JPH08287955A - Method of charging sealed lead-acid battery - Google Patents

Method of charging sealed lead-acid battery

Info

Publication number
JPH08287955A
JPH08287955A JP7111192A JP11119295A JPH08287955A JP H08287955 A JPH08287955 A JP H08287955A JP 7111192 A JP7111192 A JP 7111192A JP 11119295 A JP11119295 A JP 11119295A JP H08287955 A JPH08287955 A JP H08287955A
Authority
JP
Japan
Prior art keywords
charging
battery
time
voltage
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7111192A
Other languages
Japanese (ja)
Inventor
Eiji Nitta
英次 新田
Katsuto Takahashi
克仁 高橋
Shigeharu Osumi
重治 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP7111192A priority Critical patent/JPH08287955A/en
Publication of JPH08287955A publication Critical patent/JPH08287955A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To improve the life of the above battery by adopting a specified charge method, in float charging, or intermittent float charging where trickle charging or charging suspension are performed alternately, or intermittent trickle charging. CONSTITUTION: Charging is performed at a specified constant voltage within the voltage range of 2.2-2.3V/cell, and at the point of time when the current drops to the specified voltage or lower, the charging is suspended, and the suspension time is decided by the temperature of a battery, and the upper limit is set to thirty days or less. Or, in place of deciding the suspension time by the battery temperature, it is set to the point of time when the open voltage of the battery during suspension has dropped to the specified voltage, the upper limit of the suspension time is made thirty days or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,密閉鉛電池の充電方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a sealed lead battery.

【0002】[0002]

【従来の技術】予備電源としての密閉鉛電池の充電方法
には,通常二種類あって,一つは常時は電池の充電を行
いながら負荷に電力を供給し,また瞬間的な大電流が負
荷に流れる時は,充電器と電池が負荷を分担し,商用電
源が停電したときは,無瞬断で電池から負荷に電力を供
給するフロート充電方式であり、他の一つは常時は電池
の完全充電状態を維持する充電のみを行い,商用電源が
停電した時は電池が負荷に接続されて電力を供給するト
リクル充電方式である。
2. Description of the Related Art There are usually two types of methods for charging a sealed lead-acid battery as a backup power source. One is to constantly supply the electric power to the load while charging the battery, and the momentary large current is applied to the load. The load is shared by the charger and the battery when the current flows to the load, and when the commercial power supply fails, it is a float charging method that supplies power from the battery to the load without interruption. This is a trickle charging method in which the battery is connected to the load to supply power when the commercial power supply fails, only charging that maintains a fully charged state.

【0003】鉛電池の寿命は,通常正極板格子の腐食に
よって決まる。正極板格子は,電解液中にあって高い電
位を与える正極活物質の二酸化鉛と常時接触しているた
め常に腐食される状態に置かれている。この腐食傾向は
電池が充電状態にあるときは,二酸化鉛の電位に加えて
充電の過電圧がさらに加わるため一層強められる。
The life of lead-acid batteries is usually determined by the corrosion of the positive plate grid. The positive electrode plate grid is always in a corroded state because it is constantly in contact with lead dioxide, which is a positive electrode active material that gives a high potential in the electrolytic solution. This tendency to corrode is further enhanced when the battery is in a charged state because the charging overvoltage is further added in addition to the potential of lead dioxide.

【0004】正極板格子は,集電体としての機能と活物
質を保持する機能とを併せ持っている。格子が腐食する
と,電気抵抗が増大したり,機械的強度が低下して,こ
れらの機能が低下し容量が減少して寿命に至る。したが
って,正極板格子の腐食をいかに小さく抑えるかが電池
の寿命を長くするポイントになる。
The positive electrode plate grid has both a function as a current collector and a function of holding an active material. When the grid is corroded, the electrical resistance is increased or the mechanical strength is decreased, these functions are deteriorated, the capacity is decreased, and the life is reached. Therefore, how to minimize the corrosion of the positive plate grid is the key to prolonging battery life.

【0005】[0005]

【発明が解決しようとする課題】充電は,非常時に十分
な電力を供給するために不可欠な操作であるが,正極板
格子の腐食を促進して電池寿命を短くさせる。このよう
な背景にあって,充電状態の維持と電池の長寿命化とい
う背反する二つの目的をうまくバランスさせた充電方法
の開発が強く期待されている。従来の浮動充電方法で
は,非常時に放電する以外は電池を常時充電状態におい
ているため,充電時間に比例した正極板格子の腐食が進
行し,したがって,充電時間が電池の使用寿命になって
いた。そのため正極格子腐食によって制限される電池寿
命をより一層延ばすことが難しかった。
Charging is an essential operation for supplying sufficient electric power in an emergency, but it accelerates corrosion of the positive plate grid and shortens battery life. Against this background, there is strong hope for the development of a charging method that strikes a good balance between the two contradictory objectives of maintaining the state of charge and extending the life of the battery. In the conventional floating charging method, the battery is always charged except for discharging in an emergency, so that the corrosion of the positive electrode plate grid progresses in proportion to the charging time, and thus the charging time is the service life of the battery. Therefore, it is difficult to further extend the battery life limited by the positive electrode grid corrosion.

【0006】[0006]

【課題を解決するための手段】本発明の充電方法は、密
閉鉛電池の浮動充電使用において,従来の充電方法に代
えて,充電時間と休止時間とを交互に繰り返すことによ
り累積充電時間を少なくして電池寿命を延ばすものであ
る。その方法は電池を2.2V〜2.3V/セルの範囲
内の所定の定電圧で充電を行い,充電電流が所定値以下
に低下した時点で充電を休止し,休止時間を温度によっ
て決める。また、休止時間を温度によって決める代り
に,休止後の充電開始を電池の開路電圧が所定の電圧以
下に低下した時点とするものである。
According to the charging method of the present invention, in the floating charging use of a sealed lead battery, the cumulative charging time is reduced by alternately repeating the charging time and the rest time instead of the conventional charging method. It extends the battery life. In this method, the battery is charged at a predetermined constant voltage within the range of 2.2 V to 2.3 V / cell, the charging is stopped when the charging current drops below a predetermined value, and the rest time is determined by the temperature. Further, instead of determining the rest time according to the temperature, the start of charging after the rest is set to the time when the open circuit voltage of the battery drops below a predetermined voltage.

【0007】[0007]

【実施例】【Example】

(実施例1)2Vセル,容量200AH(10HR)の
密閉鉛電池を56個直列に接続した予備電源システム
で,放電後の電池は2.2V/セル未満の定電圧では充
電不足になったため2.2V/セルの定電圧で充電を行
い,充電の進行により電流が0.1Aに低下した時点で
充電を休止した。休止時間t(h)は電池に取り付けた
サーミスタ式温度計により計測した温度T(℃)をもと
にして,次式によって算出した値を制御システムにイン
プットした。
(Example 1) In a standby power supply system in which 56 sealed lead batteries having 2 V cells and a capacity of 200 AH (10 HR) were connected in series, the discharged batteries were insufficiently charged at a constant voltage of less than 2.2 V / cell. Charging was performed at a constant voltage of 0.2 V / cell, and the charging was stopped when the current decreased to 0.1 A as the charging proceeded. The rest time t (h) was based on the temperature T (° C) measured by a thermistor type thermometer attached to the battery, and the value calculated by the following equation was input to the control system.

【0008】t=360×(20/T)2 また,上式で算出した休止時間が30日を越えると非可
逆性の硫酸鉛が極板に蓄積して容量低下をもたらすので
その上限は30日までとした。
T = 360 × (20 / T) 2 Further , if the rest time calculated by the above formula exceeds 30 days, irreversible lead sulfate accumulates in the electrode plate and causes a capacity decrease, so the upper limit is 30. Until the day.

【0009】この充電方法を2年間にわたって実施した
電池についてその容量低下を,従来の充電方法で使用し
ていた同種類の電池のそれと比較すると,本発明充電方
法によって使用した電池の容量低下は従来の充電方法で
使用した電池のそれの84%であった。 (実施例2)実施例1と同様の予備電源システムに対し
て,放電後の充電を2.3V/セルを超える定電圧では
格子の腐食が大きくなるため2.3V/セルの定電圧で
充電した。充電電圧以外の条件は全て実施例1と同じに
して試験した。
Comparing the decrease in capacity of a battery which has been subjected to this charging method for two years with that of the same type of battery used in the conventional charging method, the decrease in capacity of the battery used by the charging method of the present invention is It was 84% of that of the battery used in the charging method of. (Embodiment 2) With respect to the same standby power supply system as in Embodiment 1, charging after discharging is performed at a constant voltage of 2.3 V / cell because the corrosion of the grid becomes large at a constant voltage exceeding 2.3 V / cell. did. All the conditions other than the charging voltage were the same as in Example 1 and tested.

【0010】この充電方法を2年間にわたって実施した
電池について電池の容量低下を,従来の充電方法で使用
していた同種類の電池のそれと比較すると,本発明充電
方法によって使用した電池の容量低下は,従来の充電方
法で使用した電池のそれの88%であった。 (実施例3)2Vセル,容量200AH(10HR)の
密閉鉛蓄電池を56個直列接続した予備電源システム
で,放電後の電池は2.2V/セル未満では充電不足と
なったため2.2V/セルの定電圧で充電を行った。充
電電流が0.1Aに低下した時点で充電を休止した。充
電開始は,電池に取り付けた比重センサで検出した電解
液比重値Gとその比重での電池の開路電圧E(V)の関
係を表わす次式により算出し,システムに制御回路にイ
ンプットした。
Comparing the decrease in battery capacity of a battery which has been subjected to this charging method for two years with that of the same type of battery used in the conventional charging method, the decrease in capacity of the battery used by the charging method of the present invention is , 88% of that of the battery used in the conventional charging method. (Embodiment 3) A standby power supply system in which 56 sealed lead-acid batteries having a capacity of 200 AH (10 HR) of 2 V are connected in series. The discharged battery is 2.2 V / cell because the battery is insufficiently charged at less than 2.2 V / cell. It was charged at a constant voltage. Charging was stopped when the charging current dropped to 0.1 A. The start of charging was calculated by the following equation showing the relationship between the electrolytic solution specific gravity value G detected by the specific gravity sensor attached to the battery and the open circuit voltage E (V) of the battery at that specific gravity, and input to the control circuit in the system.

【0011】E=0.92G+0.95 この試験では開路電圧が2.120V以下になった時点
で充電を開始した。また,この式で算出した開路電圧に
達するための休止時間が30日を越えると非可逆性の硫
酸鉛が極板に蓄積して容量低下をもたらしたためその上
限を30日までとした。30日経過しても開路電圧が
2.120Vに低下しなければ自動的に充電を開始し
た。この充電方法を2年間にわたって実施した電池につ
いて電池の容量低下を従来の充電方法で使用していた同
種類の電池のそれと比較すると,本発明充電方法によっ
て使用した電池の容量低下は,従来の充電方法によるそ
れの82%であった。 (実施例4)実施例3と同様の予備電源システムに対し
て,放電後の充電が2.3V/セルを超える定電圧では
格子の腐食が大きくなるため2.3V/セルの定電圧で
充電を行った。充電電圧以外はすべて実施例1と同じに
して試験した。
E = 0.92G + 0.95 In this test, charging was started when the open circuit voltage fell below 2.120V. Further, when the rest time for reaching the open circuit voltage calculated by this formula exceeds 30 days, irreversible lead sulfate accumulated in the electrode plate and caused a capacity decrease, so the upper limit was set to 30 days. If the open circuit voltage did not drop to 2.120V after 30 days, charging was automatically started. Comparing the decrease in battery capacity of a battery that has been subjected to this charging method for two years with that of the same type of battery used in the conventional charging method, the decrease in capacity of the battery used by the charging method of the present invention is It was 82% of that by method. (Embodiment 4) With respect to the same standby power supply system as in Embodiment 3, at constant voltage after discharge exceeding 2.3 V / cell, since grid corrosion is large, charging is performed at constant voltage of 2.3 V / cell. I went. The test was performed in the same manner as in Example 1 except for the charging voltage.

【0012】この充電方法を2年間にわたって実施した
電池について電池の容量低下を従来の充電方法で使用し
ていた同種類の電池のそれと比較すると,本発明充電方
法によって使用した電池の容量低下は,従来の充電方法
によるそれの87%であった。
Comparing the decrease in battery capacity of a battery which has been subjected to this charging method for two years with that of the same type of battery used in the conventional charging method, the decrease in capacity of the battery used by the charging method of the present invention is It was 87% of that of the conventional charging method.

【0013】[0013]

【発明の効果】間欠フロート充電または間欠トリクル充
電において,充電時間と休止時間とが繰り返されるた
め,従来の充電方法に比べ,充電状態におかれる時間が
短くなり,そのため充電の過電圧が電池に負荷される時
間が短くなり,正極板格子の腐食が減少して電池寿命を
延ばすことができる。
EFFECTS OF THE INVENTION In intermittent float charging or intermittent trickle charging, the charging time and the rest time are repeated, so that the time spent in the charging state becomes shorter than that in the conventional charging method, and therefore, the overvoltage of the charging loads the battery. This shortens the exposure time, reduces the corrosion of the positive electrode plate grid, and extends the battery life.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フロート充電またはトリクル充電と充電
休止とを交互に行う間欠フロート充電または間欠トリク
ル充電使用において,充電電圧を2.2〜2.3V/セ
ルの範囲内の所定の定電圧で行い,充電電流が所定値以
下に低下した時点で充電を休止し,充電休止時間を電池
温度によって定めるとともに,その上限を30日までと
することを特徴とする密閉鉛電池の充電方法。
1. In the use of intermittent float charging or intermittent trickle charging in which float charging or trickle charging and charging suspension are alternately performed, charging is performed at a predetermined constant voltage within a range of 2.2 to 2.3 V / cell. , A method for charging a sealed lead-acid battery, characterized in that charging is stopped when the charging current drops below a predetermined value, the charging suspension time is determined by the battery temperature, and the upper limit is set to 30 days.
【請求項2】 フロート充電またはトリクル充電と充電
休止とを交互に行う間欠フロート充電または間欠トリク
ル充電使用において,充電電圧を2.2〜2.3V/セ
ルの範囲内の所定の定電圧で行い,充電電流が所定値以
下に低下した時点で充電を休止し,充電休止時間を充電
休止中の電池の開路電圧が所定の電圧に低下した時点と
するとともに,休止時間の上限を30日までとすること
を特徴とする密閉鉛電池の浮動充電方法。
2. In the use of intermittent float charging or intermittent trickle charging in which float charging or trickle charging and charging suspension are alternately performed, charging is performed at a predetermined constant voltage within a range of 2.2 to 2.3 V / cell. , Charging is stopped when the charging current drops below a predetermined value, and the charging pause time is set to the time when the open circuit voltage of the battery during charging pause falls to a predetermined voltage and the upper limit of the pause time is set to 30 days. Floating charging method for sealed lead-acid battery, characterized by:
JP7111192A 1995-04-11 1995-04-11 Method of charging sealed lead-acid battery Pending JPH08287955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111192A JPH08287955A (en) 1995-04-11 1995-04-11 Method of charging sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111192A JPH08287955A (en) 1995-04-11 1995-04-11 Method of charging sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH08287955A true JPH08287955A (en) 1996-11-01

Family

ID=14554835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111192A Pending JPH08287955A (en) 1995-04-11 1995-04-11 Method of charging sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH08287955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039529A (en) * 2017-12-22 2018-05-15 厦门拓宝科技有限公司 Lead-acid accumulator multisection type charging method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039529A (en) * 2017-12-22 2018-05-15 厦门拓宝科技有限公司 Lead-acid accumulator multisection type charging method

Similar Documents

Publication Publication Date Title
US7633265B2 (en) Secondary-battery management apparatuses, secondary-battery management method, and secondary-battery management program
EP2452413B1 (en) Battery charging method and apparatus
US6275006B1 (en) Method for charging secondary battery
US7135839B2 (en) Battery pack and method of charging and discharging the same
KR20060093343A (en) Electric charger
Wong et al. Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation
JP2017168361A (en) Secondary battery device, charge control device, and charge control method
JP3678045B2 (en) Battery charging method
JPH1118314A (en) Method and equipment for charging lithium ion secondary battery
JPH08287955A (en) Method of charging sealed lead-acid battery
JP2000023388A (en) Secondary battery system
JP2004039434A (en) Charge control method of lead-acid battery
JP2015197946A (en) Power storage system
US11813958B2 (en) Automated reference electrode management
JP2004200129A (en) Device and method for controlling discharge of lead storage battery
JPH08329988A (en) Method for charging sealed lead-acid battery
JPS59128781A (en) Charging method of sealed lead-acid battery
JPH06189466A (en) Secondary battery system and its charging method
JP2003308883A (en) Storage battery charging method
JPH11355968A (en) Charging for storage battery and charger therefor
JP2844906B2 (en) Uninterruptible power system
Stefan-Cristian et al. Battery regeneration technology using dielectric method
JP2001126771A (en) Charging method of sealed lead-acid battery
JP2003223935A (en) Charging method of control valve lead storage battery
JPH11176482A (en) Lead-acid battery charging method