る。すなわち、上記した構成により、故意にドーパント
を用いることなく、所要の導電型やキャリア濃度を容易
に制御できる。しかもZnに代表されるドーパントのメ
モリー効果はなくなる等の効果が期待できるため急峻な
キャリア濃度プロファイルを有する化合物半導体積層構
造が容易に形成できる。The operation of this technical means is as follows. That is, with the above configuration, the required conductivity type and carrier concentration can be easily controlled without intentionally using a dopant. Moreover, since the effect of eliminating the memory effect of the dopant represented by Zn can be expected, a compound semiconductor laminated structure having a steep carrier concentration profile can be easily formed.
【0007】[0007]
【発明の実施の形態】以下、本発明の実施例について説
明する。GaAsをエピタキシャル成長する場合、III
族元素Gaの輸送原料としてTMGa、V族元素Asの
輸送原料としてAsH3とトリメチルヒ素(TMAs)
の2種類を用いた。使用したMOVPE装置は横型高周
波加熱炉で成長内の炉内圧力は100Torr、基板温
度は700℃とした。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. When epitaxially growing GaAs, III
TMGa as a transporting material for the group element Ga, AsH 3 and trimethylarsenic (TMAs) as a transporting material for the group V element As
2 types were used. The MOVPE apparatus used was a horizontal high-frequency heating furnace, the furnace pressure during growth was 100 Torr, and the substrate temperature was 700 ° C.
【0008】第2図はAsH3とTMGaを用いて成長
させた不純物の添加をしなかったノンドープGaAs層
のキャリア濃度のAsH3供給量依存性を示すグラフで
あり、AsH3の供給量がが250cc/min以上で
はn型、150cc/min以下ではp型となった、A
sの供給量が増すとGaの空孔子密度が大きくなって、
原料等に含まれるシリコンやゲルマニウム等がGaの空
孔子に入ってn型となり、又As供給量を少なくすると
Asの空孔子密度が大きくなってTMGaの熱分解反応
で生じたカーボンCがAs空孔子に入ってp型となる競
合反応が生じて、n型,p型のいずれにもなる。FIG. 2 is a graph showing the dependency of the carrier concentration of the non-doped GaAs layer grown by using AsH 3 and TMGa on the AsH 3 supply amount, where the AsH 3 supply amount is It was n-type at 250 cc / min or higher, and p-type at 150 cc / min or lower.
As the supply of s increases, the vacancy density of Ga increases,
Silicon and germanium contained in the raw materials enter the Ga vacancy and become n-type, and when the As supply amount is reduced, the vacancy density of As increases and carbon C generated by the thermal decomposition reaction of TMGa becomes As vacancy. Upon entering the Confucius, a p-type competing reaction occurs, becoming both n-type and p-type.
【0009】しかるに、TMAsとTMGaを用いて成
長させた不純物の添加をしなかったノンドープGaAs
層のキャリア濃度はTMAsの供給量に対して常にp型
を示し比較的高濃度であった。これは、TMAs自体の
熱分解反応で生じた多量のカーボンGaAs層中に取り
込まれるためである。SIMSの分析よりp型を示す不
純物がカーボンであることは確認されている。カーボン
はGaAs層中で浅いアクセプタ準位を形成するため良
好なp型の特性を示す。この様にに、TMAsとTMG
aを用いて成長させたGaAs層は故意に不純物を添加
しなくとも、カーボンの取込みにより比較的高濃度の良
好なp型GaAs層が得られる。However, non-doped GaAs grown using TMAs and TMGa and not added with impurities
The carrier concentration of the layer was always p-type and relatively high with respect to the amount of TMAs supplied. This is because a large amount of carbon GaAs layer generated by the thermal decomposition reaction of TMAs itself is incorporated. It has been confirmed by SIMS analysis that the p-type impurity is carbon. Since carbon forms a shallow acceptor level in the GaAs layer, it exhibits good p-type characteristics. In this way, TMAs and TMG
The GaAs layer grown by using a can obtain a good p-type GaAs layer having a relatively high concentration by incorporating carbon without intentionally adding impurities.
【0010】以上の様な結果を、第3図に示すGaAs
バイポーラトランジスタの積層構造を形成する場合に利
用した。コレクタ層2,エミット層は従来通りTMGa
流量2cc/min,AsH3流量200cc/mi
n,原料ガスとキャリアガスの流量和5リットル/mi
nの条件でエピタキシャル成長した、所要のn型キャリ
ア濃度はH2Seを供給して得た。ベース層3はAsの
輸送原料にTMAsを用い、TMGa流量2cc/mi
n,TMAs流量100cc/minの条件でエピタキ
シャル成長した。The above results are shown in FIG.
It was used when forming a laminated structure of a bipolar transistor. The collector layer 2 and the emission layer are TMGa as before.
Flow rate 2 cc / min, AsH 3 flow rate 200 cc / mi
n, total flow rate of source gas and carrier gas 5 liters / mi
The required n-type carrier concentration epitaxially grown under the condition of n was obtained by supplying H 2 Se. The base layer 3 uses TMAs as a transport material for As, and has a TMGa flow rate of 2 cc / mi.
The epitaxial growth was performed under the conditions of n and TMAs flow rate of 100 cc / min.
【0011】以上の本発明の実施例により得られた図3
の積層構造のベース層3付近でのSIMSによる深さ方
向の不純物濃度プロファイルを第1図に示す。本発明の
気相成長方法により成長したベース層内のカーボン濃度
プロファイルと、比較のため従来の気相成長方法により
成長したベース層内のZn濃度プロファイルを示してお
り、明らかに、本発明の気相成長方法による所要の不純
物濃度で急峻なプロファイルの化合物半導体積層構造が
形成できる。FIG. 3 obtained by the above embodiment of the present invention.
FIG. 1 shows an impurity concentration profile in the depth direction by SIMS in the vicinity of the base layer 3 of the laminated structure of. The carbon concentration profile in the base layer grown by the vapor phase growth method of the present invention and the Zn concentration profile in the base layer grown by the conventional vapor phase growth method are shown for comparison. A compound semiconductor laminated structure having a steep profile can be formed with a required impurity concentration by the phase growth method.
【0012】本実施例は本発明を制御するものではな
い。すなわち、V族元素Asの輸送原料にAsH3とT
MAsを個々に異なるエピタキシャル層を形成する場合
について例示したが、AsH3とTMAsを所定の供給
比で同時に使用してもよく、さらには、他のアルキル金
属化合物,水素化合物や金属を用いても同様の効果が期
待できる。また、ここでは第2図の積層構造を形成する
場合について例示したが、他の積層構造にも適用でき
る。成長条件も用いる装置や状況に応じて変化させても
よい。This embodiment does not control the present invention. That is, AsH 3 and T
Although the case where MAs individually form different epitaxial layers is illustrated, AsH 3 and TMAs may be simultaneously used at a predetermined supply ratio, and other alkyl metal compounds, hydrogen compounds and metals may be used. The same effect can be expected. Further, although the case of forming the laminated structure of FIG. 2 is illustrated here, the present invention can be applied to other laminated structures. The growth conditions may also be changed depending on the device used and the situation.
【0013】[0013]
【発明の効果】以上の説明より明らかな様に、本発明に
よれば故意にドーパントを用いることなく容易に所要の
導電型あるいはキャリア濃度の化合物半導体層が得られ
るとともにその化合物半導体層の結晶性は良好である。
さらに、Znに代表される様なドーパントのメモリー効
果はなく、不純物濃度のプロファイルは急峻である、従
って本発明を用いることにより良好な素子特性を有する
化合物半導体積層構造が得られる。As is apparent from the above description, according to the present invention, a compound semiconductor layer having a required conductivity type or carrier concentration can be easily obtained without intentionally using a dopant, and the crystallinity of the compound semiconductor layer can be easily obtained. Is good.
Further, there is no memory effect of the dopant typified by Zn, and the profile of the impurity concentration is steep. Therefore, by using the present invention, a compound semiconductor laminated structure having good device characteristics can be obtained.
【図1】本発明の気相成長方法により形成した化合物半
導体積層構造内の不純物濃度プロファイルを示す図FIG. 1 is a diagram showing an impurity concentration profile in a compound semiconductor laminated structure formed by a vapor phase growth method of the present invention.
【図2】不純物濃度に与えるAsH3供給量の依存性を
示すグラフFIG. 2 is a graph showing the dependency of the AsH 3 supply amount on the impurity concentration.
【図3】GaAsバイポーラトランジスタの積層構造を
模式的に示す断面図FIG. 3 is a sectional view schematically showing a laminated structure of a GaAs bipolar transistor.
1 基板 2 コレクタ層 3 ベース層 4 エミッタ層 1 substrate 2 collector layer 3 base layer 4 emitter layer
Claims (3)
合物半導体の気相成長方法により結晶基板上にGaAs
層をエピタキシャル成長する際、前記GaAs層のGa
の輸送原料にTMGaを用い、Asの輸送原料にTMA
sを用い、前記GaAs層の導電型を制御するようにし
た化合物半導体の気相成長方法。1. A GaAs on a crystal substrate by a vapor phase growth method of a III-V group compound semiconductor using an organometallic compound.
When the layer is epitaxially grown, the Ga of the GaAs layer is
TMGa is used as the transport material for
A method for vapor phase growth of a compound semiconductor, wherein s is used to control the conductivity type of the GaAs layer.
の輸送原料にTMAsを用い、p型GaAs層を形成し
た半導体装置。2. As a transporting material for Ga, TMGa is used,
A semiconductor device in which a p-type GaAs layer is formed by using TMAs as a transportation raw material.
の輸送原料にTMAsを用い、p型GaAs層を形成
し、前記p型GaAs層をベース層としたバイポーラト
ランジスタ。3. Use of TMGa as a Ga transporting material
A bipolar transistor in which a p-type GaAs layer is formed by using TMAs as a transport raw material and the p-type GaAs layer is used as a base layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13987096A JPH08288229A (en) | 1996-06-03 | 1996-06-03 | Vapor growth method of compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13987096A JPH08288229A (en) | 1996-06-03 | 1996-06-03 | Vapor growth method of compound semiconductor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61291860A Division JPH0754805B2 (en) | 1986-12-08 | 1986-12-08 | Vapor growth method of compound semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08288229A true JPH08288229A (en) | 1996-11-01 |
Family
ID=15255485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13987096A Pending JPH08288229A (en) | 1996-06-03 | 1996-06-03 | Vapor growth method of compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08288229A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191959A (en) * | 1984-10-12 | 1986-05-10 | Sony Corp | Heterojunction type transistor |
-
1996
- 1996-06-03 JP JP13987096A patent/JPH08288229A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191959A (en) * | 1984-10-12 | 1986-05-10 | Sony Corp | Heterojunction type transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6559038B2 (en) | Method for growing p-n heterojunction-based structures utilizing HVPE techniques | |
US20040026704A1 (en) | III-V compound semiconductor device with an AIxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer | |
US6599133B2 (en) | Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques | |
US6479839B2 (en) | III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer | |
US6472300B2 (en) | Method for growing p-n homojunction-based structures utilizing HVPE techniques | |
JP2789861B2 (en) | Organometallic molecular beam epitaxial growth method | |
JPH05175150A (en) | Compound semiconductor and its manufacture | |
US5858818A (en) | Formation of InGaSa p-n Junction by control of growth temperature | |
JP2004533725A (en) | Semiconductor layer growth method | |
US7550786B2 (en) | Compound semiconductor epitaxial substrate | |
JPH0754805B2 (en) | Vapor growth method of compound semiconductor | |
JP3631600B2 (en) | Compound semiconductor substrate | |
US6191014B1 (en) | Method for manufacturing compound semiconductor | |
JPH08288229A (en) | Vapor growth method of compound semiconductor | |
JP3156909B2 (en) | Vapor growth method of semiconductor laminated structure | |
JP3109149B2 (en) | Compound semiconductor crystal growth method | |
JP2006515713A (en) | MBE growth of p-type nitride semiconductor materials | |
JP2861192B2 (en) | Vapor phase growth of compound semiconductor crystals | |
JP3430621B2 (en) | III-V compound semiconductor crystal growth method | |
JP2000124444A (en) | Semiconductor device and epitaxial wafer | |
JPH07254564A (en) | Vapor phase epitaxial growth method | |
JP2004186457A (en) | Method for manufacturing iii-v group compound semiconductor crystal | |
JPH0766136A (en) | Epitaxial growth method for iii-v compound semiconductor | |
JPH11251329A (en) | Semiconductor wafer and manufacture thereof | |
JPS63304617A (en) | Method of growing compound semiconductor crystal |