JPH08287149A - Production planning generating method - Google Patents

Production planning generating method

Info

Publication number
JPH08287149A
JPH08287149A JP8672395A JP8672395A JPH08287149A JP H08287149 A JPH08287149 A JP H08287149A JP 8672395 A JP8672395 A JP 8672395A JP 8672395 A JP8672395 A JP 8672395A JP H08287149 A JPH08287149 A JP H08287149A
Authority
JP
Japan
Prior art keywords
unit
time
line
days
processes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8672395A
Other languages
Japanese (ja)
Inventor
Yasuo Kobayashi
泰夫 小林
Hideto Masui
秀人 増井
Masuo Tasaka
増夫 田坂
Katashi Nishikawa
硬 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8672395A priority Critical patent/JPH08287149A/en
Publication of JPH08287149A publication Critical patent/JPH08287149A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Multi-Process Working Machines And Systems (AREA)
  • General Factory Administration (AREA)
  • Control By Computers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE: To generate a production planning of a plant which has processes including branching and returns by setting a unit whose time frame has a constant value and giving the unit time order in facility line units, and adjusting the difference in load time between a unit which is currently in process and a unit of next time of a next process. CONSTITUTION: Operation schedule information by production lines and days as units is registered as input data (step 100) and passing reference days by processes which are measured from the date of delivery are calculated (step 102). Then the schedule days of the foremost process products A and C to be passed and a product B are determined at to a line A and a line B respectively according to the passing reference days (step 104), and the schedule days of the respective processes are determined in the order from the 2nd process to the final process on the basis of the foremost process schedule days by the products in consideration of the distribution lead time between processes. When there is an express progress material to be processed preferentially to ordinary processes, a man adjusts the schedule days (step 108).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生産計画作成方法に係
り、特に、枝分れや戻り等の複雑な工程を経て製造され
る製品の生産を、計画的に行うことが可能な生産計画作
成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a production plan, and in particular, a production plan capable of systematically producing a product manufactured through complicated steps such as branching and returning. It is about how to create.

【0002】[0002]

【従来の技術】一般に、複数の工程を経て製品を製造す
るプラントの生産計画は、最終工程の所要量及びスケジ
ュールを基準として、中間工程の所要量及びスケジュー
ルを決定している。
2. Description of the Related Art Generally, in a production plan of a plant which manufactures products through a plurality of processes, the required amount and schedule of an intermediate process are determined on the basis of the required amount and schedule of a final process.

【0003】この際、特開平6−52175で提案され
ているように、工程管理単位時間を設定し、この時間の
整数倍で処理時間をとらえ、又、この工程管理単位時間
の整数倍で将来の経過時間を区切り、近い将来ほど、こ
の整数を小さく設定して細かく管理し、遠い将来ほど、
この整数を大きく設定して粗く管理し、この区切り毎に
物の動きや設備負荷の見積り等の工程状況の把握及び予
測を行い、これに基づいて生産を抑制するようにした工
程管理方式が考えられている。
At this time, as proposed in Japanese Patent Laid-Open No. 6-52175, a process control unit time is set, the processing time is captured by an integral multiple of this time, and an integer multiple of this process control unit time is used in the future. The elapsed time is delimited, and in the near future, this integer is set to a small value to manage finely, and in the far future,
A process control method that sets this integer to a large value and roughly manages it, grasps and predicts the process status such as the movement of goods and the estimation of equipment load for each division, and suppresses production based on this is considered. Has been.

【0004】この工程管理方式によれば、枝分れや戻り
が存在せず、製品が一方向に流れる単純なプラントには
有効である。
According to this process control system, there is no branching or returning and it is effective for a simple plant in which the product flows in one direction.

【0005】[0005]

【発明が解決しようとする課題】一方、枝分れや戻りが
存在する複雑な工程、例えば同一機能を持つ設備が複数
ライン有り、しかも、同一設備で、中間工程や最終工程
等の異なる工程が処理されるようなプラントにおいて
は、工程間の待ち時間(リードタイムL/T)が精度良
く決まらなければ、各設備のスケジュール組が困難であ
るが、従来の方法では、工程間の待ち時間の予測精度を
高めることができず、スケジュール組が不十分となり、
材料欠乏、仕掛品増加、処理量の計画未達成や超過等の
問題を生じていた。
On the other hand, there are complicated processes in which branching and returning exist, for example, there are multiple lines of equipment having the same function, and there are different steps such as intermediate steps and final steps with the same equipment. In a plant that is processed, it is difficult to set a schedule for each facility unless the waiting time between processes (lead time L / T) is accurately determined. We couldn't improve the prediction accuracy and the schedule was insufficient,
There were problems such as material deficiency, increase in work in progress, unachieved and exceeded plan for throughput.

【0006】本発明は、前記従来の問題点を解消するべ
くなされたもので、枝分れや戻りを含む複雑な工程を有
するプラントにおいても、高精度の生産計画を作成可能
とすることを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to make it possible to create a highly accurate production plan even in a plant having a complicated process including branching and returning. And

【0007】[0007]

【課題を解決するための手段】本発明は、複数工程を経
て製品を製造するプラントの生産計画作成方法におい
て、時間枠が一定値となるユニットを設定して、設備ラ
イン単位に各ユニットを時間の順に持たせ、処理順が逆
転しないように、現在仕掛中のユニットと次工程の次時
間のユニット間で負荷時間の受払いを行い、各ユニット
の中で負荷時間の積み上げを行って、ユニット単位の負
荷時間及び処理量を求め、各ユニット内の材料構成によ
り、処理条件の同じ材料をまとめてスケジュールを立て
ることにより、前記目的を達成したものである。
According to the present invention, in a production planning method of a plant for manufacturing a product through a plurality of steps, units having a fixed time frame are set, and each unit is set as a time unit for each equipment line. In order to prevent the processing order from being reversed, the load time is received and paid between the unit currently in process and the unit in the next time of the next process, and the load time is accumulated in each unit The above object is achieved by determining the load time and the treatment amount of the above, and making a schedule collectively for the materials having the same treatment conditions according to the material constitution in each unit.

【0008】[0008]

【作用】本発明においては、時間枠が一定値となるユニ
ットを設定して、設備ライン単位に各ユニットを時間の
順に持たせ、現在仕掛中のユニットと次工程の次時間の
ユニット間で負荷時間の受払いを行うようにしているの
で、枝分れや戻りを含む複雑な工程であっても、処理順
が逆転することがなく、高精度の生産計画を立てること
ができる。
In the present invention, a unit whose time frame has a constant value is set, and each unit is provided in the equipment line unit in the order of time, and the load is placed between the unit currently in process and the unit at the next time of the next process. Since the time is paid and received, even in a complicated process including branching and returning, the processing order is not reversed and a highly accurate production plan can be made.

【0009】又、各ユニットの中で、負荷時間の積み上
げを行って、ユニット単位の負荷時間及び処理量を求め
るようにしているので、ユニット単位の負荷時間及び処
理量を正確に予測することができる。従って、各ライン
稼働計画の適正化及び各ライン前仕掛量の低減及び計画
外休止の防止を図ることができる。又、各材料の完成日
の精度向上により、出荷(納期)遅れを防止することが
できる。
Further, the load time is accumulated in each unit to obtain the load time and the processing amount of each unit, so that the load time and the processing amount of each unit can be accurately predicted. it can. Therefore, it is possible to optimize the operation plan of each line, reduce the amount of work in progress before each line, and prevent unplanned suspension. Further, by improving the accuracy of the completion date of each material, it is possible to prevent shipment (delivery date) delay.

【0010】更に、各ユニット内の材料構成により、処
理条件の同じ材料をまとめるようにしているので、無駄
の無い合理的な生産を行うことができる。
Further, since the materials having the same processing conditions are put together by the material composition in each unit, rational production without waste can be performed.

【0011】[0011]

【実施例】以下図面を参照して、本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0012】本実施例は、例えば図1に示すような、基
本的に同じ機能を持つ、並設された2本の前処理ライン
A−1、A−2と、同じく並設された2本のベルト研削
ラインB−1、B−2と、同じく並設された4本の圧延
ラインC−1〜C−4と、同じく並設された3本の焼鈍
ラインD−1〜D−3と、同じく並設された2本の調質
ラインE−1、E−2とを有する鉄鋼製品の生産プラン
トに適用したものであり、前記焼鈍ラインD−1〜D−
3のいずれかを経た製品の一部は、前記ベルト研削ライ
ンB−1又はB−2のいずれかに戻され、同じく焼鈍ラ
インD−1〜D−3のいずれかを経た製品の他の一部
は、前記圧延ラインC−1〜C−4のいずれかに戻され
る戻り工程を含んでいる。
In this embodiment, for example, as shown in FIG. 1, two pretreatment lines A-1 and A-2, which have basically the same function and are arranged in parallel, and two pretreatment lines, which are also arranged in parallel, are provided. Belt grinding lines B-1 and B-2, four rolling lines C-1 to C-4 also arranged in parallel, and three annealing lines D-1 to D-3 also arranged in parallel. The annealing lines D-1 to D- are applied to a production plant for steel products having two refining lines E-1 and E-2 that are also arranged in parallel.
Part of the product that has gone through any of No. 3 is returned to either the belt grinding line B-1 or B-2, and the other of the products that has also gone through any of the annealing lines D-1 to D-3. The section includes a returning step of returning to any one of the rolling lines C-1 to C-4.

【0013】従って、このプラントは、基本的に同じ前
処理を行うための枝分れした2つの前処理ラインA−
1、A−2と、基本的に同じベルト研削を行うための枝
分れしたベルト研削ラインB−1、B−2と、基本的に
同じ圧延を行うための枝分れした4本の圧延ラインC−
1〜C−4と、基本的に同じ焼鈍を行うための3本に枝
分れした焼鈍ラインD−1〜D−3と、基本的に同じ調
質処理を行うための2本に枝分れした調質ラインE−
1、E−2を含んでいる。
Therefore, this plant has two branched pretreatment lines A- for carrying out essentially the same pretreatment.
1 and A-2, branched belt grinding lines B-1 and B-2 for basically performing the same belt grinding, and four branched rolling lines for basically performing the same rolling. Line C-
1 to C-4, 3 branching annealing lines D-1 to D-3 for basically performing the same annealing, and 2 branching lines for basically performing the same tempering treatment. Heat treatment line E-
1 and E-2 are included.

【0014】又、焼鈍ラインD−1〜D−3のいずれか
から、ベルト研削ラインB−1、B−2のいずれか、又
は、圧延ラインC−1〜C−4のいずれかに戻って、再
び焼鈍ラインD−1〜D−3のいずれかに流れる製品も
あるため、焼鈍ラインD−1〜D−3は、中間工程(1
回目)と最終工程(2回目)の2種類の機能を有してい
る。
Returning from any of the annealing lines D-1 to D-3 to any of the belt grinding lines B-1 and B-2 or any of the rolling lines C-1 to C-4. Since there is a product that flows into any one of the annealing lines D-1 to D-3 again, the annealing lines D-1 to D-3 are the intermediate steps (1
It has two kinds of functions: the second time) and the final process (second time).

【0015】本実施例における生産計画の作成は、図2
に示すような流れ図に従って行われる。
The production plan in this embodiment is shown in FIG.
It is performed according to the flow chart as shown in FIG.

【0016】即ち、まず最初のステップ100で、入力
データの一つとして、工程(ライン)別、及び、実施例
のユニットである日別の稼働予定情報を登録する。登録
頻度は、例えば1ヶ月に1回とすることができるが、時
々の受注変動や素材供給変動等の外的要因による随時修
正も可能とされている。登録例を図3に示す。本実施例
においては、午前7時から翌日の午前7時までが1ユニ
ットとされている。従って、例えば9月1日のAライン
は、7時から11時まで、工事のために休止し、又、2
3時から翌朝の3時までは、ラインに人がいない「欠
班」によりライン停止していることを示している。9月
1日のBライン及びCライン、9月2日のA〜Cライン
は、全て24時間操業であることを示している。
That is, in the first step 100, operation schedule information for each process (line) and for each day which is a unit of the embodiment is registered as one of the input data. The registration frequency can be set, for example, once a month, but it can be corrected at any time due to external factors such as occasional fluctuations in orders and fluctuations in material supply. An example of registration is shown in FIG. In this embodiment, one unit is set from 7:00 am to 7:00 am on the next day. Therefore, for example, the A line on September 1 will be shut down for construction from 7:00 to 11:00, and 2
From 3 o'clock to 3 o'clock the next morning, it indicates that the line is stopped due to "vacant team" with no people on the line. Lines B and C on September 1 and lines A to C on September 2 all indicate 24 hours of operation.

【0017】次いで、ステップ102で、納期から溯っ
た工程別通板基準日を計算する。入力データの1つであ
る要処理量を示す図4に示す如く、製品毎に、通過する
工程が異なる。例えば図4において、製品AはラインA
とCを通過し、製品BはラインBからDを通過し、製品
CはラインAからDを通過する。従って、各製品毎に、
納期(製品A及びBは9月10日、製品Cは9月11
日)から溯って、各工程を通板すべき基準日を計算す
る。ここで、通板基準日は、例えば次式により計算され
る。
Next, in step 102, the process-based plate passing reference date, which is delayed from the delivery date, is calculated. As shown in FIG. 4, which shows one of the input data, that is, the required amount of processing, the passing process differs for each product. For example, in FIG. 4, product A is line A
And C, product B passes lines B to D, and product C passes lines A to D. Therefore, for each product,
Delivery date (September 10 for products A and B, September 11 for product C)
Day) to calculate the reference date for passing each process. Here, the passing date is calculated by the following formula, for example.

【0018】 通板基準日=納期日−Σ(通板工程を1回通る毎の通板リードタイム) …(1)Sheet passing reference date = delivery date−Σ (sheet passing lead time for each sheet passing step) (1)

【0019】ここで、通板工程を1回通る毎の通板リー
ドタイム(L/T)は、例えば入力データの1つとし
て、図5に示す如く、予め入力されている。
Here, the threading lead time (L / T) for each passing of the threading step is pre-input as shown in FIG. 5 as one of the input data, for example.

【0020】(1)式を用いて求めた製品毎の通板基準
日のデータ(変換プログラムデータ)の一例を図6に示
す。
FIG. 6 shows an example of the data (conversion program data) of the plate passing reference date for each product obtained by using the equation (1).

【0021】次いでステップ104に進み、ステップ1
02で算出された、各製品が通板すべき最先工程(製品
A及びCはラインA、製品BはラインB)について、通
板基準日に従って計画日を決定する。その際、基準日通
りであれば自動的に計画日が決定されるが、基準日が既
に過去の日付であるものや、将来のライン休止に備えて
先行して通板するもの、ライン処理能力に余裕のある場
合の先行通板等は、人間の指示により、基準日とは異な
る計画日とすることも可能である。本ステップに従って
最先工程の計画日を決定し、更に、最先工程(ここでは
Aライン)について、計画日別に処理時間を集計した変
換プログラムデータの例を、図7の「Aライン」に示
す。
Then, the process proceeds to step 104 and step 1
For the earliest step (the line A for products A and C, the line B for product B) calculated by 02 for each product, the planned date is determined according to the plate passing reference date. At that time, the planned date is automatically determined if it is on the standard date, but the standard date is already in the past, the plan is passed in advance to prepare for future line suspension, and the line processing capacity If there is a margin, the preceding passage and the like can be set as a planned date different from the reference date by a human instruction. The "A line" in FIG. 7 shows an example of conversion program data in which the planned date of the earliest process is determined according to this step, and further, the processing time of the earliest process (A line in this case) is tabulated for each planned date. .

【0022】次いでステップ106に進み、ステップ1
04で決定された製品毎の最先工程計画日を基に、各工
程間の物流リードタイムを考慮して、第2工程、第3工
程・・・最終工程まで順に、各工程の計画日を決定す
る。決定された計画日は、図6に示したような形式で、
日付が一部ずれたものとなる。このステップ106によ
って処理された変換プログラムデータの例を示したもの
が、図7の「Bライン」から「Dライン」である。この
例では、Aラインと同様に、計画日別に処理時間を集計
した結果を示している。
Then, the process proceeds to step 106 and step 1
Based on the earliest process plan date for each product determined in 04, considering the physical distribution lead time between each process, the planned date of each process in order from the second process to the third process ... decide. The determined planned date is in the format shown in Fig. 6,
The date is partly shifted. Examples of the conversion program data processed in step 106 are "B line" to "D line" in FIG. In this example, similar to the case of the A line, the result of totalizing the processing time for each planned date is shown.

【0023】次いでステップ108に進み、通常の工程
に優先させて処理すべき特急進捗材がある場合には、こ
の計画日を考慮して、人間が計画日を調整する。具体的
には、ステップ106で決定された製品毎の最終工程計
画日が納期を満足しているかチェックする。納期遅れと
なる製品について可否検討を行い、納期遅れ不可の特急
進捗材を抽出して、最先工程計画日を速めたり、緊急運
搬扱いとして各工程間の物流リードタイムを短縮して、
ステップ104と106を繰り返し作業し、納期通りに
生産可能な計画日に調整する。
Next, in step 108, when there is an express progress material to be processed prior to the normal process, a person adjusts the planned date in consideration of this planned date. Specifically, it is checked whether the final process planning date for each product determined in step 106 satisfies the delivery date. We will examine the possibility of late delivery products, extract the express progress materials that can not be delivered late, accelerate the earliest process planning date, and shorten the logistics lead time between each process as emergency transportation,
The steps 104 and 106 are repeated to adjust the production date to the production date on time.

【0024】次いでステップ110に進み、負荷時間を
工程別のユニット(リードタイムとなるべき一定の時間
枠、例えば1日単位)に積み上げて、通板全工程の積み
上げ計算を実施する。具体的には、前出ステップ104
〜108で決定された製品毎の計画日を基に、ラインに
よって異なる処理能力や稼働予定を考慮して、通板製品
の全工程について、計画日別に負荷時間の積み上げ計算
を行い、計画日毎に処理余力のあるライン(ライン稼動
時間>負荷時間)や処理能力を越えて計算されているラ
イン(負荷時間>ライン稼動時間)を抽出し、該当する
ラインがあれば、ステップ104と106を繰り返し、
ライン別の処理能力や稼働予定と整合性を持った計画と
なるよう調整する。調整後の状態を表わしたものが図7
である。
Next, in step 110, the load time is accumulated in a unit for each process (a fixed time frame to be the lead time, for example, in units of 1 day), and the accumulation calculation for all the plate passing processes is executed. Specifically, step 104 described above.
Based on the planned date for each product determined in ~ 108, the load time accumulation calculation is performed for each planned date for all the processes of the strip products, considering the processing capacity and operation schedule that differ depending on the line. A line with a processing capacity (line operating time> load time) or a line calculated to exceed the processing capacity (load time> line operating time) is extracted, and if there is a corresponding line, steps 104 and 106 are repeated,
Adjust so that the plan is consistent with the processing capacity and operation schedule of each line. Figure 7 shows the adjusted state.
Is.

【0025】ここで、ユニット内で積み上げられる負荷
時間は、次式により、製品単位、工程単位に求める。
Here, the load time accumulated in the unit is calculated for each product and each process by the following equation.

【0026】 負荷時間=製品質量÷(当該工程の単位時間当り処理量) …(2)Load time = Product mass / (Processing amount per unit time of the process) (2)

【0027】なお、本実施例では、製品量を製品質量と
しているが、製品数量とすることも可能である。
In this embodiment, the product quantity is the product mass, but it may be the product quantity.

【0028】次いで、この積み上げ計算結果を基に、各
種制約条件をチェックする。具体的には、ステップ11
2で、計画日別各工程の処理量が、計画日別各工程の処
理能力を越えていないか判定し、ステップ114で、特
急進捗材が納期等の要件を満たすか判定し、ステップ1
16で、各工程間のリードタイム制約を満足しているか
判定し、ステップ118で、各工程の在庫量の制限(在
庫制約)を満足するか判定し、ステップ120で、各工
程、特にネックラインの生産性が最大となっているか判
定する。このステップ120における判定結果が否であ
る場合には、各ユニット内の材料構成で、処理条件の同
じ材料をまとめて、生産性を高める。
Next, various constraints are checked on the basis of the accumulated calculation result. Specifically, step 11
In step 2, it is determined whether the processing amount of each process by planned date does not exceed the processing capacity of each process by planned date. In step 114, it is determined whether the express progress material satisfies requirements such as delivery date.
In step 16, it is determined whether or not the lead time constraint between each process is satisfied, and in step 118, it is determined whether or not the inventory amount limit (inventory constraint) of each process is satisfied, and in step 120, each process, especially the neckline. To determine if the productivity is maximized. If the determination result in step 120 is negative, the materials having the same processing conditions are put together in the material configuration in each unit to improve productivity.

【0029】ステップ120の判定結果が正である場合
には、ステップ122に進み、最終工程計画日が最終工
程通板基準日よりも前であるか否か判定する。
If the result of the determination in step 120 is positive, the process proceeds to step 122, and it is determined whether or not the final process planning date is before the final process passing reference date.

【0030】前記ステップ112〜122のいずれかの
判定結果が否である場合には、再び前記104に戻り、
計画を再調整する。
If any of the judgment results of steps 112 to 122 is negative, the process returns to step 104 again,
Readjust the plan.

【0031】ステップ122の判定結果が正である場合
には、ステップ124に進み、立てられた生産計画を最
終的且つ総合的に評価する。評価視点としては、大別し
て生産量、在庫量、納期達成率の3点がある。図8は、
評価対象の1つである在庫量について、ライン別、計画
日別在庫の推移を表わしたものである。
If the result of the determination in step 122 is positive, the process proceeds to step 124, and the established production plan is finally and comprehensively evaluated. From the viewpoint of evaluation, there are roughly three points: production volume, inventory volume, and delivery rate achievement rate. Figure 8
It shows the transition of inventory by line and by planned date for the inventory quantity which is one of the evaluation targets.

【0032】なお前記実施例においては、時間ユニット
が1日とされ、本発明が、鉄鋼製品の生産プラントに適
用されていたが、時間ユニットの長さや本発明の適用対
象は、これに限定されない。
In the above embodiment, the time unit is set to one day, and the present invention is applied to the steel product production plant, but the length of the time unit and the object to which the present invention is applied are not limited to this. .

【0033】[0033]

【発明の効果】以上説明したとおり、本発明によれば、
負荷予測の精度が向上するので、各ライン稼働計画が適
正化され、各ライン前の仕掛量が低減して、資源節約を
図ることができる。又、計画外休止によるライン稼働の
エネルギ損失を低減させることができる。更に、各材料
の完成日の精度向上により、出荷遅れによる製品ユーザ
側の生産活動の遅れや混乱を防止することができる等の
優れた効果を有する。
As described above, according to the present invention,
Since the accuracy of load prediction is improved, each line operation plan is optimized, the amount of work in progress before each line is reduced, and resources can be saved. Further, it is possible to reduce energy loss in line operation due to unplanned suspension. Further, by improving the accuracy of the completion date of each material, it is possible to prevent the production user from delaying the production activity or the confusion due to the shipment delay.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の適用対象の一例である鉄鋼製品の生産
プラントの生産工程を示す工程図
FIG. 1 is a process diagram showing a production process of a steel product production plant, which is an example of an application target of the present invention.

【図2】本発明により生産計画を作成する実施例の処理
手順を示す流れ図
FIG. 2 is a flowchart showing a processing procedure of an embodiment for creating a production plan according to the present invention.

【図3】生産計画を作成する際の入力データの1つであ
るライン別稼働情報の例を示す線図
FIG. 3 is a diagram showing an example of line-by-line operation information that is one of input data when creating a production plan.

【図4】同じく入力データの1つである要処理量の例を
示す線図
FIG. 4 is a diagram showing an example of a required processing amount which is one of input data.

【図5】同じく入力データの1つである通板工程毎の通
板リードタイムの例を示す線図
FIG. 5 is a line diagram showing an example of a strip running lead time for each strip running process which is one of input data.

【図6】同じく変換プログラムデータの1つである通板
基準日の例を示す線図
FIG. 6 is a diagram showing an example of a plate passing reference day which is also one of conversion program data.

【図7】同じく変換プログラムデータの1つであるライ
ン別処理量の例を示す線図
FIG. 7 is a diagram showing an example of a line-by-line processing amount which is also one of conversion program data.

【図8】同じく出力データの1つであるライン別在庫量
の例を示す線図
FIG. 8 is a diagram showing an example of line-by-line stock quantity which is one of output data.

【符号の説明】[Explanation of symbols]

A−1、A−2…前処理ライン B−1、B−2…ベルト研削ライン C−1〜4…圧延ライン D−1〜3…焼鈍ライン E−1、E−2…調質ライン A-1, A-2 ... Pretreatment line B-1, B-2 ... Belt grinding line C-1-4 ... Rolling line D-1-3 ... Annealing line E-1, E-2 ... Tempering line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田坂 増夫 兵庫県西宮市朝凪町1番50号 川鉄情報シ ステム株式会社本社事業所内 (72)発明者 西川 硬 兵庫県西宮市朝凪町1番50号 川鉄情報シ ステム株式会社本社事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masuo Tasaka 1-50 Asanagi-cho, Nishinomiya-shi, Hyogo Kawatetsu Information System Co., Ltd. Headquarters office (72) Inventor Ko Nishikawa 1-50 Asagi-cho, Nishinomiya-shi, Hyogo Prefecture Kawatetsu Information System Co., Ltd. Head Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数工程を経て製品を製造するプラントの
生産計画作成方法において、 時間枠が一定値となるユニットを設定して、設備ライン
単位に各ユニットを時間の順に持たせ、 処理順が逆転しないように、現在仕掛中のユニットと次
工程の次時間のユニット間で負荷時間の受払いを行い、 各ユニットの中で負荷時間の積み上げを行って、ユニッ
ト単位の負荷時間及び処理量を求め、 各ユニット内の材料構成により、処理条件の同じ材料を
まとめてスケジュールを立てることを特徴とする生産計
画作成方法。
1. A method for producing a production plan for a plant that manufactures products through a plurality of processes, in which units having a fixed time frame are set, and each unit has a unit in the order of time, and the processing order is In order not to reverse, the load time is received and paid between the unit currently in process and the unit at the next time of the next process, and the load time is accumulated in each unit to obtain the load time and the throughput of each unit. A production plan creation method characterized in that materials having the same processing conditions are put together in a schedule according to the material composition in each unit.
JP8672395A 1995-04-12 1995-04-12 Production planning generating method Pending JPH08287149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8672395A JPH08287149A (en) 1995-04-12 1995-04-12 Production planning generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8672395A JPH08287149A (en) 1995-04-12 1995-04-12 Production planning generating method

Publications (1)

Publication Number Publication Date
JPH08287149A true JPH08287149A (en) 1996-11-01

Family

ID=13894797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8672395A Pending JPH08287149A (en) 1995-04-12 1995-04-12 Production planning generating method

Country Status (1)

Country Link
JP (1) JPH08287149A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149223A (en) * 2000-11-08 2002-05-24 Kawasaki Steel Corp Production management support system
US6690865B2 (en) 2000-11-29 2004-02-10 The Furukawa Electric Co., Ltd. Method for aligning laser diode and optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149223A (en) * 2000-11-08 2002-05-24 Kawasaki Steel Corp Production management support system
JP4644928B2 (en) * 2000-11-08 2011-03-09 Jfeスチール株式会社 Production management support system
US6690865B2 (en) 2000-11-29 2004-02-10 The Furukawa Electric Co., Ltd. Method for aligning laser diode and optical fiber

Similar Documents

Publication Publication Date Title
Qian Market-based supplier selection with price, delivery time, and service level dependent demand
Koh et al. Managing uncertainty in ERP-controlled manufacturing environments in SMEs
US20030109950A1 (en) Methods and systems for planning operations in manufacturing plants
Huang et al. Simulation study of CONWIP for a cold rolling plant
US11468524B2 (en) Reducing the cost of electrical energy in a manufacturing plant
US20110258087A1 (en) Analytics for setting up strategic inventory systems to handle small lot orders in the steel industry
Slotnick Optimal and heuristic lead-time quotation for an integrated steel mill with a minimum batch size
Garmdare et al. Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments
Thurer et al. Card-based control systems for a lean work design: the fundamentals of kanban, ConWIP, POLCA, and COBACABANA
Bernard et al. Importers, Exporters and the Division of the Gains from Trade
Öner-Közen et al. Impact of priority sequencing decisions on on-time probability and expected tardiness of orders in make-to-order production systems with external due-dates
JP2002541564A (en) System and method for scheduling manufacturing resources
US20040148212A1 (en) Method and apparatus for measuring optimality for master production schedules
Kriett et al. Cycle time-oriented mid-term production planning for semiconductor wafer fabrication
Okazaki et al. Excess Capacity and Effectiveness of Policy Interventions: Evidence from the cement industry
JPH10235540A (en) Scheduling system for manufacturing process
Yeh Schedule based production
Rho et al. A comparative study on the structural relationships of manufacturing practices, lead time and productivity in Japan and Korea
JPH08287149A (en) Production planning generating method
Wong et al. Fundamentals of material requirements planning
Nye et al. Optimal investment in setup reduction in manufacturing systems with WIP inventories
JP4243421B2 (en) Steel product manufacturing management method, manufacturing scheduling apparatus and storage medium
Owens et al. Evaluating the impact of electronic data interchange on the ingredient supply chain of a food processing company
Schmitt et al. An analysis of capacity planning procedures for a material requirements planning system
DE102005020867A1 (en) Determining production costs of a production process for a given product, by allocating proportion of production costs to those production characteristics that are changed by a production step