JPH08284668A - Engine having mechanical supercharger - Google Patents

Engine having mechanical supercharger

Info

Publication number
JPH08284668A
JPH08284668A JP7093578A JP9357895A JPH08284668A JP H08284668 A JPH08284668 A JP H08284668A JP 7093578 A JP7093578 A JP 7093578A JP 9357895 A JP9357895 A JP 9357895A JP H08284668 A JPH08284668 A JP H08284668A
Authority
JP
Japan
Prior art keywords
intake
engine
supercharger
volume
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7093578A
Other languages
Japanese (ja)
Inventor
Yasuhide Yano
康英 矢野
Tadashi Nakagawa
正 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP7093578A priority Critical patent/JPH08284668A/en
Publication of JPH08284668A publication Critical patent/JPH08284668A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE: To improve fuel consumption characteristics of acceleration responsive ness in low speed rotation area of an engine which has a mechanical super charger and is supercharged by the supercharger at least under high load, by reducing mechanical loss of the supercharger in a high speed and high load area. CONSTITUTION: An actual closing timing of an intake valve is set at the time when a crank angle is delayed by 40 to 50 degrees from a bottom dead center. An intake passage capacity on a downstream side of a mechanical supercharger 11 is set to be a value with which resonance effect of dynamic supercharge is obtained in high speed rotation area. Independent intake passages 7a to 7d of cylinders 2a to 2d are connected with a collection part 8 which does not have a volume enlargement chamber. Capacity of the independent intake passages 7a to 7d are set to be values with which inertial supercharge effect is obtained at high speed rotation area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械式過給機を備えた
エンジンに関し、特にその吸気系の改良に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine equipped with a mechanical supercharger, and more particularly to an improvement of its intake system.

【0002】[0002]

【従来の技術】従来から、エンジンの吸気充填量を高め
るため、過給機によって吸気を過給するようにしたエン
ジンが実用化されており、その過給機としては、コンプ
レッサに連動するタービンが排気ガスで駆動されるター
ボ過給機と、コンプレッサがエンジン出力軸で駆動され
る機械式過給機(スーパーチャージャ)が知られてい
る。
2. Description of the Related Art Conventionally, an engine having a supercharger for supercharging intake air has been put into practical use in order to increase the intake charge amount of the engine. As the supercharger, a turbine linked to a compressor is used. A turbocharger driven by exhaust gas and a mechanical supercharger (supercharger) in which a compressor is driven by an engine output shaft are known.

【0003】また、エンジンの高出力化を図るための手
段として、慣性過給効果あるいは共鳴過給効果等の吸気
の動的過給効果を利用した吸気システムが知られてい
る。この吸気システムは、吸気の圧力波を共鳴(共振)
させて、吸気弁が閉じる直前に圧力波を生成させて吸気
の充填効率を高めるようにしたものであり、このような
吸気システムでは、独立吸気通路の上流側にサージタン
ク等の容積拡大室を設け、吸気弁の開弁によって燃焼室
から吸気ポートを経て独立吸気通路内を上流側へ音速で
伝播した吸気負圧波を上記容積拡大室で反転させるよう
にしている。そして、この反転正圧波が下流側へ伝播し
て吸気弁が閉じる直前に吸気ポートの下流端へ到達する
ように構成することによって、上記慣性過給効果を得て
いる。
An intake system utilizing the dynamic supercharging effect of intake air such as the inertia supercharging effect or the resonance supercharging effect is known as a means for increasing the output of the engine. This intake system resonates the pressure wave of the intake.
In this system, a pressure wave is generated immediately before the intake valve is closed to enhance the charging efficiency of intake air.In such an intake system, a volume expansion chamber such as a surge tank is provided upstream of the independent intake passage. When the intake valve is opened, the intake negative pressure wave propagated from the combustion chamber through the intake port to the upstream side in the independent intake passage at the sonic velocity is reversed in the volume expansion chamber. The inertia supercharging effect is obtained by the configuration in which the inverted positive pressure wave propagates downstream and reaches the downstream end of the intake port immediately before the intake valve closes.

【0004】さらに、特開平3−138416号公報に
記載された過給機付き高圧縮比エンジンのように、各気
筒毎の独立吸気通路の形状を、該独立吸気通路によって
発生する慣性過給作用の同調回転数が最大馬力を生むエ
ンジン回転数よりも高速回転域となるように設定するこ
とにより、高負荷域、特に吸気弁の閉弁時期前において
吸気が入り易い高速回転域において、独立吸気通路に慣
性作用が生じないことによる断熱圧縮作用を低減して、
耐ノック性を向上させたものも提案されている。
Further, as in the high compression ratio engine with a supercharger described in Japanese Patent Laid-Open No. 3-138416, the shape of the independent intake passage for each cylinder has an inertia supercharging action generated by the independent intake passage. Independent intake air is set in the high load range, especially in the high speed range where intake is likely to occur before the closing timing of the intake valve, by setting the tuning speed of the engine to be in the higher speed range than the engine speed that produces maximum horsepower. The adiabatic compression effect due to the absence of inertial action in the passage is reduced,
Those with improved knock resistance are also proposed.

【0005】[0005]

【発明が解決しようとする課題】ところで、ターボ過給
機は、高回転高負荷域での効率が良いが、低回転域での
応答性が悪い欠点を有しており、この欠点の是正は困難
である。これに対して、機械式過給機は、低回転高負荷
域での応答性に優れているという長所を有しているが、
高回転高負荷域における吐出側吸気通路の圧力上昇に伴
い機械損失が増大してエンジンの馬力が食われ、燃費特
性が悪化するという欠点を有している。
By the way, the turbocharger has a drawback that the efficiency is good in a high rotation and high load range, but the responsiveness is low in a low rotation range. Have difficulty. On the other hand, the mechanical supercharger has an advantage that it has excellent responsiveness in a low rotation and high load range.
There is a drawback in that the mechanical loss increases as the pressure in the discharge side intake passage increases in the high rotation and high load region, the horsepower of the engine is consumed, and the fuel consumption characteristics deteriorate.

【0006】したがって、高回転高負荷域においてる燃
費特性が悪化するという点さえ是正されれば、機械式過
給機は極めて優れた過給機であると言える。
Therefore, it can be said that the mechanical supercharger is an extremely excellent supercharger if the point that the fuel consumption characteristic in the high rotation and high load range is deteriorated is corrected.

【0007】一方、慣性過給効果を得るために、吸気負
圧波を反転させるためのサージタンクのような容積拡大
部を吸気通路に設けると、低速回転域での加速応答性が
悪化するという問題がある。
On the other hand, if a volume expansion portion such as a surge tank for reversing the intake negative pressure wave is provided in the intake passage in order to obtain the inertia supercharging effect, the acceleration response in the low speed rotation range deteriorates. There is.

【0008】また、慣性過給の同調回転数は、容積拡大
室下流の吸気通路の容積によって定まることが知られて
いるが、特に過給機を備えたエンジンでは、容積拡大室
と過給機との間の吸気通路の容積が大きいと慣性過給効
果に悪影響を及ぼすことが判明した。
It is known that the synchronized rotational speed of inertial supercharging is determined by the volume of the intake passage downstream of the volume expansion chamber. Particularly in an engine equipped with a supercharger, the volume expansion chamber and the supercharger are used. It was found that a large volume of the intake passage between and had a negative effect on the inertia supercharging effect.

【0009】上述の事情に鑑み、本発明は、高速高負荷
領域における機械式過給機の機械損失を低減して高速高
負荷領域におけるエンジンの燃費特性の向上を図るとと
もに、低速回転域での加速応答性を向上させた機械式過
給機付きエンジンを提供することを目的とするものであ
る。
In view of the above circumstances, the present invention aims to improve the fuel consumption characteristics of the engine in the high speed and high load region by reducing the mechanical loss of the mechanical supercharger in the high speed and high load region, and to improve the fuel consumption characteristics in the low speed rotation region. It is an object of the present invention to provide an engine with a mechanical supercharger that has improved acceleration response.

【0010】[0010]

【課題を解決するための手段】本発明による機械式過給
機付きエンジンは、吸気弁の実質的な閉弁時期を下死点
からクランク角で40〜50°遅れた時点に設定すると
ともに、上記過給機よりも下流側の吸気通路容積を、高
速回転域において動的過給の共鳴効果が得られる値に設
定してなることを特徴とするものである。吸気弁の実質
的な閉弁時期は、吸気弁がバルブリフト量0.4mmの位
置まで閉弁した時点をもって定義される。
In the engine with the mechanical supercharger according to the present invention, the substantial closing timing of the intake valve is set at a time point delayed by 40 to 50 ° in crank angle from the bottom dead center, and It is characterized in that the volume of the intake passage on the downstream side of the supercharger is set to a value at which a resonance effect of dynamic supercharging can be obtained in a high speed rotation range. The substantial closing timing of the intake valve is defined as the time when the intake valve closes to the position where the valve lift amount is 0.4 mm.

【0011】その場合、吸気ポートのスロート径は、最
高回転数における平均吸気マッハ数Mimが0.5以上に
なると吸気流速が急速に頭打ち傾向となるから、Mim
0.3〜0.4の範囲内に設定することが好ましい。
In this case, the throat diameter of the intake port is such that when the average intake Mach number M im at the maximum engine speed becomes 0.5 or more, the intake flow velocity tends to reach a peak, so that M im is 0.3 to 0. It is preferable to set it within the range of 4.

【0012】ここで Mim:平均吸気マッハ
数 vim:吸気弁開口中の平均吸気速度 a :音速 Vh :行程容積 ηV :体積効率 Fit:吸気弁有効時間面積 とすると、 vim=Vh (ηV /100)/Fitim=vim/a=Vh (ηV /100)/(a・Fit) (1) また、本発明による過給機付きエンジンは、各気筒の独
立吸気通路を、容積拡大室を有しない集合部に接続した
構成とすることができる。そして、この独立吸気通路に
よって慣性過給効果を生成させることができる。
Where M im is the average intake Mach number v im is the average intake velocity in the intake valve opening a is the sound velocity V h is the stroke volume η V is the volumetric efficiency F it is the intake valve effective time area, and v im = V hV / 100) / F it M im = v im / a = V hV / 100) / (a · F it ) (1) Further, the engine with a supercharger according to the present invention is The independent air intake passage of the cylinder may be connected to a collecting portion having no volume expansion chamber. Then, the inertial supercharging effect can be generated by the independent intake passage.

【0013】上記機械式過給機の下流側の吸気通路にイ
ンタークーラを設ける場合は、水冷式インタークーラと
することが好ましい。
When an intercooler is provided in the intake passage on the downstream side of the mechanical supercharger, it is preferable to use a water-cooled intercooler.

【0014】[0014]

【作用および発明の効果】本発明によれば、吸気弁の実
質的な閉弁時期を下死点後(ABDC)クランク角で4
0〜50°の時点に設定することにより、中低速回転域
における加速応答性を向上させることができるととも
に、高速回転域においては動的過給より、吸気の体積効
率ηV が高まるから、機械式過給機の吐出圧が低減され
る結果、過給機の機械損失が低減され、高速回転域にお
ける加速応答性および燃費特性の向上を図ることができ
る。
According to the present invention, the substantial closing timing of the intake valve is set at 4 crank angle after bottom dead center (ABDC).
By setting the time point from 0 to 50 °, the acceleration response in the medium to low speed rotation range can be improved, and in the high speed rotation range, the volumetric efficiency η V of the intake air increases due to the dynamic supercharging. As a result of reducing the discharge pressure of the supercharger, the mechanical loss of the supercharger is reduced, and the acceleration response and fuel consumption characteristics in the high speed rotation range can be improved.

【0015】また、本発明によれば、機械式過給機の下
流側の吸気系全体の容積をも考慮して、吸気系の容積を
設定することにより、高速回転域における動的過給効果
を高めることができる。
According to the present invention, the dynamic supercharging effect in the high speed rotation range is set by setting the volume of the intake system in consideration of the volume of the entire intake system on the downstream side of the mechanical supercharger. Can be increased.

【0016】さらに、各気筒の独立吸気通路を、容積拡
大室を有しない集合部に接続した構成により、低速回転
域での加速応答性を向上させることができるとともに、
各独立吸気通路に対して残りの独立吸気通路が容積拡大
室としての機能を果たして吸気負圧波を上記集合部で反
転させることができるから、上記独立吸気通路におい
て、慣性過給効果を得ることができる。
Further, the independent intake passage of each cylinder is connected to the collecting portion having no volume expansion chamber, whereby the acceleration response in the low speed rotation range can be improved, and
Since the remaining independent intake passages function as volume expansion chambers for each independent intake passage and the intake negative pressure wave can be inverted at the collecting portion, an inertia supercharging effect can be obtained in the independent intake passages. it can.

【0017】さらに、過給機の下流側の吸気通路に設け
られるインタークーラを空冷式よりも冷却能力が大きい
水冷式にした場合は、過給された吸気を効果的に冷却し
て過給効果を高めることができるとともに、同じ冷却能
力を有する空冷式インタークーラよりも容積が小さくな
り、その分過給機の下流側の吸気系容積を小さくして、
慣性過給効果を向上させることができる。
Further, when the intercooler provided in the intake passage on the downstream side of the supercharger is a water-cooled type having a larger cooling capacity than the air-cooled type, the supercharged intake air is effectively cooled and the supercharge effect is obtained. And the volume is smaller than that of an air-cooled intercooler having the same cooling capacity, and the intake system volume on the downstream side of the supercharger is reduced accordingly,
The inertia supercharging effect can be improved.

【0018】[0018]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0019】図1は、本発明の実施例に係わる直列4気
筒機械式過給機付きエンジンの概略構成を示すもので、
このエンジンのシリンダヘッド1には、各気筒2a〜2
dの吸気ポート3a〜3dと、排気ポート4a〜4dと
が形成され、吸気ポート3a〜3dおよび排気ポート4
a〜4dは、その下流端がそれぞれ2ポートに分岐され
て、各気筒2a〜2dにつきそれぞれ2本ずつの吸気弁
および排気弁が設けられている。本実施例においては、
中低速回転域において加速応答性を高めるために、バル
ブリフト量0.4mmの位置まで閉弁した時点をもって定
義される吸気弁の実質的な閉弁時期を、後述する理由か
ら、クランク角で下死点後40〜50°と設定してあ
る。
FIG. 1 shows a schematic structure of an in-line 4-cylinder mechanical supercharged engine according to an embodiment of the present invention.
The cylinder head 1 of this engine has cylinders 2a-2
intake ports 3a to 3d and exhaust ports 4a to 4d are formed, and the intake ports 3a to 3d and the exhaust port 4 are formed.
Each of a to 4d has its downstream end branched into two ports, and each cylinder 2a to 2d is provided with two intake valves and two exhaust valves. In this embodiment,
In order to improve the acceleration response in the medium to low speed rotation range, the actual closing timing of the intake valve, which is defined as the time when the valve is lifted to the position where the valve lift amount is 0.4 mm, is reduced by the crank angle for the reason described later. It is set to 40 to 50 ° after the dead point.

【0020】シリンダヘッド1の吸気側には、吸気マニ
ホールド6が取付けられ、この吸気マニホールド6に
は、各吸気ポート3a〜3dの上流端に下流端が接続さ
れた独立吸気通路7a〜7dと、独立吸気通路7a〜7
dの上流端を集合させる集合部8とが形成され、この集
合部8の上流側の共通吸気通路9には、エンジンによっ
てベルト10を介して駆動される機械式過給機11と、
この過給機11による圧縮によって温度が上昇した吸気
を冷却するインタークーラ12とが上流側から順に配設
されている。なお、インタークーラ12は、吸気をより
効果的に冷却するために、また空冷式よりも容積を小さ
くできる水冷式のものが望ましい。
An intake manifold 6 is attached to the intake side of the cylinder head 1, and the intake manifold 6 is provided with independent intake passages 7a to 7d having upstream ends and downstream ends of the intake ports 3a to 3d, respectively. Independent intake passages 7a-7
A collecting portion 8 for collecting the upstream ends of d is formed, and in the common intake passage 9 on the upstream side of the collecting portion 8, a mechanical supercharger 11 driven by an engine via a belt 10;
An intercooler 12 that cools intake air whose temperature has risen due to compression by the supercharger 11 is arranged in order from the upstream side. The intercooler 12 is preferably a water-cooled type that cools intake air more effectively and has a smaller volume than an air-cooled type.

【0021】上記集合部8は、従来のエンジンにおける
サージタンクのようなシリンダ列方向に延びる容積拡大
室ではなく、4本の独立吸気通路7a〜7dをそのまま
1本に束ねたような構成を有しており、1本の独立吸気
通路に対して他の3本の独立吸気通路が容積拡大室とし
ての機能を果たし、高速回転域においては、吸気弁の開
弁によって燃焼室から吸気ポート3a〜3dへ伝播した
吸気負圧波が独立吸気通路7a〜7d内を上流側へ音速
で伝播して、集合部8で反転し、その反転正圧波が下流
側へ伝播して、吸気弁が閉じる直前に吸気ポート3a〜
3dの下流側へ到達して慣性過給効果が得られるように
なっている。
The collecting portion 8 is not a volume expansion chamber extending in the cylinder row direction like a surge tank in a conventional engine, but has a structure in which four independent intake passages 7a to 7d are bundled as they are. With respect to one independent intake passage, the other three independent intake passages function as a volume expansion chamber, and in the high speed rotation range, the intake valve is opened to move from the combustion chamber to the intake port 3a. The intake negative pressure wave propagated to 3d propagates in the independent intake passages 7a to 7d to the upstream side at the speed of sound and is inverted at the collecting portion 8, and the inverted positive pressure wave propagates to the downstream side, and immediately before the intake valve is closed. Intake port 3a-
It reaches the downstream side of 3d to obtain the effect of inertia supercharging.

【0022】慣性過給同調回転数は、主として、集合部
8の下流側の1気筒当たりの吸気系の容積V、すなわち
各吸気ポート3a〜3dの容積と各独立吸気通路7a〜
7dの容積との和の容積と、吸気ポート3a〜3dのス
ロート径(燃焼室に対する開口部の径)とによって決定
することができるから、高速回転域で慣性過給効果を得
るためには、先ず吸気ポート3a〜3dのスロート径を
決定する必要がある。
The inertial supercharging tuning rotational speed is mainly determined by the volume V of the intake system per cylinder downstream of the collecting portion 8, that is, the volume of each intake port 3a-3d and each independent intake passage 7a-.
Since it can be determined by the sum of the volume of 7d and the throat diameter of the intake ports 3a to 3d (the diameter of the opening with respect to the combustion chamber), in order to obtain the inertia supercharging effect in the high speed rotation range, First, it is necessary to determine the throat diameters of the intake ports 3a to 3d.

【0023】上記スロート径は、図2に示すようなグラ
フを用いて決定することができる。図2は、各気筒2a
〜2dがそれぞれ4弁(吸気2弁、排気2弁)を備えて
いる場合のボア径B(mm)に対するスロート径S(mm)
の関係を示すもので、スロート径Sの上限値を表す直線
K1(S=0.48×B−9.5)と下限値を表す直線
K2(S=0.48×B−13.2)とによって3つの
領域I,II,III に区画され、スロート径Sは領域II内
から選択される。本実施例では、後述のように、ボア径
B=80mm,スロート径S=27.0mmを表す点Qを選
択した。なお、領域Iは、1気筒当たり4弁を配置する
ことが不可能な領域であり、領域III は、平均吸気マッ
ハ数が高くなって、高速回転域で十分な体積効率ηV
得られない領域である。平均吸気マッハ数は前述の式
(1) から求められ、本実施例では、最高回転数における
平均吸気マッハ数Mimが0.3〜0.4の範囲内に設定
される。
The throat diameter can be determined by using a graph as shown in FIG. FIG. 2 shows each cylinder 2a
Throat diameter S (mm) with respect to bore diameter B (mm) when each of 2d has 4 valves (2 intake valves, 2 exhaust valves)
The straight line K1 (S = 0.48 × B−9.5) showing the upper limit value of the throat diameter S and the straight line K2 (S = 0.48 × B-13.2) showing the lower limit value of the throat diameter S. And are divided into three regions I, II, and III, and the throat diameter S is selected from the region II. In this embodiment, as will be described later, the point Q representing the bore diameter B = 80 mm and the throat diameter S = 27.0 mm was selected. It should be noted that the region I is a region where it is impossible to arrange four valves per cylinder, and the region III has a high average intake Mach number, so that sufficient volume efficiency η V cannot be obtained in the high speed rotation region. Area. The average intake Mach number is the above formula
In the present embodiment, the average intake Mach number M im at the maximum rotation speed is set within the range of 0.3 to 0.4.

【0024】図3(a),(b)および図4(a),
(b)は、下記の表1に示すように、ボア径Bとスロー
ト径Sと吸気ポート径P(=独立吸気通路径)とを変え
た場合のエンジンの同調回転数をパラメータとする、1
気筒当たりの独立吸気通路の長さL(cm)に対する体積
効率ηV の関係をシュミレーションによって求めたグラ
フである。
3 (a) and 3 (b) and FIG. 4 (a),
As shown in Table 1 below, (b) has as parameters the engine synchronous speed when the bore diameter B, the throat diameter S, and the intake port diameter P (= independent intake passage diameter) are changed.
6 is a graph obtained by simulating the relationship between the volume efficiency η V and the length L (cm) of the independent intake passage per cylinder.

【0025】[0025]

【表1】 [Table 1]

【0026】図3(a),(b)および図4(a),
(b)の各図にハッチングによって示す領域(イ)〜
(ハ)のうち、領域(イ)はエンジン回転数5500±
500rpm で慣性同調する領域を、領域(ロ)はエンジ
ン回転数5000±500rpm で慣性同調する領域を、
領域(ハ)はエンジン回転数4500±500rpm で慣
性同調する領域をそれぞれ示す。また、領域(イ)〜
(ハ)における吸気通路長Lの範囲をそれぞれ(A)〜
(C)として図3(a)に示す。
3 (a) and 3 (b) and FIG. 4 (a),
Areas (b) indicated by hatching in the respective diagrams of (b) to
In (c), region (b) is engine speed 5500 ±
The range of inertia tuning at 500 rpm, the range (b) is the range of inertia tuning at engine speed 5000 ± 500 rpm,
Regions (C) indicate the regions where the engine speed is 4500 ± 500 rpm and the inertia is tuned. In addition, area (a) ~
The range of the intake passage length L in (C) is set from (A) to
It is shown in FIG. 3A as (C).

【0027】なお、上記グラフの作成に際しては、バル
ブリフト量0.4mmの位置まで閉弁した時点をもって定
義される吸気弁の実質的な閉弁時期をクランク角で下死
点後45°とし、開弁時期はクランク角で上死点前10
°とした(開弁期間235°)。また、インタークーラ
12の下流側の吸気温度を約70°Cとした。
When the above graph is created, the substantial closing timing of the intake valve, which is defined by the time when the valve is lifted to the position of 0.4 mm, is set to 45 ° after the bottom dead center in crank angle. The valve opening timing is crank angle before top dead center 10
(Opening period 235 °). The intake air temperature on the downstream side of the intercooler 12 was set to about 70 ° C.

【0028】本実施例では、排気量1608cc、慣性同
調回転数を5000rpm ±500rpm としたときの最も
高い体積効率ηV が得られる条件として、図3(b)の
例のように、ボア径B=80mm,スロート径S=27.
0mm,吸気ポート径P=38.2mm,独立吸気通路の長
さL=40cmと設定した。
In this embodiment, as shown in the example of FIG. 3 (b), the bore diameter B is set as a condition for obtaining the highest volume efficiency η V when the displacement is 1608 cc and the inertia tuning speed is 5000 rpm ± 500 rpm. = 80 mm, throat diameter S = 27.
0mm, intake port diameter P = 38.2mm, independent intake passage length L = 40cm.

【0029】図5は、図3(a),(b)および図4
(a),(b)から、各慣性同調回転数における各スロ
ート径Sに対する集合部8の下流側の1気筒当たりの吸
気系の容積Vの関係を示すグラフで、図中の4本の直線
は下記の式によって表される。
FIG. 5 shows FIG. 3 (a), (b) and FIG.
From (a) and (b), it is a graph showing the relationship of the volume V of the intake system per cylinder on the downstream side of the collecting section 8 with respect to each throat diameter S at each inertial tuned rotation speed. Is represented by the following formula.

【0030】 V=[(127.5 −0.02N)S+ O.315N−1862.5]×√(T/293 ) ここで N:慣性同調回転数(rpm ) T:絶対温度(°K)(70°Cは343°K) したがって、N±500rpm の範囲内で同調する場合、
容積Vは0.92V〜1.08Vの範囲になる。また、
図5から、慣性同調回転数5000rpm における集合部
8の下流側の1気筒当たりの吸気系の容積Vは550cm
3 となる。
V = [(127.5−0.02N) S + O.315N−1862.5] × √ (T / 293) where N: Inertial tuning rotation speed (rpm) T: Absolute temperature (° K) (70 ° C is 343 ° K) Therefore, when tuning within the range of N ± 500 rpm,
The volume V is in the range of 0.92V to 1.08V. Also,
From FIG. 5, the volume V of the intake system per cylinder on the downstream side of the collecting portion 8 at the inertia tuning speed of 5000 rpm is 550 cm.
It becomes 3 .

【0031】図6は、排気量1608cc,ボア径B=8
0mmとした場合の1気筒当たりの独立吸気通路長(cm)
および独立吸気通路容積(cm3 )を変えたときのエンジ
ン回転数(rpm )に対する体積効率ηV の変化をシュミ
レーションによって求めたグラフである。図から明らか
なように、独立吸気通路長40cm、同容積458cm3
したとき、慣性同調回転数を5000rpm においてもっ
とも高い体積効率ηVを得ることができた。したがっ
て、各吸気ポート3a〜3dの望ましい容積は、550
−458=92cm3 となる。
FIG. 6 shows a displacement of 1608 cc and a bore diameter B = 8.
Independent intake passage length (cm) per cylinder when 0 mm
3 is a graph obtained by simulating changes in volume efficiency η V with respect to engine speed (rpm) when the independent intake passage volume (cm 3 ) is changed. As is clear from the figure, when the independent intake passage length was 40 cm and the volume was 458 cm 3 , the highest volume efficiency η V could be obtained at the inertia tuning speed of 5000 rpm. Therefore, the desirable volume of each intake port 3a-3d is 550
It becomes −458 = 92 cm 3 .

【0032】以上の結果から、過給機11の下流側の吸
気系の容積を下記のように決定した。
From the above results, the volume of the intake system on the downstream side of the supercharger 11 was determined as follows.

【0033】(1) 吸気ポート3a〜3dの4本分の
容積 =92cm3 ×4 (各吸気ポートの径38.2mm,長さ8cm) (2)独立独立吸気通路7a〜7dの4本分の容積=4
58cm3 ×4 (各独立独立吸気通路の径38.2mm,長さ40cm) (3)インタークーラ12の下流側の共通吸気通路9の
容積=196cm3 (共通吸気通路の径50mm,長さ10cm) (4)インタークーラ12の容積=1300cm3 (5)インタークーラ12の上流側の共通吸気通路9の
容積=196cm3 (共通吸気通路の径50mm,長さ10cm) したがって、過給機11の下流側の吸気系の全容積は、
196+1300+196+(458+92)×4=3
892cm3 となる。
(1) Volume of four intake ports 3a to 3d = 92 cm 3 × 4 (diameter of each intake port 38.2 mm, length 8 cm) (2) Four independent intake passages 7a to 7d Volume = 4
58 cm 3 x 4 (diameter of each independent independent intake passage 38.2 mm, length 40 cm) (3) Volume of the common intake passage 9 downstream of the intercooler 12 = 196 cm 3 (common intake passage diameter 50 mm, length 10 cm (4) Volume of intercooler 12 = 1300 cm 3 (5) Volume of common intake passage 9 upstream of intercooler 12 = 196 cm 3 (diameter of common intake passage 50 mm, length 10 cm) The total volume of the intake system on the downstream side is
196 + 1300 + 196 + (458 + 92) × 4 = 3
It becomes 892 cm 3 .

【0034】このように、本実施例では、インタークー
ラ12の上流側および下流側の共通吸気通路9の長さを
可能な限り短縮して容積を小さくし、良好な慣性過給効
果が得られるようにしている。
As described above, in this embodiment, the length of the common intake passage 9 on the upstream side and the downstream side of the intercooler 12 is shortened as much as possible to reduce the volume, and a good inertia supercharging effect is obtained. I am trying.

【0035】次に、本実施例において、中低速回転域に
おいて加速応答性を高めるためにバルブリフト量0.4
mmの位置まで閉弁した時点をもって定義される吸気弁の
実質的な閉弁時期を、本実施例においてはクランク角で
下死点後40〜50°と設定した根拠について説明す
る。
Next, in this embodiment, in order to improve the acceleration response in the medium and low speed rotation range, the valve lift amount 0.4
In the present embodiment, the reason why the substantial closing timing of the intake valve, which is defined by the time when the valve is closed to the position of mm, is set to 40 to 50 ° after the bottom dead center in the crank angle will be described.

【0036】図7は、吸気系容積を一定にして吸気弁の
実質的な閉弁時期(ABDC)を25〜80°に変化さ
せた場合の体積効率ηV (%)の変化を示すグラフであ
る。図7から明らかなように、閉弁時期を早閉じにする
ほど低速での体積効率ηV が高まり、エンジン回転数1
500rpm で閉弁時期を70°から45°にした場合、
体積効率ηV は約9.5%増加している。一方、エンジ
ン回転数1500rpmにおいては、閉弁時期25°の方
が45°よりも体積効率ηV が大きいが、約4000rp
m 以上で急激に減少するため、本実施例では、約450
0rpm で最大の体積効率ηV が得られるように閉弁時期
を40〜50°(ABDC)の範囲に設定するととも
に、慣性同調回転数を5000±500rpm とする慣性
過給により、高速回転域における吸気の体積効率ηV
高めるようにしている。
FIG. 7 is a graph showing the change in volume efficiency η V (%) when the intake valve volume is kept constant and the actual closing timing (ABDC) of the intake valve is changed to 25 to 80 °. is there. As is clear from FIG. 7, the earlier the valve closing timing is closed, the higher the volume efficiency η V at low speed is, and the engine speed is 1
If the valve closing timing is changed from 70 ° to 45 ° at 500 rpm,
The volume efficiency η V has increased by about 9.5%. On the other hand, at the engine speed of 1500 rpm, the volume efficiency η V at the valve closing timing of 25 ° is larger than that at 45 °, but it is about 4000 rp.
Since it sharply decreases at m or more, in this embodiment, about 450
The valve closing timing is set in the range of 40 to 50 ° (ABDC) so that the maximum volume efficiency η V can be obtained at 0 rpm, and the inertia tuning speed is set to 5000 ± 500 rpm, so that the high speed rotation range is achieved. The volumetric efficiency η V of the intake air is increased.

【0037】図8は、1500rpm の下でスロットル弁
を全閉から全開にしたときの充填効率ηC (%)の時間
的変化を示す。図8から明らかなように、閉弁時期を早
閉じにするほど充填効率ηC の上昇率が大きくなってお
り、閉弁時期70°および45°において充填効率ηC
が定常の95%に達するまでの時間はそれぞれ7.67
サイクルおよび7.20サイクルであり、45°の方が
約6.5%向上している。また、閉弁時期を早閉じにす
ることにより、低速回転域では定常時の充填効率ηC
増加するため、同一充填効率(閉弁時期70°の定常状
態の95%)までの時間を比較すると、閉弁時期45°
は閉弁時期70°に対して約18%短縮されていること
がわかる。
FIG. 8 shows the change over time in the charging efficiency η C (%) when the throttle valve is fully closed to fully open under 1500 rpm. As apparent from FIG. 8, the rate of increase in charging efficiency eta C enough to quickly close the closing timing and increases charging efficiency eta C in closing timing 70 ° and 45 °
The time to reach 95% of the steady state is 7.67 respectively.
Cycles and 7.20 cycles, with a 45 ° improvement of about 6.5%. Also, by closing the valve closing timing early, the charging efficiency η C in the steady state also increases in the low speed rotation range, so compare the times until the same charging efficiency (95% of the steady state at 70 ° valve closing timing). Then, the valve closing timing is 45 °
It can be seen that is shortened by about 18% with respect to the valve closing timing of 70 °.

【0038】以上の説明で明らかなように、本実施例で
は、機械式過給機の下流側の吸気系の容積を縮小しつ
つ、低速回転域における加速応答性の向上と、高速回転
域における体積効率を高めたことによる過給機の機械損
失の低減による燃費特性の向上とをはかることができ
る。
As is clear from the above description, in the present embodiment, while reducing the volume of the intake system on the downstream side of the mechanical supercharger, the acceleration response in the low speed rotation range is improved and the acceleration response in the high speed rotation range is increased. It is possible to improve the fuel efficiency characteristics by reducing the mechanical loss of the supercharger by increasing the volumetric efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる直立4気筒機械式過給
機付きエンジンの概略的構成図
FIG. 1 is a schematic configuration diagram of an upright 4-cylinder mechanical supercharged engine according to an embodiment of the present invention.

【図2】ボア径と吸気ポートのスロート径との関係を示
すグラフ
FIG. 2 is a graph showing the relationship between the bore diameter and the intake port throat diameter.

【図3】ボア径とスロート径および吸気ポート径をパラ
メータとして独立吸気通路長に対する体積効率の関係を
示すグラフ
FIG. 3 is a graph showing the relationship between the volume efficiency and the independent intake passage length with the bore diameter, the throat diameter, and the intake port diameter as parameters.

【図4】ボア径とスロート径および吸気ポート径をパラ
メータとして独立吸気通路長に対する体積効率の関係を
示すグラフ
FIG. 4 is a graph showing the relationship between the volume efficiency and the independent intake passage length with the bore diameter, the throat diameter, and the intake port diameter as parameters.

【図5】スロート径に対する集合部の下流側の1気筒当
たりの吸気系の容積の関係を示すグラフ
FIG. 5 is a graph showing the relationship between the throat diameter and the volume of the intake system per cylinder on the downstream side of the collecting portion.

【図6】独立吸気通路長および容積をパラメータとして
エンジン回転数に対する体積効率の変化を示すグラフ
FIG. 6 is a graph showing changes in volume efficiency with respect to engine speed, with independent intake passage length and volume as parameters.

【図7】吸気弁の閉弁時期を変化させた場合の体積効率
の変化を示すグラフ
FIG. 7 is a graph showing changes in volume efficiency when the closing timing of the intake valve is changed.

【図8】吸気弁の閉弁時期を変化させた場合の充填効率
の時間的変化を示すグラフ
FIG. 8 is a graph showing a change over time in charging efficiency when the closing timing of the intake valve is changed.

【符号の説明】[Explanation of symbols]

1 シリンダヘッド 2a〜2d 気筒 3a〜3d 吸気ポート 4a〜4d 排気ポート 6 吸気マニホールド 7a〜7d 独立吸気通路 8 集合部 9 共通吸気通路 11 機械式過給機 12 インタークーラ DESCRIPTION OF SYMBOLS 1 Cylinder head 2a-2d Cylinder 3a-3d Intake port 4a-4d Exhaust port 6 Intake manifold 7a-7d Independent intake passage 8 Collecting portion 9 Common intake passage 11 Mechanical supercharger 12 Intercooler

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 機械式過給機を備え、少なくとも高負荷
時に上記過給機による過給が行なわれるように構成した
エンジンにおいて、 吸気弁の実質的な閉弁時期を下死点からクランク角で4
0〜50°遅れた時点に設定するとともに、上記過給機
よりも下流側の吸気通路容積を、高速回転域において動
的過給の共鳴効果が得られる値に設定してなることを特
徴とする機械式過給機付きエンジン。
1. An engine having a mechanical supercharger, wherein the supercharger performs supercharging at least when the load is high, in an engine, the substantial closing timing of an intake valve is from a bottom dead center to a crank angle. In 4
It is set at a time point delayed by 0 to 50 °, and the intake passage volume on the downstream side of the supercharger is set to a value at which a resonance effect of dynamic supercharging can be obtained in a high speed rotation range. An engine with a mechanical supercharger.
【請求項2】 吸気ポートのスロート径を、最高回転数
における平均吸気マッハ数が0.3〜0.4となるよう
に設定してなることを特徴とする請求項1に記載の機械
式過給機付きエンジン。
2. The mechanical passage according to claim 1, wherein the throat diameter of the intake port is set so that the average intake Mach number at the maximum rotation speed is 0.3 to 0.4. Engine with a feeder.
【請求項3】 上記エンジンが多気筒エンジンよりな
り、各気筒の独立吸気通路を、容積拡大室を有しない集
合部に接続してなることを特徴とする請求項2に記載の
機械式過給機付きエンジン。
3. The mechanical supercharger according to claim 2, wherein the engine is a multi-cylinder engine, and an independent intake passage of each cylinder is connected to a collecting portion having no volume expansion chamber. Engine.
【請求項4】 上記独立吸気通路の容積を、高速回転域
において慣性過給効果が得られる値に設定してなること
を特徴とする請求項3に記載の機械式過給機付きエンジ
ン。
4. The engine with a mechanical supercharger according to claim 3, wherein the volume of the independent intake passage is set to a value at which an effect of inertia supercharging is obtained in a high speed rotation range.
【請求項5】 上記過給機の下流側の吸気通路に水冷式
インタークーラを設けてなることを特徴とする請求項1
ないし4のいずれかに記載の機械式過給機付きエンジ
ン。
5. A water-cooled intercooler is provided in an intake passage on the downstream side of the supercharger.
An engine with a mechanical supercharger according to any one of 1 to 4.
JP7093578A 1995-04-19 1995-04-19 Engine having mechanical supercharger Pending JPH08284668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7093578A JPH08284668A (en) 1995-04-19 1995-04-19 Engine having mechanical supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7093578A JPH08284668A (en) 1995-04-19 1995-04-19 Engine having mechanical supercharger

Publications (1)

Publication Number Publication Date
JPH08284668A true JPH08284668A (en) 1996-10-29

Family

ID=14086159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7093578A Pending JPH08284668A (en) 1995-04-19 1995-04-19 Engine having mechanical supercharger

Country Status (1)

Country Link
JP (1) JPH08284668A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515068A (en) * 2010-09-29 2014-06-26 スクデリ グループ インコーポレイテッド Crossover passage sized for split-cycle engines
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
CN113982745A (en) * 2021-06-30 2022-01-28 航天时代飞鸿技术有限公司 Composite supercharging system suitable for aviation piston supercharged engine and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515068A (en) * 2010-09-29 2014-06-26 スクデリ グループ インコーポレイテッド Crossover passage sized for split-cycle engines
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
CN113982745A (en) * 2021-06-30 2022-01-28 航天时代飞鸿技术有限公司 Composite supercharging system suitable for aviation piston supercharged engine and control method

Similar Documents

Publication Publication Date Title
JP3422033B2 (en) Intake device for engine with mechanical supercharger
JP3236654B2 (en) Engine with mechanical supercharger
JPH0791984B2 (en) Intake device for supercharged engine
JP2863927B2 (en) Engine intake system
JP4807343B2 (en) Engine supercharger
US4958606A (en) Supercharged engine
US4813232A (en) Exhaust device for internal combustion engine
JPS6312819A (en) Two-cycle internal combustion engine
JPH06102981B2 (en) 2-cycle internal combustion engine
JP4032398B2 (en) Power unit of turbocharged engine and vehicles equipped with turbocharged engine
JPH06108858A (en) Intake device of engine
US8281761B2 (en) Internal combustion engine
JPS61210224A (en) Engine with exhaust turbosupercharger
JPH08284668A (en) Engine having mechanical supercharger
JP3384579B2 (en) Engine with turbocharger
JP3551436B2 (en) Engine with turbocharger
JPS63195325A (en) Valve timing control device for engine with supercharger
JPS6312821A (en) Two-cycle internal combustion engine
JPH08291713A (en) Engine having mechanical supercharger
JP2647131B2 (en) Intake device for turbocharged diesel engine
JP3518044B2 (en) Engine intake system
JP2601655B2 (en) Intake device for supercharged engine
JPH0329544Y2 (en)
JP3427396B2 (en) Intake device for engine with mechanical supercharger
JP2002081324A (en) Intake device of engine