JPH08286050A - Optical waveguide type diffraction grating and its production - Google Patents

Optical waveguide type diffraction grating and its production

Info

Publication number
JPH08286050A
JPH08286050A JP7085093A JP8509395A JPH08286050A JP H08286050 A JPH08286050 A JP H08286050A JP 7085093 A JP7085093 A JP 7085093A JP 8509395 A JP8509395 A JP 8509395A JP H08286050 A JPH08286050 A JP H08286050A
Authority
JP
Japan
Prior art keywords
optical waveguide
core
diffraction grating
refractive index
type diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7085093A
Other languages
Japanese (ja)
Inventor
Masaichi Mobara
政一 茂原
Susumu Inoue
享 井上
Masumi Ito
真澄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7085093A priority Critical patent/JPH08286050A/en
Publication of JPH08286050A publication Critical patent/JPH08286050A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02123Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
    • G02B6/02133Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating using beam interference
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/021Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the core or cladding or coating, e.g. materials, radial refractive index profiles, cladding shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02123Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
    • G02B6/02133Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating using beam interference
    • G02B6/02138Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating using beam interference based on illuminating a phase mask

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE: To provide optical waveguide type diffraction gratings which are less changed 10 Bragg wavelength and have high reliability despite of a change in the temp. of an atmosphere where the optical waveguide type diffraction grating is installed and a change in the temp. of the diffraction gratings themselves. CONSTITUTION: The optical waveguide type diffraction gratings 43, 44 have cores 41 which are optical waveguide parts contg. germanium oxide and clads 43 which have the refractive index lower than the refractive index of these cores 41 in contact with the cores 41. These diffraction gratings include titanium oxide in the cores 41 or the clads 42. The process for producing the optical waveguide type diffraction gratings 43, 44 include a first stage of preparing glass optical waveguides including the titanium oxide in the cores 41 or the clads 42 and a second stage for changing the refractive index by subjecting the plural prescribed parts of the cores 41 and clads 42 of the glass optical waveguides to irradiation 10, 11, 20, 30 with UV rays.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバや薄膜光導
波路内に回折格子が形成された光導波路型回折格子及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide type diffraction grating having a diffraction grating formed in an optical fiber or a thin film optical waveguide, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】光学素子の一種である回折格子には種々
の態様のものがあるが、光通信システムに利用する場合
には、光導波路との接続が容易で、挿入損失が低い光導
波路型回折格子が好適である。
2. Description of the Related Art There are various types of diffraction gratings, which are a type of optical element, but when used in an optical communication system, they are easy to connect with an optical waveguide and have a low insertion loss. A diffraction grating is preferred.

【0003】従来の光導波路型回折格子の作製方法とし
ては、特表昭62−500052号公報に記載のものが
知られている。これは、酸化ゲルマニウムを添加して高
屈折率のコアを形成した石英系光ファイバに強力な紫外
線を照射することにより、コアに周期的な屈折率変化を
生じさせ、回折格子を形成する方法である。
As a conventional method for producing an optical waveguide type diffraction grating, the method described in Japanese Patent Publication No. 62-500052 is known. This is a method of forming a diffraction grating by irradiating a silica-based optical fiber in which germanium oxide is added to form a core with a high refractive index with strong ultraviolet rays to cause a periodic change in the refractive index in the core. is there.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の方法で
は、得られる回折格子は、熱膨張により屈折率変化の縞
の間隔が変化し、又実効的な屈折率が温度により変化す
ることにより、その反射波長(以下、ブラッグ波長とい
う)がその回折格子の設置されている雰囲気の温度変化
の影響を受けて変化するという問題がある。
However, in the above-mentioned method, the obtained diffraction grating has a change in the spacing between the fringes of the change in the refractive index due to thermal expansion, and the effective refractive index changes due to the temperature change. There is a problem that the reflection wavelength (hereinafter, referred to as Bragg wavelength) changes under the influence of the temperature change of the atmosphere in which the diffraction grating is installed.

【0005】具体的に説明すると、ブラッグ波長λB
は、式(1)のように コアの実効的な屈折率nと、回
折格子の屈折率変化の周期の間隔 Λにより記述でき
る。更に、本式を温度Tで微分することにより、ブラッ
グ波長λB の温度Tの変化に対する影響が式(2)のよ
うに表される。
Specifically, the Bragg wavelength λ B
Can be described by the effective refractive index n of the core and the interval Λ of the period of the refractive index change of the diffraction grating as in the equation (1). Further, by differentiating this equation with respect to the temperature T, the influence of the Bragg wavelength λ B on the change of the temperature T is expressed by the equation (2).

【数1】 こで、nはコアの実 効的な屈折率 Λは回折格子の屈折率変化の周期の間隔 ΔTは温度変化 αはコアの熱膨張係数(=Λ‐1・δΛ/δT) ξは屈折率の温度係数(=n‐1・δn/δT)[Equation 1] Where n is the effective refractive index of the core Λ is the interval of the refractive index change period of the diffraction grating ΔT is the temperature change α is the coefficient of thermal expansion of the core (= Λ −1 · δΛ / δT) ξ is the refractive index Temperature coefficient (= n -1 · δn / δT)

【0006】今、酸化珪素(石英ガラス)の熱膨張係数
αを0.5×10‐6/℃、コアの実効的な屈折率nの
温度変化ξを6.8×10‐6/℃、常温でのブラッグ
波長λB を1550nmとするとその温度変化の割合
は、上式から0.0113nm/℃となる。この変化量
は、使用環境温度の最大限−20℃〜60℃で0.9n
mにもなり
Now, the coefficient of thermal expansion α of silicon oxide (quartz glass) is 0.5 × 10 −6 / ° C., the temperature change ξ of the effective refractive index n of the core is 6.8 × 10 −6 / ° C., Assuming that the Bragg wavelength λ B at room temperature is 1550 nm, the rate of temperature change is 0.0113 nm / ° C from the above equation. This change amount is 0.9n at the maximum operating environment temperature of -20 ° C to 60 ° C.
also m

【0007】[0007]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明の光導波路型回折格子は、少なくとも酸
化ゲルマニウムを含む光導波部であるコアと、前記コア
に接して前記コアより低い屈折率のクラッドとを有し、
光軸方向に沿って複数の屈折率変化部が形成された回折
格子領域を有する光導波型回折格子において、前記コア
又はクラッドの両方又はいづれか一方に酸化チタニウム
を含むことを特徴とするものである。
In order to solve the above problems, an optical waveguide type diffraction grating of the present invention comprises a core which is an optical waveguide portion containing at least germanium oxide, and a core which is in contact with the core and With a low refractive index cladding,
An optical waveguide type diffraction grating having a diffraction grating region in which a plurality of refractive index changing portions are formed along the optical axis direction, characterized in that both or one of the core and the clad contains titanium oxide. .

【0008】又本発明にかかる光導波路型回折格子の作
成方法は、少なくとも酸化ゲルマニウムを含むコアと前
記コアに接して前記コアよりも屈折率が低いクラッドと
を備え、かつ前記コア又はクラッド中の両方又はいづれ
か一方に酸化チタニウムを含むガラス光導波路を用意す
る第1の工程と、前記ガラス光導波路の前記コア及び前
記クラッドにおける複数の所定部分に紫外光を照射し
て、屈折率を変化させる第2の工程とから成ることを特
徴とするものである。
The method for producing an optical waveguide type diffraction grating according to the present invention further comprises a core containing at least germanium oxide and a clad in contact with the core and having a refractive index lower than that of the core. A first step of preparing a glass optical waveguide containing titanium oxide in both or one of them, and irradiating ultraviolet light to a plurality of predetermined portions of the core and the clad of the glass optical waveguide to change the refractive index. It is characterized by comprising two steps.

【0009】[0009]

【作用】即ち、本発明の光導波路型回折格子及びその作
製方法は、酸化チタニウムの熱膨張係数が負であること
を利用して、酸化チタニウムをガラス光導波路のコア又
はクラッドに混入することによって正の熱膨張係数を有
する酸化珪素や酸化ゲルマニウムの熱膨張を相殺して、
温度変化によるブラッグ波長の変化を抑制するものであ
る。すなわち、本発明は、酸化チタニウムをガラス光導
波路のコア又はクラッドに混入することによって、前記
式(2)のコアの熱膨張係数αと、屈折率の温度係数ξ
を小さくすることによりブラッグ波長λB に対する温度
Tの変化の影響を減少して前記課題を解決し、信頼性の
高い光導波路型回折格子を提供するとともに、WDM通
信において一層の多重化を可能とするものである。
In other words, the optical waveguide type diffraction grating of the present invention and the method for manufacturing the same utilize the fact that the thermal expansion coefficient of titanium oxide is negative, and the titanium oxide is mixed into the core or the clad of the glass optical waveguide. By offsetting the thermal expansion of silicon oxide or germanium oxide having a positive coefficient of thermal expansion,
It suppresses a change in Bragg wavelength due to a change in temperature. That is, according to the present invention, by mixing titanium oxide into the core or the clad of the glass optical waveguide, the thermal expansion coefficient α of the core of the formula (2) and the temperature coefficient ξ of the refractive index are calculated.
By reducing the influence of the change of the temperature T on the Bragg wavelength λ B to solve the above-mentioned problems, to provide a highly reliable optical waveguide type diffraction grating, and to enable further multiplexing in WDM communication. To do.

【0010】[0010]

【実施例】以下、添付図面を参照しながら本発明の実施
例を詳細に説明する。なお、図面に説明おいて同一の要
素には同一の符号を付し、重複する説明を省略する。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

【0011】第1の実施例について説明する。図4に、
本実施例で用いる光導波路の屈折率分布及び組成分布の
概略を示す。本実施例では、まず、回折格子形成に用い
る光導波路として、石英(SiO2 )ガラスを主成分と
する石英系光ファイバを用意した。この光ファイバは、
石英ガラスに20wt%の酸化ゲルマニウム(GeO
2 )がド−プされたコアと、石英ガラスに10wt%の
酸化ゲルマニウム、10wt%の酸化チタニウム(Ti
2 )及び20wt%の酸化ボロン(B23)が共添
加されたクラッドとを備えている。ここで、酸化ゲルマ
ニウムは屈折率を高めるとともに紫外光の照射により屈
折率を高めるド−パントであり、酸化チタニウムは熱膨
張率を低めるド−パントであり、酸化ボロンは屈折率を
低下させるド−パントである。酸化チタニウムは、屈折
率を高めるので、クラッドに酸化チタニウムとともに酸
化ボロンを混入してコアの屈折率よりも低下させる。
The first embodiment will be described. In FIG.
An outline of the refractive index distribution and composition distribution of the optical waveguide used in this example is shown. In this example, first, a silica optical fiber containing silica (SiO 2 ) glass as a main component was prepared as an optical waveguide used for forming a diffraction grating. This optical fiber
20 wt% germanium oxide (GeO) on quartz glass
2 ) Doped core and quartz glass with 10 wt% germanium oxide and 10 wt% titanium oxide (Ti
O 2 ) and a clad co-doped with 20 wt% of boron oxide (B 2 O 3 ). Here, germanium oxide is a dopant that raises the refractive index by increasing the refractive index while irradiating with ultraviolet light, titanium oxide is a dopant that lowers the thermal expansion coefficient, and boron oxide is a dopant that lowers the refractive index. It's a punt. Since titanium oxide increases the refractive index, boron oxide is mixed with the titanium oxide in the clad to lower the refractive index from that of the core.

【0012】光ファイバは、いかなる作製方法により作
成されたものであっても良い。例えば、公知のMCVD
法、VAD法、OVD法、ロッドインチュ−ブ法などに
より作成された光ファイバ母材を、電気炉で加熱して線
引きすることにより作成できる。例えば、VAD法で
は、まず回転している中心棒をタ−ゲットとし、その上
に火炎中で生成した酸化珪素と酸化ゲルマニウムを含む
ガラス状微粒子を堆積させて、ス−トプリフォ−ムを形
成する。具体的には、コア用バ−ナ−に原料となる四塩
化珪素(SiCl4 )及び四塩化ゲルマニウム(GeC
4 )、燃料となる水素、並びに酸素(以上はすべて気
体である。)を同時に送り込む。一方、クラッド用バ−
ナ−には、上記気体に加えて更に臭化ボロン(BBr
3 )と臭化チタン(TiBr4 )を送り込む。そして、
水素の燃焼による各バ−ナ−の火炎を中心棒にあてて、
ス−トプリフォ−ムを形成する。
The optical fiber may be manufactured by any manufacturing method. For example, the well-known MCVD
It can be prepared by heating an optical fiber preform prepared by the method, the VAD method, the OVD method, the rod-incube method, or the like in an electric furnace to draw it. For example, in the VAD method, first, a rotating center rod is used as a target, and glassy fine particles containing silicon oxide and germanium oxide produced in a flame are deposited thereon to form a soot preform. . Specifically, silicon tetrachloride (SiCl 4 ) and germanium tetrachloride (GeC), which are raw materials for the core burner, are used.
l 4 ), hydrogen as a fuel, and oxygen (the above are all gases) at the same time. On the other hand, the clad bar
In addition to the above gases, the boron further contains boron bromide (BBr).
3 ) and titanium bromide (TiBr 4 ) are fed. And
Apply the flame of each burner due to the combustion of hydrogen to the center rod,
Form a soot preform.

【0013】次いで、形成されたス−トプリフォ−ムを
高温で完全脱水して不純物を飛散させてから、更に温度
を上げて焼結する。以上でプリフォ−ム(光ファイバ母
材)が完成するので、線引き炉で更に高温にして溶か
し、線引きすれば光ファイバが得られる。本実施例で用
いる光ファイバは、コア径10μm、クラッド径125
μmである。
Next, the formed soot preform is completely dehydrated at a high temperature to scatter impurities and then further heated to sinter. Since the preform (optical fiber preform) is completed as described above, an optical fiber can be obtained by melting at a higher temperature in a drawing furnace and melting. The optical fiber used in this example has a core diameter of 10 μm and a cladding diameter of 125.
μm.

【0014】次に、光ファイバに紫外光を照射する。こ
こで、紫外光の照射は、所望の長さに切り取った光ファ
イバに対して行っても良いし、線引きされた光ファイバ
を巻き取る途中に行うなど、光ファイバの作製工程に組
込んで行っても良い。
Next, the optical fiber is irradiated with ultraviolet light. Here, the irradiation of the ultraviolet light may be performed on the optical fiber cut into a desired length, or may be performed during the winding of the drawn optical fiber, for example, by incorporating it into the optical fiber manufacturing process. May be.

【0015】本実施例では、等ピッチの回折格子を光フ
ァイバ内に形成することとし、この為に、等間隔の干渉
縞を生じさせながら紫外光を光ファイバに照射する。以
下、紫外光の照射方法について詳しく説明する。
In the present embodiment, the diffraction gratings of equal pitch are formed in the optical fiber, and for this reason, ultraviolet light is applied to the optical fiber while generating interference fringes at equal intervals. Hereinafter, the method of irradiating the ultraviolet light will be described in detail.

【0016】図1は、照射方法を説明するための図であ
る。図1に示されるように、紫外光光源10から出力さ
れた紫外光は、干渉手段20により干渉させられ、干渉
縞を生じながら光ファイバ40に照射される。
FIG. 1 is a diagram for explaining the irradiation method. As shown in FIG. 1, the ultraviolet light output from the ultraviolet light source 10 is interfered by the interference means 20 and is applied to the optical fiber 40 while generating interference fringes.

【0017】本実施例では、ホログラフィック干渉法に
より紫外光を干渉させる。この方法では、干渉手段20
は、図1のように、ビ−ムスプリッタ21aと反射鏡2
1b、21cとから構成される。又、紫外光源10に
は、アルゴンレ−ザ光源11を用いる。
In this embodiment, ultraviolet light is caused to interfere by the holographic interferometry method. In this method, the interference means 20
Is a beam splitter 21a and a reflecting mirror 2 as shown in FIG.
1b and 21c. Further, an argon laser light source 11 is used as the ultraviolet light source 10.

【0018】アルゴンレ−ザ光源は、244nmのコヒ
−レントな紫外光を連続発振する。この紫外光は、ビ−
ムスプリッタ21aにより透過光と反射光の2光束に分
岐される。分岐された各光束は、それぞれ反射鏡21
b、21cによって反射され、コア41の軸方向に対し
互いに補角の関係にある74゜(図1におけるα)、1
06゜(図1における180゜−α)の角度を以て光フ
ァイバに照射される。分岐された各光束は干渉領域30
にて干渉し、所定間隔の干渉縞を形成しつつ、光ファイ
バ40に照射される。照射された紫外光は、コア41及
びクラッド42に入射して、入射部の屈折率を光軸方向
に周期的に変化させる。紫外光の入射によりガラスの屈
折率が変化するメカニズムは、完全には解明されていな
いが、重要な原因として、ガラス中のゲルマニウムに関
連した酸素欠損型の欠陥の生成に起因するものと考えら
れている。
The argon laser light source continuously oscillates coherent ultraviolet light of 244 nm. This ultraviolet light is
The beam splitter 21a splits the light into two light beams of transmitted light and reflected light. The branched light fluxes are respectively reflected by the reflecting mirror 21.
74 ° (α in FIG. 1), which are reflected by b and 21c and are complementary to each other with respect to the axial direction of the core 41, 1
The optical fiber is irradiated at an angle of 06 ° (180 ° -α in FIG. 1). Each of the branched light beams has an interference region 30.
And is irradiated onto the optical fiber 40 while forming interference fringes at predetermined intervals. The irradiated ultraviolet light enters the core 41 and the clad 42, and periodically changes the refractive index of the incident part in the optical axis direction. The mechanism by which the refractive index of the glass changes due to the incidence of ultraviolet light has not been completely clarified, but it is considered that the important cause is the generation of oxygen-deficient defects related to germanium in the glass. ing.

【0019】図2は、光ファイバ40への紫外光の照射
を示す図である。光ファイバ40の径方向に対する紫外
光の入射角度をθ(=90゜−α)、紫外光の波長をλ
とると、干渉縞の周期間隔Λは、 Λ=λ/(2sinθ) 式(3) のように表される。従って、コア41及びクラッド42
の紫外光が入射した領域には、屈折率の変化した部分が
干渉縞の周期間隔Λを周期として光ファイバ40の光軸
方向に添って配列されるので、ピッチΛの回折格子4
3、44がそれぞれコア41、クラッド42に形成され
ることになる。こうして、コア41、クラッド4に回折
格子領域を有する光ファイバ型回折格子が形成される。
FIG. 2 is a diagram showing the irradiation of the optical fiber 40 with ultraviolet light. The incident angle of the ultraviolet light with respect to the radial direction of the optical fiber 40 is θ (= 90 ° -α), and the wavelength of the ultraviolet light is λ.
Then, the periodic interval Λ of the interference fringes is expressed as Λ = λ / (2sinθ) equation (3). Therefore, the core 41 and the clad 42
In the region where the ultraviolet light is incident, since the refractive index changed portions are arranged along the optical axis direction of the optical fiber 40 with the periodic interval Λ of the interference fringes as the period, the diffraction grating 4 with the pitch Λ is arranged.
3 and 44 are formed on the core 41 and the clad 42, respectively. Thus, the optical fiber type diffraction grating having the diffraction grating region in the core 41 and the clad 4 is formed.

【0020】コア41の屈折率nと回折格子43のピッ
チΛを用いると、周知なブラッグの回折条件により、こ
のファイバ型回折格子の反射波長λB は、式(1)と式
(3)から、 λB =λ・n/sinθ 式(4) のように表される。なお、本実施例では、この反射波長
λB が常温で1550nmとなるように設定する。
When the refractive index n of the core 41 and the pitch Λ of the diffraction grating 43 are used, the reflection wavelength λ B of this fiber type diffraction grating can be calculated from the equations (1) and (3) according to the well-known Bragg diffraction condition. , Λ B = λ · n / sin θ Expression (4) In this embodiment, the reflection wavelength λ B is set to be 1550 nm at room temperature.

【0021】上記の方法による紫外光の照射中は、LE
D光源からの光を光ファイバの一端から入射させ、他端
に接続されたスぺクトルアナライザによりこの光の透過
スペクトルを測定することにより、回折格子の形成をリ
アルタイムでモニタ−することができる。ここで、スペ
クトルアナライザは、回折格子43、44を透過した光
について波長と光強度との関係を検出する。紫外光の照
射が開始されると回折格子43、44の形成が進むの
で、透過スペクトルにおいて透過光の強度が反射波長を
中心に減少する。透過スペクトルに変化がなくなれば、
回折格子43、44の形成が飽和したと考えられるの
で、この時点で紫外光の照射を停止する。なお、本実施
例では、飽和時間は40〜50分である。
During the irradiation of ultraviolet light by the above method, LE
The formation of the diffraction grating can be monitored in real time by allowing the light from the D light source to enter from one end of the optical fiber and measuring the transmission spectrum of this light with a spectrum analyzer connected to the other end. Here, the spectrum analyzer detects the relationship between the wavelength and the light intensity of the light transmitted through the diffraction gratings 43 and 44. Since the formation of the diffraction gratings 43 and 44 progresses when the irradiation of the ultraviolet light is started, the intensity of the transmitted light in the transmission spectrum decreases around the reflection wavelength. If there is no change in the transmission spectrum,
Since the formation of the diffraction gratings 43 and 44 is considered to be saturated, the irradiation of ultraviolet light is stopped at this point. In this example, the saturation time is 40 to 50 minutes.

【0022】この回折格子43、44の形成がなされた
光ファイバ型回折格子の雰囲気の温度を20℃、40
℃、60℃と変えて、ブラッグ波長λB の変化を測定す
る。これを図6に示す。この値からブラッグ波長の温度
変化の割合を求めると0.0098nm/℃となる。比
較の為、図5に、同じ格子定数を有し、酸化チタニウム
を含まない光ファイバ型回折格子から得た20℃、40
℃、60℃でのブラッグ波長の値を示す。図5から求め
た温度変化に対するブラッグ波長の割合は0.011n
m/℃である。従って、酸化チタニウムを、光ファイバ
に混入することによりブラッグ波長の温度変化を抑制す
ることができる。
The temperature of the atmosphere of the optical fiber type diffraction grating in which the diffraction gratings 43 and 44 are formed is 20 ° C. and 40 ° C., respectively.
The change in the Bragg wavelength λ B is measured while changing the temperature from 60 ° C. to 60 ° C. This is shown in FIG. When the rate of temperature change of the Bragg wavelength is calculated from this value, it becomes 0.0098 nm / ° C. For comparison, FIG. 5 shows that the optical fiber type diffraction grating having the same lattice constant and containing no titanium oxide has a temperature of 40.degree.
The values of Bragg wavelength at 60 ° C and 60 ° C are shown. The ratio of the Bragg wavelength to the temperature change obtained from FIG. 5 is 0.011n
m / ° C. Therefore, by mixing titanium oxide into the optical fiber, the temperature change of the Bragg wavelength can be suppressed.

【0023】なお、上記実施例では、ホログラッフック
干渉法を用いて紫外光の干渉縞を形成するが、代りに位
相格子法を用いることもできる。図3は、位相格子法を
説明するための図である。まず光ファイバ40に、干渉
手段20たる位相格子22を密着固定する。位相格子2
2には、等間隔で溝を形成した石英板を用いることがで
きる。位相格子22の溝は、リソグラフィ−と化学エッ
チングにより形成できるため、回折格子は自由に選択で
き、複雑な形状も形成できる。
In the above-mentioned embodiment, the ultraviolet fringes are formed by using the Holographic-Frack interferometry, but the phase grating method may be used instead. FIG. 3 is a diagram for explaining the phase grating method. First, the phase grating 22, which is the interference means 20, is closely fixed to the optical fiber 40. Phase grating 2
For 2, a quartz plate having grooves formed at equal intervals can be used. Since the groove of the phase grating 22 can be formed by lithography and chemical etching, the diffraction grating can be freely selected and a complicated shape can be formed.

【0024】次に例えば、KrFエキシマレ−ザ光源1
2(紫外光光源10)をパルス光源として用い、波長2
48nmの所定強度のパルス光を所定の周波数で出力さ
せ、図のように位相格子の上面から所定時間照射する。
なお、紫外光は連続発振させても良い。紫外光が位相格
子22を透過すると、所定間隔の干渉縞が形成され。干
渉縞を形成したままコア41及びクラッド42に入射す
るので、周期的な屈折率変化、すなわち回折格子43、
44がそれぞれコア41、クラッド42に生じる。こし
て、コア41、クラッド42の双方に回折格子が形成さ
れた光ファイバ型回折格子が作製される。
Next, for example, a KrF excimer laser light source 1
2 (ultraviolet light source 10) as a pulse light source
A pulsed light of a predetermined intensity of 48 nm is output at a predetermined frequency, and irradiation is performed from the upper surface of the phase grating for a predetermined time as shown in the figure.
The ultraviolet light may be continuously oscillated. When the ultraviolet light passes through the phase grating 22, interference fringes are formed at predetermined intervals. Since the light enters the core 41 and the clad 42 while forming the interference fringes, the periodical refractive index change, that is, the diffraction grating 43,
44 occur in the core 41 and the clad 42, respectively. Thus, an optical fiber type diffraction grating in which the diffraction grating is formed on both the core 41 and the clad 42 is manufactured.

【0025】上記第1の実施例では、コアには酸化チタ
ニウムを含まないが、含めることは可能である。この場
合、当然ブラッグ波長に対する温度変化の影響を抑制す
る効果が増加する。但し、コア径10μmに対しクラッ
ド径は125μmであるのでブラッグ波長に対する温度
変化の影響を抑制する効果は、クラッド中の酸化チタニ
ウムの効果の方が支配的である。又上記実施例ではクラ
ッド中にも酸化ゲルマニウムを含むが、含めないことも
可能である。ただしこの場合は、クラッド中に回折格子
が形成されないのでブラッグ波長の反射率は若干低下す
る。又上記実施例では屈折率低下剤として酸化ボロンを
用いるが弗素であってもよい。この場合、弗素の添加
は、ス−トプリフォ−ムを弗素ガス中で一定の温度、圧
力下に維持しておく方法でも良いし、ス−トプリフォ−
ム形成前に原料石英ガラス粉末中に弗素を含侵させてお
く方法でも良い。
In the first embodiment, the core does not contain titanium oxide, but it can be contained. In this case, the effect of suppressing the influence of temperature change on the Bragg wavelength naturally increases. However, since the cladding diameter is 125 μm with respect to the core diameter of 10 μm, the effect of titanium oxide in the cladding is more dominant in the effect of suppressing the influence of temperature change on the Bragg wavelength. Further, although germanium oxide is contained in the clad in the above embodiment, it is possible not to include germanium oxide. However, in this case, since the diffraction grating is not formed in the clad, the reflectance at the Bragg wavelength is slightly lowered. Although boron oxide is used as the refractive index lowering agent in the above embodiment, fluorine may be used. In this case, the addition of fluorine may be carried out by keeping the soot preform in fluorine gas at a constant temperature and pressure.
Alternatively, the raw material quartz glass powder may be impregnated with fluorine before forming the glass.

【0026】第2の実施例について説明する。図7に本
実施例にかかる光導波路の屈折率及び酸化ゲルマニウム
の濃度と酸化チタニウムの濃度の概略の分布を示す。前
記第1の実施例では、酸化ゲルマニウムを含む光導波部
であるコアと、前記コアに接して前記コアより低い屈折
率のクラッドとを備える光導波路を用いるが、本実施例
では、コアと前記コアに接し前記コアよりも低い屈折率
の第1のクラッドと前記第1のクラッドに接しかつモ−
ドフィ−ルドよりも外側に位置する第2のクラッドから
成る光導波路を用いる。ここで、モ−ドフィ−ルドと
は、シングルモ−ド光ファイバの強度分布の最大値の1
/e(=2.71)となる直径の内側部分を言い、その
直径は使用する光の波長に依存する性質を有するが、通
常コアの直径と概略一致する。具体的な組成濃度は、コ
ア部分の組成は前記実施例と同じとし、石英ガラスに2
0wt%の酸化ゲルマニウムがド−プされている。第1
のクラッドは、石英ガラスからなる。第二のクラッドの
組成は、石英ガラスに1 5wt%の酸化チタニウムが
添加されている 。この部分は、モ−ドフィ−ルドの外
側にあり実質的に光の伝送とは無関係であるため、コア
の屈折率よりも屈折率を低下させる必要がないので屈折
率低下剤を混入していない。
The second embodiment will be described. FIG. 7 shows a schematic distribution of the refractive index of the optical waveguide and the concentration of germanium oxide and the concentration of titanium oxide according to this example. In the first embodiment, an optical waveguide including a core, which is an optical waveguide portion containing germanium oxide, and a clad having a refractive index lower than that of the core, which is in contact with the core, is used. A first clad that is in contact with the core and has a refractive index lower than that of the core;
An optical waveguide composed of a second clad located outside the D field is used. Here, the mode field is 1 which is the maximum value of the intensity distribution of the single mode optical fiber.
/ E (= 2.71) is the inner part of the diameter, and the diameter has a property that depends on the wavelength of the light used, but it is generally approximately the same as the diameter of the core. Regarding the specific composition concentration, the composition of the core portion is the same as that in the above-mentioned embodiment, and the silica glass is
0 wt% germanium oxide is doped. First
The clad is made of quartz glass. The composition of the second clad is such that 15 wt% titanium oxide is added to quartz glass. Since this portion is outside the mode field and is substantially unrelated to the transmission of light, it is not necessary to lower the refractive index below the refractive index of the core, so that the refractive index lowering agent is not mixed. .

【0027】この光ファイバは、実施例1とほぼ同様に
してMVCD法などにより作成する。コア径は10μ
m、第1のクラッド径は30μm、第2のクラッド径は
125μmを有している。モ−ドフィ−ルドは、直径ほ
ぼ10μmで第1のクラッド中でコアの外側の極く近傍
にはみ出している。実施例1とほぼ同様にして紫外線照
射して回折格子を形成した後、その光ファイバの雰囲気
の温度を20℃、40℃、60℃と変えて、ブラッグ波
長の変化を測定する。これを図8に示す。この値からブ
ラッグ波長の温度変化の割合を求めると0.0078n
m/℃となる。この値は、前記の酸化チタニウムを含ま
ない場合の光ファイバ型回折格子について20℃、40
℃、60℃でのブラッグ波長の値(図5)から求められ
る温度変化に対する変化の割合0.011nm/℃より
も低い値である。すなわち、図7の構成の光ファイバに
ついても、酸化チタニウムを光ファイバに混入すること
によりブラッグ波長の温度変化を抑制することができ
る。
This optical fiber is manufactured by the MVCD method or the like in almost the same manner as in the first embodiment. Core diameter is 10μ
m, the first cladding diameter is 30 μm, and the second cladding diameter is 125 μm. The mode field has a diameter of about 10 .mu.m and protrudes in the first cladding in the immediate vicinity of the outside of the core. After irradiating ultraviolet rays to form a diffraction grating in substantially the same manner as in Example 1, the temperature of the atmosphere of the optical fiber is changed to 20 ° C., 40 ° C., and 60 ° C., and the change in Bragg wavelength is measured. This is shown in FIG. From this value, the rate of change in Bragg wavelength with temperature is calculated to be 0.0078n.
m / ° C. This value is 20 ° C., 40 ° C. for the optical fiber type diffraction grating in the case of not containing titanium oxide.
This is a value lower than 0.011 nm / ° C., which is the rate of change with respect to temperature change, which is determined from the Bragg wavelength values at 60 ° C. and 60 ° C. (FIG. 5). That is, also in the optical fiber having the configuration of FIG. 7, it is possible to suppress the temperature change of the Bragg wavelength by mixing titanium oxide into the optical fiber.

【0028】本第2の実施例では、酸化ゲルマニウムを
前記第1のクラッドに含めていないいが、含めることも
できる。この場合、回折格子が前記第の1クラッドにも
形成されるので反射率が向上する。
In the second embodiment, germanium oxide is not included in the first cladding, but it may be included. In this case, since the diffraction grating is also formed on the first clad, the reflectance is improved.

【0029】[0029]

【発明の効果】以上説明したように、本発明の光導波路
型回折格子は、コア又はクラッドに酸化チタニウムを含
むので、回折格子が設置された雰囲気の温度が変化し、
回折格子自体の温度が変化しても、ブラッグ波長の変化
が小さく、この結果、WDM通信において信頼性の高い
光導波路型回折格子を提供するとともに、一層の多重化
を可能とすることができる。
As described above, since the optical waveguide type diffraction grating of the present invention contains titanium oxide in the core or the clad, the temperature of the atmosphere in which the diffraction grating is installed changes,
Even if the temperature of the diffraction grating itself changes, the change in Bragg wavelength is small, and as a result, it is possible to provide an optical waveguide type diffraction grating with high reliability in WDM communication and further enable multiplexing.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で用いる紫外光の照射方法を説明する
図である。
FIG. 1 is a diagram illustrating an irradiation method of ultraviolet light used in Example 1.

【図2】図1の方法における光ファイバへの紫外光の照
射を示す図である。
FIG. 2 is a diagram showing irradiation of an optical fiber with ultraviolet light in the method of FIG.

【図3】位相格子法による紫外光の照射方法を説明する
図である。
FIG. 3 is a diagram illustrating an ultraviolet light irradiation method by a phase grating method.

【図4】実施例1で用いる光ファイバの屈折率分布及び
酸化ゲルマニウム、酸化チタニウム、酸化ボロンの各濃
度の概略の分布を示す図である。
FIG. 4 is a diagram showing a refractive index distribution of an optical fiber used in Example 1 and a schematic distribution of respective concentrations of germanium oxide, titanium oxide, and boron oxide.

【図5】酸化チタニウムを含まない比較用の光ファイバ
型回折格子について、その雰囲気の温度を20℃、40
℃、60℃と変えて測定したブラッグ波長の値を示す図
である。
FIG. 5 shows an optical fiber type diffraction grating for comparison which does not contain titanium oxide, and the atmosphere temperature is 20 ° C., 40 ° C.
It is a figure which shows the value of the Bragg wavelength which changed and changed into 60 degreeC and 60 degreeC.

【図6】実施例1において、本発明にかかる光ファイバ
型回折格子について、その雰囲気の温度を20℃、40
℃、60℃と変えて測定したブラッグ波長の値を示す図
である。
FIG. 6 shows the optical fiber type diffraction grating according to the present invention in Example 1, in which the ambient temperature is 20 ° C., 40 ° C.
It is a figure which shows the value of the Bragg wavelength which changed and changed into 60 degreeC and 60 degreeC.

【図7】実施例2で用いる光ファイバ型回折格子の屈折
率の径方向分布及び酸化ゲルマニウム、酸化チタニウム
の各濃度の概略の径方向分布を示す図である。
FIG. 7 is a diagram showing a radial distribution of a refractive index of an optical fiber type diffraction grating used in Example 2 and a schematic radial distribution of respective concentrations of germanium oxide and titanium oxide.

【図8】実施例2において、本発明にかかる光ファイバ
型回折格子について、その雰囲気の温度を20℃、40
℃、60℃と変えて測定したブラッグ波長の値を示す図
である。
FIG. 8 shows the optical fiber type diffraction grating according to the present invention in Example 2, in which the ambient temperature is 20 ° C. and 40 ° C.
It is a figure which shows the value of the Bragg wavelength which changed and changed into 60 degreeC and 60 degreeC.

【符号の説明】[Explanation of symbols]

10:紫外光光源 20:干渉手段 21a:ビ−ムスプリッタ 21b、21c:反射鏡 22:位相格子 30:干渉領域 40:光ファイバ 41:コア 42:クラッド 43,44:回折格子 10: Ultraviolet light source 20: Interference means 21a: Beam splitters 21b, 21c: Reflector 22: Phase grating 30: Interference region 40: Optical fiber 41: Core 42: Clad 43, 44: Diffraction grating

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 酸化ゲルマニウムを含む光導波部である
コアと、前記コアに接して前記コアより低い屈折率のク
ラッドとを備え、光軸方向に沿って複数の屈折率変化部
が形成された回折格子領域を有する光導波路型回折格子
において、前記コア及び前記クラッドの両方又はいづれ
か一方に酸化チタニウムを含むことを特徴とする光導波
路型回折格子
1. A core, which is an optical waveguide including germanium oxide, and a cladding, which is in contact with the core and has a refractive index lower than that of the core, are formed, and a plurality of refractive index changing portions are formed along the optical axis direction. An optical waveguide type diffraction grating having a diffraction grating region, wherein both or one of the core and the clad contains titanium oxide.
【請求項2】 前記クラッドに酸化ゲルマニウムを含む
ことを特徴とする請求項1に記載の光導波路型回折格子
2. The optical waveguide type diffraction grating according to claim 1, wherein the cladding contains germanium oxide.
【請求項3】 前記コア及び前記クラッドの両方又はい
づれか一方に酸化チタニウムと共に屈折率低下剤が含ま
れることを特徴とする請求項1又は請求項2に記載の光
導波路型回折格子
3. The optical waveguide type diffraction grating according to claim 1 or 2, wherein a refractive index lowering agent is contained together with titanium oxide in both or one of the core and the clad.
【請求項4】 屈折率低下剤が酸化ボロン又は弗素であ
ることを特徴とする請求項3に記載の光導波路型回折格
4. The optical waveguide type diffraction grating according to claim 3, wherein the refractive index lowering agent is boron oxide or fluorine.
【請求項5】 前記クラッドは、前記コアの外側に接し
て前記コアよりも屈折率が低い第1のクラッドと、前記
第1のクラッドに接しかつモ−ドフィ−ルドの外側に位
置する第2のクラッドとを備える請求項1乃至請求項4
に記載の光導波路型回折格子
5. The first cladding, which is in contact with the outside of the core and has a lower refractive index than the core, and the second cladding, which is in contact with the first cladding and is outside the mode field. 5. The clad of claim 1 to claim 4.
Optical waveguide diffraction grating described in
【請求項6】 酸化ゲルマニウムを含むコアと前記コア
に接して前記コアよりも屈折率が低いクラッドとを備
え、かつ前記コア及び前記クラッドの両方又はそのいづ
れか一方に酸化チタニウムを含むガラス光導波路を用意
する第1の工程と、前記ガラス光導波路の前記コア及び
前記クラッドの複数の所定部分に紫外光を照射して、屈
折率を変化させる第2の工程とから成る光導波路型回折
格子の作製方法
6. A glass optical waveguide comprising a core containing germanium oxide and a clad in contact with the core and having a refractive index lower than that of the core, and a glass optical waveguide containing titanium oxide in at least one of the core and the clad. Fabrication of an optical waveguide type diffraction grating comprising a first step of preparing and a second step of irradiating ultraviolet rays to a plurality of predetermined portions of the core and the clad of the glass optical waveguide to change the refractive index. Method
【請求項7】 前記クラッドに酸化ゲルマニウムを含む
ことを特徴とする請求項6に記載の光導波路型回折格子
の作製方法
7. The method for manufacturing an optical waveguide type diffraction grating according to claim 6, wherein the clad contains germanium oxide.
【請求項8】 前記コア及び前記クラッドの両方又はい
づれか一方に酸化チタニウムと共に屈折率低下剤が含ま
れていることを特徴とする請求項6又は請求項7に記載
される光導波路型回折格子の作製方法
8. The optical waveguide type diffraction grating according to claim 6 or 7, wherein both or one of the core and the clad contains a titanium oxide and a refractive index lowering agent. Manufacturing method
【請求項9】 前記屈折率低下剤が酸化ボロン又は弗
素であることを特徴とする請求項8に記載の光導波路型
回折格子の作製方法
9. The method of manufacturing an optical waveguide type diffraction grating according to claim 8, wherein the refractive index lowering agent is boron oxide or fluorine.
【請求項10】 前記クラッドは、前記コアの外側に接
して前記コアよりも屈折率が低い第1のクラッドと、前
記第1のクラッドに接しかつモ−ドフィ−ルドの外側に
位置する第2のクラッドとを備える請求項6乃至請求項
9に記載の光導波路型回折格子の作製方法
10. The first clad is in contact with the outside of the core and has a lower refractive index than the core, and the second clad is in contact with the first clad and is outside the mode field. 10. The method for manufacturing an optical waveguide type diffraction grating according to claim 6, further comprising:
【請求項11】 紫外光を干渉させて生じた干渉縞を
ガラス光導波路に照射することを特徴とする請求項6乃
至請求項10のいづれかに記載の光導波路型回折格子の
作製方法
11. The method for producing an optical waveguide type diffraction grating according to claim 6, wherein the glass optical waveguide is irradiated with interference fringes generated by causing ultraviolet light to interfere with each other.
【請求項12】 2本のコヒ−レントな紫外光を干渉
させて生じた干渉縞をガラス光導波路の光軸に対し互い
に補角の関係にある角度から前記ガラス光導波路に照射
することを特徴とする請求項11に記載の光導波路型回
折格子の作製方法
12. The glass optical waveguide is irradiated with interference fringes generated by interfering two coherent ultraviolet rays with each other from an angle which is a complementary angle to the optical axis of the glass optical waveguide. A method of manufacturing an optical waveguide type diffraction grating according to claim 11.
【請求項13】 紫外光を位相格子に照射して前記位
相格子を透過させることにより生じた干渉縞をガラス光
導波路に照射することを特徴とする請求項11に記載の
光導波路型回折格子の作製方法
13. The optical waveguide type diffraction grating according to claim 11, wherein the glass optical waveguide is irradiated with interference fringes generated by irradiating the phase grating with ultraviolet light and transmitting the ultraviolet light. Manufacturing method
JP7085093A 1995-04-11 1995-04-11 Optical waveguide type diffraction grating and its production Pending JPH08286050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7085093A JPH08286050A (en) 1995-04-11 1995-04-11 Optical waveguide type diffraction grating and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7085093A JPH08286050A (en) 1995-04-11 1995-04-11 Optical waveguide type diffraction grating and its production

Publications (1)

Publication Number Publication Date
JPH08286050A true JPH08286050A (en) 1996-11-01

Family

ID=13848998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7085093A Pending JPH08286050A (en) 1995-04-11 1995-04-11 Optical waveguide type diffraction grating and its production

Country Status (1)

Country Link
JP (1) JPH08286050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022591A1 (en) * 1999-01-25 2000-07-26 Alcatel Photosensitive optical fibre for bragg grating filter, method of fabricating said fibre, and chromatic dispersion and dispersion slope compensator using such a fibre
JP2013171261A (en) * 2012-02-22 2013-09-02 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide and manufacturing method thereof
CN109085675A (en) * 2018-10-11 2018-12-25 宜昌睿传光电技术有限公司 A kind of double coat weak optical fiber Bragg grating arrays and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022591A1 (en) * 1999-01-25 2000-07-26 Alcatel Photosensitive optical fibre for bragg grating filter, method of fabricating said fibre, and chromatic dispersion and dispersion slope compensator using such a fibre
FR2788859A1 (en) * 1999-01-25 2000-07-28 Cit Alcatel PHOTOSENSITIVE OPTICAL FIBER FOR BRAGG NETWORK FILTER, METHOD OF MANUFACTURING SUCH FIBER, AND CHROMATIC DISPERSION AND CHROMATIC DISPERSION SLOPE COMPENSATOR INCLUDING SUCH FIBER
US6400868B1 (en) 1999-01-25 2002-06-04 Alcatel Photosensitive optical fiber for a bragg grating filter, a method of fabricating said fiber, and a chromatic dispersion and chromatic dispersion slope compensator including a fiber of this kind
JP2013171261A (en) * 2012-02-22 2013-09-02 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide and manufacturing method thereof
CN109085675A (en) * 2018-10-11 2018-12-25 宜昌睿传光电技术有限公司 A kind of double coat weak optical fiber Bragg grating arrays and preparation method thereof
CN109085675B (en) * 2018-10-11 2024-03-15 宜昌睿传光电技术有限公司 Double-coating weak fiber grating array and preparation method thereof

Similar Documents

Publication Publication Date Title
US5790726A (en) Optical waveguide and process for producing it
EP0647327B1 (en) Photoinduced grating in b2o3 containing glass
AU707445B2 (en) Mode field diameter conversion fiber, method for locally changing the refractive index of optical waveguides and method for fabricating optical waveguide preforms
JP3727659B2 (en) Optical waveguide device
KR100487888B1 (en) A method of providing an optical element and a process of forming an optical element
JPH10246826A (en) Production of optical waveguide
WO1993018420A1 (en) Silica germania glass compositions
JP3725319B2 (en) Manufacturing method of photosensitive fiber for forming grating
US6229945B1 (en) Photo induced grating in B2O3 containing glass
JPH08286050A (en) Optical waveguide type diffraction grating and its production
CA2373153A1 (en) Chalcogenide doping of oxide glasses
JP3431046B2 (en) Optical waveguide, waveguide member thereof, and manufacturing method thereof
JP3601103B2 (en) Method for producing optical fiber preform for producing optical fiber type diffraction grating
JP3596080B2 (en) Method for producing optical fiber preform for producing optical fiber type diffraction grating
JPH07218712A (en) Manufacture of light guide type diffraction grating
JP3596079B2 (en) Manufacturing method of optical fiber preform for manufacturing optical fiber type diffraction grating
JPH07248430A (en) Optical waveguide type diffraction grating and its production
JPH07191210A (en) Production of optical waveguide type diffraction grating
JP3431048B2 (en) Optical waveguide, waveguide member thereof, and manufacturing method thereof
JPH08286065A (en) Production of plane optical waveguide
JPH07270606A (en) Manufacture of optical waveguide type diffraction grating
JPH07253506A (en) Production of optical fiber type diffraction grating
Ainslie et al. Photoinduced grating in B 2 O 3 containing glass
JPH09203816A (en) Production of optical fiber preform
JPH07244209A (en) Production of optical fiber type diffraction grating